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ABSTRACT We propose here an approach for the analysis of single-molecule trajectories which is based on a comprehensive
comparison of an experimental data set with multiple Monte Carlo simulations of the diffusion process. It allows quantitative data
analysis, particularly whenever analytical treatment of a model is infeasible. Simulations are performed on a discrete parameter
space and compared with the experimental results by a nonparametric statistical test. The method provides a matrix of p-values
that assess the probability for having observed the experimental data at each setting of the model parameters. We show the testing
approach for three typical situations observed in the cellular plasma membrane: i), free Brownian motion of the tracer, ii), hop
diffusion of the tracer in a periodic meshwork of squares, and iii), transient binding of the tracer to slowly diffusing structures. By
plotting the p-value as a function of the model parameters, one can easily identify the most consistent parameter settings but also
recover mutual dependencies and ambiguities which are difficult to determine by standard fitting routines. Finally, we used the test
to reanalyze previous data obtained on the diffusion of the glycosylphosphatidylinositol-protein CD59 in the plasma membrane of
the human T24 cell line.

INTRODUCTION

There is increasing interest in a detailed understanding of the

structure and dynamics of the cellular plasma membrane (1),

particularly upon recognizing its essential role for controlling

cellular signaling processes. In recent years a picture emerged

which ascribes to the plasma membrane a high degree of or-

ganization at very short length scales of tens of nanometers

(2–4). Experiments performed on single biomolecules in

particular added to this picture, as they provide access to

spatial information below the diffraction limit of classical

light microscopy (5–10).

A moving biomolecule may experience multiple forces that

influence its characteristic motion. In consequence, the path

will deviate to a greater or lesser extent from a Brownian

trajectory. Deviations from free diffusion may be caused by i),

the confinement of the tracer molecule in a periodic meshwork

of permeable barriers, resulting in hop diffusion (11); ii), the

transient binding of the tracer to an (immobile) plasma mem-

brane structure, yielding short periods of altered—generally

reduced—mobility (12,13); iii), periods of active transport via

motor proteins (14); iv), direct or indirect anchorage to the

cytoskeleton, yielding immobilization or tethered motion of

the tracer (15); v), fixed obstacles at high surface density (16);

and vi), the partitioning of the tracer to mobile or immobile

membrane domains (‘‘rafts’’) (17,18).

From the 1980s on, researchers have studied the path of

single plasma membrane constituents by specific labeling via

particles, which provide signals strong enough to be detect-

able in a microscope; fluorescent lipoproteins (19), phyco-

biliproteins (20), quantum dots (21), or 40 nm gold particles

(22) have been frequently employed as label. Although the

data quality has been astounding and has yielded enormous

insights into the organization of the plasma membrane (3), the

comparably large size of the labels of tens of nanometers may

have affected the tracking results. In one study, residual cross-

linking of the diffusing probe was found to reduce the diffu-

sion coefficients (23). Another study reported the alteration of

the diffusion behavior from free diffusion to anomalous sub-

diffusion upon labeling with quantum dots (24). To circum-

vent such pitfalls, some researchers have switched to less

invasive labels such as single dye molecules (9,23,25–29), but

at the expense of data quality: single dye images show a lower

signal/noise ratio, and the trajectory length is limited by

photobleaching to only a few observations.

Although there are multiple mathematical tools available

for analyzing long traces obtained from single-particle track-

ing experiments (30–33), only the most simple methods have

so far been applied for analyzing the short tracks of single dye

molecules (reviewed in Wieser and Schütz (34)). It is common

practice to analyze the mean-square displacement (msd) as a

function of the time lag (9,25,29,35) or to study the distri-

bution of displacement steps (27,28,36). However, in both

cases a closed analytical theory is available only for the sim-

plest models; extensions to more realistic scenarios that ac-

count for complex diffusion processes or include obvious

experimental constraints like the effect of tracer movement

during illumination are still difficult to tackle.

The aim of this study is to provide a rapid and versatile tool

for analysis of single-molecule tracking data. We reasoned

that a full analytical description of the suspected diffusion
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process may not be required to characterize an experimental

data set; it may well be sufficient to compare the experimental

data with Monte Carlo simulations of the process, which can

be performed in most cases in a decent amount of time on a

standard personal computer. Our idea is therefore to test the

experimental data sample against a comprehensive set of

simulated probe distributions based on a parameterized model.

Each probe distribution is determined by a voxel in a multidi-

mensional discretized parameter space; the difference between

the experimental data set and the Monte Carlo simulation is

measured by the p-value, which allows statistical interpretation

of the results.

The work is organized in the following way: first, we in-

troduce the method on the simple case of a single species showing

pure Brownian motion (Fig. 1 A); second, we describe the

analysis of hop diffusion (Fig. 1 B) and apply the method for

analysis of experimental data obtained by tracking the gly-

cosylphosphatidylinositol (GPI)-anchored protein CD59 in

living T24 cells (25); and third, we describe the analysis of

transient binding of a tracer molecule to a slowly diffusing

receptor (Fig. 1 C).

MONTE CARLO SIMULATIONS

Hop diffusion and free diffusion

Off-lattice random walks were simulated in MATLAB

(R2007a, The MathWorks, Natick, MA) on a standard personal

computer. #sub substeps with fixed length lsub and random

angle were generated, so that l2sub#sub ¼ 4Dmicroðtdel1tillÞ; tdel

and till denoting the delay between two consecutive frames

and the illumination time. The random walk was simulated

within an infinite meshwork of periodic squares with size L.
lsub was adapted to the domain size by lsub ¼ L=10: We

characterized the meshwork by the confinement strength t̂ ¼
ðDmicro=DmacroÞ; Dmacro denoting the reduced mobility over

macroscopic timescales. t̂ ¼ 1 specifies free diffusion, t̂/N
the confined motion of the tracer in a square domain with

impermeable barriers. Whenever the molecule hits a barrier, a

number rand is generated at random between 0 and 1 and

compared to a predefined escape probability h. If rand ,h,

the barrier is crossed; if not, the molecule remains at its pre-

vious position. For our choice of lsub, we find h to be a function

of t̂ alone. The functionality was determined in a Monte Carlo

simulation by calculating the resulting t̂ for various values of

h, yielding a lookup table (Supplementary Material, Fig. S1,

Data S1) that was used for our test simulations. Note that the

relation deviates slightly from the escape-probability reported

for on-lattice simulations (37). Illumination times were ac-

counted for by calculating the average tracer position during

the adjusted illumination. Localization errors were included

by addition of Gaussian noise of mean zero and standard

deviation sxy to every position within the trajectory.

Trajectories are specified by a sequence of positions x~ðiÞ;
with i ranging from 1 to the number of observations of this

trajectory. The msds Ær2æ were calculated as a function of the

time lag tlag ¼ nÆtill1tdelæ according to Ær2æ ¼ Æðx~ðiÞ �
x~ði1nÞÞ2æi¼1;11n;112n;... with n denoting the difference in the

frame index. Note that by taking the average only over non-

overlapping segments of the trajectory we assure that each

data set Ær2ðnÞæ contains only independent entries (38), a

precondition for application of the test strategy.

Transient binding

In the transient binding model, we treat the interaction of a

freely diffusing tracer (mobility DA), which may bind to a

slowly mobile receptor, thus reducing its mobility to DAB

(Fig. 1 C). Off-lattice random walks were simulated in

MATLAB on a standard personal computer. #sub was calcu-

lated according to #sub ¼ 10tdel=minðtoff ; ton; tdelÞ; thereby

generating 10 substeps for the shortest time interval out of toff,

ton, tdel. To assign the time course of transitions between the

bound and free states of the tracer, a vector was generated of

the form ðDA;DA;DAB;DAB;DAB;DA;DA; . . .Þ; with every

entry denoting the mobility for an individual substep. The

substep length lsub is defined by the diffusion constants via

lsub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dtdel=#sub

p
and was distributed exponentially. The

start of the vector was chosen randomly with a probability

specified by the bound fraction K ¼ ðtoffÞ=ðton1toffÞ: The

duration of the individual states was calculated from an ex-

ponential distribution with the parameter toff (ton) for the

bound (free) state. Localization errors were included by ad-

dition of Gaussian noise of mean zero and standard deviation

sxy to every position within the trajectory.

Kolmogorov-Smirnov test

We used the MATLAB function kstest2 for the two-sample

Kolmogorov-Smirnov hypothesis test.

RESULTS

Methodology

We introduce our method with the simple scenario of free

two-dimensional diffusion (Fig. 1 A). A virtual data set Xfree

was simulated to mimic the result of a single-molecule

FIGURE 1 Three diffusion models used for evaluating the test. (A) Free

diffusion of a tracer molecule in a two-dimensional membrane. (B) Hop

diffusion in a periodic meshwork of square corrals with size L. The confine-

ment strength t̂ ¼ Dmicro=Dmacro was varied from t̂ ¼ 1 (free diffusion) to

t̂ ¼ 20 (strong confinement). (C) Transient binding of the tracer (solid) to its

receptor (light shaded). Upon binding, the mobility changes from DA to DAB.
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tracking experiment. The diffusion constant was set to D0¼ 0.3

mm2/s, and the delay between two observations tdel¼ 1 ms. The

trajectory lengths were distributed exponentially with a mean

of 10 observations; a subset of 200 trajectories longer than 5

observations was selected for further analysis. For this intro-

ductory example, we neglected any influence of the illumina-

tion time, i.e., till ¼ 0 ms. Furthermore, we added a Gaussian

distributed localization error of sxy,0¼ 20 nm to every position.

Fig. 2, A and B, shows a conventional analysis of Xfree: The msd

Ær2æ increases linearly with the time lag tlag according to

Ær2æ ¼ 4Dtlag14s2
xy; the slope specifies the diffusion coeffi-

cient D; and the offset on the y axis specifies the localization

precision sxy. We also plotted the cumulative distribution

function (cdf) of the square displacements r2, which is fre-

quently used for diffusion analysis (27,36). For free Brownian

motion, the cdf is given by the monoexponential function

cdfðr2
; tlagÞ ¼ 1� exp � r

2

4Dtlag 1 4s
2

xy

 !
: (1)

For this simple scenario, the exact analytical expressions for

both Ær2æ and cdf are of course known; therefore, standard re-

gression methods can be used to determine the parameters D0

and sxy,0 (34). However, for more general diffusion models

this might not be the case. To enable analysis for such cases,

we propose here a different approach that is based on com-

prehensive testing against multiple simulated probe distribu-

tions in a parameterized model. The idea of our method is to

generate probe data sets Y at different parameter settings using

Monte Carlo simulations and compare them with the virtual

data set X using a statistical test. The simulations for Y are

performed on a discretized parameter space which covers the

suspected region of interest. In this introductory example, the

parameter pairs (Di,sxy,j) fully specify the required probe

data sets Yij.

For comparison of the two samples X and Y, we propose to

employ statistical tests. In general, such two-sample tests are

designed to assess whether X and Y are drawn from the same

underlying distribution (H0 hypothesis). Multiple two-sam-

ple tests have been introduced in the literature (e.g., the

Kolmogorov-Smirnov test, the Wilcoxon rank sum test or

Mann-Whitney U test, and the Ansari-Bradley test; for

comparison see Pappas and DePuy (39)). In general, the

Kolmogorov-Smirnov test performs best in cases when no

information is available on the underlying distributions. If it

can be assumed that the spreads and shape of the distributions

are the same, the Wilcoxon rank sum test is more powerful; if

the median and shapes are the same, the Ansari-Bradley test

is more powerful.

To account for the fact that the distribution functions are

unknown, we implemented here the two-sample Kolmogorov-

Smirnov test (see the Supplementary Material (Data S1) for a

discussion on the two-sample Kolmogorov-Smirnov test). As

an output the test yields the p-value, which is a measure of the

statistical difference of the two distributions X and Y. The

p-value quantifies the extremeness of a randomly drawn sample

by specifying the probability of obtaining a sample at least as

extreme as the one which was actually observed, assuming

that H0 is true. In other words, the distribution of p-values

under the null hypothesis is uniform in the interval [0,1]. If we

specify a significance level a such that H0 will be accepted for

a , p-value and rejected for a . p-value, then a defines the

probability of falsely rejecting H0. By calculating the p-value

between X and every Yij, we get an estimate of the parameter

settings which likely lead to the observed data and of those

parameters which would rarely lead to data as extreme as

observed.

For this example, we used as virtual data sets X(n) the

square displacements r2(n) obtained at different time lags; n¼
tlag/tdel denotes the time lag in units of frames. To characterize

the true null hypothesis, we first tested two data sets X and Y
drawn from the same distribution. In particular, we were in-

terested in the stability of the calculated p-values against a

rerun of the test with another sample Y. We therefore used a

specific sample X(n¼ 1) containing the square displacements

FIGURE 2 Conventional analysis of free diffusion. We simulated trajec-

tories with exponentially distributed length (mean 10 observations) and

selected a subset of 200 trajectories with more than 5 observations for

analysis. We set D0¼ 0.3 mm2/s, sxy,0¼ 20 nm, till¼ 0 ms. (A) The msd Ær2æ
is shown as a function of the time lag. Data for tdel¼ 1 ms (open symbols) and

tdel ¼ 10 ms (solid symbols) are included. (B) The cumulative density func-

tion cdf(r2) is plotted for tlag¼ 1 ms. A monoexponential fit according to Eq. 1

is inserted as a dashed line.
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of 200 trajectories, which was tested against different probe

samples Y(n ¼ 1) of varying size and calculated the standard

deviation (std) of the p-value (Fig. 3 A). std(P) decreases with

the increasing size of Y, since the underlying distribution

function can be better approximated for large samples. In the

following, we used samples Y with size 20-fold or 100-fold

larger than X. We also checked the distribution of the p-values,

which was indeed uniform on the interval [0,1] (Fig. 3 B).

For the actual test, we simulated probe samples Yij at pa-

rameter settings Di ranging 0–0.6 mm2/s and sxy,j ranging

0–40 nm and tested every combination against the virtual data

set X. Fig. 4 A shows a two-dimensional plot of the p-values

obtained at the different parameter settings. A significance

level a ¼ 5% was chosen for all tests in this study. The gray

levels for each plot scale from p-value ¼ 1% to p-value ¼
100%. The reading and interpretation of the plot goes as

follows. In the region with p-value , a, the probability for

falsely rejecting H0 is ,5% (light regions in the plot); in this

parameter regime it is unlikely that the test data set X agrees

with the model. In the remaining parameter regions with

p-value $ a (shaded to solid regions), the test data set would

agree with the model. For this test data set, the majority of

parameter combinations can be ruled out with a p-value even

,10�4. The broad curved region with p-values . 5% indicates

the parameter range which would be consistent with the data.

Importantly, the parameter pair (D0 ¼ 0.3 mm2/s, sxy,0 ¼ 20

nm) assumed for the test statistics is contained in this region.

However, apparently additional alternative interpretations

would agree with the data set X: a somewhat lower mobility can

be compensated by a larger localization error and vice versa.

It is also clear that standard msd analysis requires additional

data at n . 1 to determine the mobility exactly; evidently, the

msd may be generated not only by the preset values via

MSD ¼ 4s2
xy;014D0tlag but also by any other combination of

D and sxy, which is consistent with MSD ¼ 4s2
xy14Dtlag:

Fig. 4 B (C) shows the p-value analysis at n ¼ 2 (3), which

yield different shapes of the significance contours; the max-

imum follows the curve specified by D ¼ D01ðs2
xy;0 �

s2
xyÞ=tlag:Naturally, one would consider the information from

all three plots to lead to a conclusion on whether to reject H0. A

simple way of combining the three plots is by taking the

minimum p-value at each parameter setting. However, the

distribution of the minimum of nmax uniformly distributed

values Pmin ¼ minðP1; . . . ;Pnmax
Þ is not uniform but follows

the function nmaxð1� PminÞnmax�1dPmin; Pmin can therefore

not be directly interpreted as the p-value.

To allow such an interpretation, we used the transformation

Pcorr ¼ 1� ð1� PminÞnmax ; which—in the case of indepen-

dent entries—yields uniformly distributed Pcorr on the interval

[0,1]. Note that Ær2æ shows an increasing correlation with in-

creasing n, which would require different transformations

when including data points obtained at large n (40); up to n¼
3, however, no significant deviation from uniform distribution

was found (Fig. S2, Data S1). Fig. 4 D shows Pcorr calculated

from the first three time lags. The significance contour engulfs

now a restricted region containing the correct diffusion constant

D¼ 0.3 mm2/s and the localization precision 20 nm. Still, the

region is rather large, ranging from D ; 0.2 mm2/s to D ; 0.45

mm2/s. This is a natural consequence of the limited sample

volume available from a single experiment, in this case 200

trajectories. At first glance it would appear attractive to take

the parameter pair with the highest p-value as the best guess

for the set point. However, it should be noted that a second run

of the virtual experiment X would in general yield different

results, and concomitantly an altered shape of the a.0:05

region; a statistically correct interpretation, therefore, allows

us to exclude only the areas outside the confidence region. The

shape of this particular confidence contour is elliptic, remi-

niscent of confidence ellipses from standard regression

problems; the tilt angle of the major axes of the ellipse de-

pends on the correlation between the parameter D and sxy.

FIGURE 3 Characterization of the p-value distribution. For the test data

set X, we simulated trajectories with exponentially distributed length (mean

10 observations) and selected a subset of 200 trajectories with more than 5

observations for analysis. Both X and the probe data set Y were simulated at

the same parameter settings D0¼ 0.3 mm2/s, sxy,0¼ 20 nm, till¼ 0 ms, tdel¼
1 ms, n ¼ 1. A shows the dependence of p-value variations on the probe

sample size. For this, 1 sample X was tested against 50 different samples Y of

a particular size, and the standard deviation of the resulting p-value is plotted

as a function of the sample size ratio. (B) The distribution of p-values is

uniform on the interval [0,1]. We tested 10,000 samples X against probe

samples simulated at the same set point with a 100-fold larger sample size.
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To further ascertain the diffusion constant, an experimen-

talist may perform an additional independent measure of the

diffusion process at higher delay times. We therefore simu-

lated another virtual data set X(tdel ¼ 10 ms), made the cor-

responding test for n ¼ 1, 2, and 3, and plotted the corrected

p-value Pcorr (Fig. 4 E). Compared to the data set obtained at

tdel ¼ 1 ms, we find here a significance contour which is

much narrower along the D axis, but rather broad along the sxy

axis. Both effects can be rationalized by considering that the

observed displacements are now much larger than the locali-

zation errors ( 4Dtlag � 4s2
xy). Combining, finally, the results

from tdel ¼ 1 ms and tdel ¼ 10 ms yields a very good ap-

proximate of the parameter pair used for the virtual data set

(Fig. 4 F).

Hop diffusion

Having introduced the test strategy on a simple example, we

next applied it to a situation which is more difficult to solve

with standard tools. Multiple researchers faced the problem of

how to analyze confined diffusion or the more general case of

hop diffusion (9,23,25,27,29,37). Fig. 1 B sketches the model:

a tracer molecule experiences periodic barriers to its diffu-

sional path; the barriers define adjacent corrals of size L. In

consequence, observations at short time lags would yield the

free mobility of the tracer within a corral, Dmicro. Observation

on long time lags would result in a reduced macroscopic

mobility Dmacro ¼ L2=4t; with t the residence time in a do-

main. The permeability of the barriers determines the decel-

eration of the molecule at long time lags, which can be

quantified by the confinement strength t̂ ¼ Dmicro=Dmacro:By

definition t̂ $ 1;with t̂ ¼ 1 denoting free diffusion and t̂/N
the case of impermeable barriers (totally confined diffusion).

The hop diffusion model is fully specified by the parameters

L, t̂;Dmacro, and sxy. In the following, we used L0¼ 100 nm,

t̂0 ¼ 10; Dmacro,0 ¼ 0.3 mm2/s, and sxy,0 ¼ 20 nm as set

points, which are plausible values for hop diffusion of a GPI-

anchored protein in the plasma membrane of T24 cells

(25,37). We start our discussion with till ¼ 0.

For hop diffusion, an analytical formula describing the msd

as a function of the time lag is given by Wieser et al. (25):

Ær2æ ¼ a 3
aL

2

3
� 32aL

2

p
4 +

N

k¼1ðoddÞ

1

k4 exp �ðkpÞ2

aL2 Dmicrotlag

� �( )

3
1

1 1 t̂ill

1 4Dmacro tlag �
1

3
till

� �
;

(2)

with a ¼ 1� ð1=t̂) and t̂ill ¼ ð4Dmicro=L2Þtill: However, it is

often difficult to draw unambiguous conclusions from ex-

perimental data (34). The information content at the level of

FIGURE 4 Tests for free diffusion, performed at different time lags and delays. We simulated trajectories with exponentially distributed length (mean 10

observations) and selected a subset of 200 trajectories with more than 5 observations for analysis. The set point for X was at the parameter settings D0¼ 0.3 mm2/s,

sxy,0¼ 20 nm, till¼ 0 ms. Probe data sets Y were simulated in a parameter range D¼ 0–0.6 mm2/s and sxy¼ 0–40 nm, with a size of 20,000 trajectories. The plots

show the decadic logarithm of the p-values as a function of D and sxy. The a¼ 5% significance contour is indicated by a thick solid line, the set point by a dotted

line. Gray scales were chosen to highlight the p-value range 1%–100%. Additional contours were added for p-values smaller than a (10�2, 10�4, 10�6, 10�8).

Data sets simulated for tdel ¼ 1 ms were analyzed at a time lag n ¼ 1 (A), 2 (B), and 3 (C). When combining the three data sets, the confidence region becomes

further restricted (D); this analysis particularly allows precise estimation of sxy. When using tdel¼ 10 ms and including n¼ 1, 2, and 3 for analysis, the significance contour

gets tilted, yielding higher sensitivity for determination of the diffusion coefficient D (E). By including all data for analysis, the set point can be precisely extracted (F).
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the distribution of square displacements would be much

higher, yet analytical treatment soon becomes exhausting

even for the simplest case of a meshwork of squares (41). The

challenge can be seen on virtual data sets Xhop. In Fig. 5 A we

plotted Ær2æ as a function of tlag. Ær2æ shows the characteristic

change in the slope from Dmicro to Dmacro at a time lag tlag �
L2=4Dmicro ¼ L2=4t̂Dmacro; here at 1 ms. For tlag , 1 ms, the

linear increase directly specifies Dmicro via Ær2æðtlag/0Þ �
4Dmicrotlag14s2

xy: For tlag . 1 ms, the curve approximates

Ær2æðtlag/NÞ ¼ 4Dmacrotlag1L2ð1� 1=t̂Þ2=3 1 4s2
xy: Also

in this regime, the curve increases linearly with tlag, and the

slope specifies Dmacro. However, an extra offset adds now to

the localization errors, which depends on the domain size and

the confinement strength. The cdf is monoexponential at both

very short and very long tlag (Fig. 5, B and D); interestingly,

slightly above the transition region from Dmicro to Dmacro a

significant deviation from monoexponential behavior can be

observed (Fig. 5 C).

Apparently, when data from all time regimes would be

available, the full msd curve could be resolved, yielding fairly

robust estimates of the domain size and the confinement

strength. However, in particular, tdel , 1 ms is experimentally

difficult to achieve (25). If data are available for only tdel $ 1 ms,

an unambiguous identification and characterization of hop dif-

fusion is extremely difficult. An increased offset in Ær2æ due to

hop diffusion can be taken as a readout parameter but requires

very precise knowledge on the localization precision (25). We

were therefore interested in whether the deviation from mono-

exponential behavior observable in the cdf alone would directly

allow sensing and characterizing hop diffusion in particular for

data obtained at a time resolution tdel ¼ 1 ms and 10 ms.

Fig. 6 shows the results of our test. Analysis was performed

by calculating the minimum of the p-values obtained for n ¼
1, 2, and 3; all plots show the corrected p-value Pcorr. We

assumed Dmacro, which is commonly not difficult to deter-

mine, to be known. Our sample was tested against probe data

sets Yijk specified by the parameters t̂i#20; sxy;j#40 nm; and

Lk ¼ ð50 nm; 80 nm; 100 nm; 120 nm; 150 nmÞ:
The different time regimes show different characteristic

features. The data set simulated at tdel ¼ 1 ms (Fig. 6 A) does

not rule out free diffusion (t̂ ¼ 1), but the corresponding value

of sxy � 33 nm would be too large. Apparently, in this regime

the test is sensitive to the offset in Ær2æ versus tlag and correctly

measures its magnitude, but it cannot exclude the possibility

that this offset is caused solely by localization errors. Due to

the dependence of this offset on t̂; we observed a tilted con-

fidence region. If there is no additional information on sxy,

analysis at tdel¼ 1 ms would hardly exclude any value of t̂ up

to a domain size of 100 nm. On the other hand, if the domain

size is assumed to be much larger than the set point of 100 nm

(e.g., L¼ 150 nm in Fig. 6 A), the concomitant offset becomes

too large to be compensated by sxy, so that no significant Pcorr

value is obtained for this scenario at t̂ $ 2:
When testing against L ¼ 120 nm, which is only slightly

above the set point, we find two well-separated maxima of

FIGURE 5 Conventional analysis of hop diffusion. A test data set was

simulated with the parameter settings L0 ¼ 100 nm, t̂0 ¼ 10; Dmacro ¼ 0.3

mm2/s, and sxy,0 ¼ 20 nm, till ¼ 0 ms. A shows the msd as a function of the

time lag. The data set can be well described by Eq. 2. Note that the shortest

time lag was assumed to be insufficient to catch the bending of the curve.

B–D show cumulative density functions for tlag ¼ 1 ms, 10 ms, and 50 ms,

respectively. Although the curves obtained for tlag ¼ 1 ms and tlag ¼ 50 ms

follow a monoexponential function according to Eq. 1, the data simulated for

tlag ¼ 10 ms clearly deviate.
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Pcorr, one at t̂ ¼ 1 and the second at t̂ ¼ 10; interestingly, the

region between the two maxima can be excluded with high

significance. A closer look on the tlag dependence of Ær2æ (Fig.

5 A) allows us to rationalize this effect. At intermediate values

of t̂; the curve shows a pronounced transition region from

Dmicro to Dmacro at a location tlag � L2=4t̂Dmacro; for t̂ # 5 this

transition region would be located at tlag ; 2 ms, which would

have been sensed by the test performed at a delay of 1 ms.

Since the data do not contain the transition in this particular

region, the intermediate values of t̂ were excluded. Fig. 6 B
shows the second data set simulated at tdel ¼ 10 ms. It hardly

contains information on Dmicro; therefore, t̂ cannot be speci-

fied precisely. However, this data set can significantly rule out

free diffusion, which is a consequence of the deviation of the

hop diffusion cdf from a monoexponential function (compare

Fig. 5, B–D).

In the following, we attempt to extract further information

from data sets at tdel $ 1 ms. First, we can combine the two

data sets for tdel ¼ 1 ms and 10 ms in one plot by calculating

the corrected p-values (Fig. 6 C). From this analysis it be-

comes clear that free or barely confined diffusion can be sig-

nificantly ruled out, and t̂ $ 4 can be specified. Moreover,

FIGURE 6 Test results for a hop diffusion data set. We simulated trajectories with exponentially distributed length (mean 10 observations) and selected a

subset of 500 trajectories with more than 5 observations for analysis. The set point for X was at the parameter settings L0¼ 100 nm, t̂0 ¼ 10; Dmacro¼ 0.3 mm2/s,

and sxy,0 ¼ 20 nm, till ¼ 0 ms. Probe data sets Y were simulated in a parameter range 1 # t̂ # 20; L ¼ 50–150 nm and sxy ¼ 0–40 nm, with a size of 10,000

trajectories. The plots show the decadic logarithm of the corrected p-values as a function of D and sxy. Display settings are identical to those in Fig. 4. A shows

the results for tdel¼ 1 ms and n # 3. Free diffusion would explain the data, although only at a biased sxy ; 30 nm. B shows the results for tdel¼ 10 ms and n #

3. In this case, free diffusion can be ruled out to high significance. When combining both data sets, the set point can be extracted to high precision (C).
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domain sizes outside the significance region between 80 nm

and 120 nm can be excluded. Note that for L¼ 100 nm and L¼
120 nm, changes in t̂ result in pronounced changes in the

localization precision. In particular, a domain size of 120 nm

at t̂ ¼ 10 would only be consistent when assuming a locali-

zation precision of ;12 nm. Additional prior information on

sxy would therefore enable us to further narrow the signifi-

cance contours.

Second, we may also consider effects due to the diffusion of

a molecule during its illumination. The effect on the msd has

been estimated in the literature (25,42,43), yielding in par-

ticular an apparent reduction in the domain size by a factor of

1=ð11t̂illÞ; with t̂ill ¼ tillð4DmicroÞ=L2; till the illumination

time (25). Basically, the centroid of the tracer’s trajectory

during its illumination is biased toward the domain center;

after a jump of the tracer to an adjacent domain, the centroid

also hops accordingly. Interestingly, such hops of the cen-

troids may become more pronounced at long illumination

times compared to the unbiased hop diffusion recorded at

short illumination times (see also Fig. 5 in Ritchie et al. (42)).

In particular, clear deviations from a monoexponential func-

tion should be visible in the cdf. As a test, we used an illu-

mination time till ¼ 2 ms, where the apparent domain size

would shrink to 30% of the original value; the corresponding

msd would be barely distinguishable from free diffusion

(insets to Fig. 7).

Indeed, when plotting the cdf for this data set, we found

strong deviations from the monoexponential function (Fig. 7).

We next used our test to extract the simulated parameter. A

time delay of 2 ms and the inclusion of the first three time lags

(n ¼ 1, 2, 3) proved sufficient to identify hop diffusion (Fig.

8 A). A lower boundary for the confinement strength can be

specified ( t̂ $ 4); only domain sizes from 80 nm to 120 nm

were found to be consistent with the data set. Further nar-

rowing of the significance region was achieved by combining

data recorded at different illumination times till¼ 0 ms, 2 ms,

and 4 ms, which results in the precise confirmation of the

chosen sample statistics underlying our test data set (Fig. 8 B).

These data show the importance of including illumination

time effects for the analysis of single-molecule tracking data.

Furthermore, they demonstrate how the choice of intermedi-

ate illumination times and their systematic variation enables a

much more precise approach for the discrimination of diffu-

sion models. Note that in general the localization precision

also depends on the illumination time; to compensate for this

effect, it is in general sufficient to reduce the illumination

intensity accordingly.

For the next example, we checked whether the testing ap-

proach allows identifying free diffusion against the hypoth-

esis of hop diffusion. We simulated Xfree assuming D0 ¼ 0.3

mm2/s, sxy,0 ¼ 20 nm, tdel ¼ 2 ms, and till ¼ 2 ms and per-

formed the test as described above (Fig. 9). For domain sizes

L $ 80 nm; hop diffusion with t̂ $ 3 can be ruled out with

high significance, indicating that here the combined effects of

diffusion during illumination and time dependence of r2 also

FIGURE 7 Conventional analysis of a hop diffusion data set including

effects of diffusion during illumination. Data were simulated for L0 ¼ 100

nm, t̂0 ¼ 10; Dmacro ¼ 0.3 mm2/s, and sxy,0 ¼ 20 nm. The main plots show

the cumulative density function of r2, the inset the msds as a function of time

lag (Eq. 2). The cdf was fitted by a monoexponential function (Eq. 1, dotted

line). The panels show results for till ¼ 0 ms, tdel ¼ 4 ms (A), till ¼ 2 ms,

tdel¼ 2 ms (B) and till¼ 4 ms, tdel¼ 0 ms (C). Note that the difference to free

diffusion is decreased with increasing till when considering the msds but

becomes pronounced when considering the cdf. In addition, the probability

for small displacements is larger when using longer illumination times,

resulting in a steeper increase of the cdf. It is caused by a more pronounced

collapse of the trajectory segment in the domain center, yielding smaller

position fluctuations of the centroid.
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strongly restrict the number of possible model parameters.

Yet, no conclusion can be drawn for hop diffusion between

small domains L # 50 nm; in this case, the effect on the offset

of the msd and on the distribution of r2 is too small to be

detectable.

Finally, we applied the test for the analysis of experiments

reported previously (25). In that study, we measured and

characterized the diffusion of CD59—a GPI-anchored

protein—in the plasma membrane of the human bladder

carcinoma cell line T24. For labeling CD59 we used a fluo-

FIGURE 8 Test results for a hop diffusion data set including effects of diffusion during illumination. We simulated trajectories with exponentially

distributed length (mean 10 observations) and selected a subset of 500 trajectories with more than 5 observations for analysis. The set point for X was at the

parameter settings L0¼ 100 nm, t̂0 ¼ 10; Dmacro¼ 0.3 mm2/s, and sxy,0 ¼ 20 nm. Probe data sets Y were simulated in a parameter range 1 # t̂ # 20; L¼ 50–

150 nm, and sxy ¼ 0–40 nm, with a size of 10,000 trajectories. The plots show the decadic logarithm of the corrected p-values as a function of D and sxy.

Display settings are identical to those of Fig. 4. A shows results for tdel¼ 2 ms and till¼ 2 ms including data for n¼ 1, 2, and 3. For this setting, the set point can

be well extracted. When combining data sets simulated at (till¼ 0 ms, tdel¼ 4 ms), (till¼ 2 ms, tdel¼ 2 ms), and (till¼ 4 ms, tdel¼ 0 ms), the significance region

can be further reduced (B).

FIGURE 9 Test results for a free diffusion data set including effects of diffusion during illumination. We simulated trajectories with exponentially

distributed length (mean 10 observations) and selected a subset of 500 trajectories with more than 5 observations for analysis. The set point for X was at the

parameter settings t̂0 ¼ 1; Dmacro ¼ 0.3 mm2/s, sxy,0 ¼ 20 nm, till ¼ 2 ms, and tdel ¼ 2 ms. Probe data sets Y were simulated in a parameter range 1# t̂ # 20;

L ¼ 50–150 nm, and sxy ¼ 0–40 nm, with a size of 10,000 trajectories. The plots show the decadic logarithm of the corrected p-values as a function of D and

sxy. Display settings are identical to those of Fig. 4.
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rescent Fab fragment of a monoclonal antibody. Based on the

analysis of the msd versus time lag, we found no indication for

hop diffusion, in contrast to a study on the same system where

single-particle tracking of gold-labeled CD59 revealed hop

diffusion between domains with a size L ¼ 120 nm (37). We

interpreted the conflicting results to be a consequence of the

different experimental strategies.

The measured data set was recorded at 37�C, at a delay tdel¼
0.7 ms and an illumination time till ¼ 0.3 ms (green curve in

Fig. 9 of Wieser et al. (25)). We included 262 trajectories with

a mean length of 7.5 observations in this analysis. We fixed

the macroscopic mobility to the value determined from the

slope of Ær2æ versus tlag, Dmacro ¼ 0.47 mm2/s. Note that in

contrast to our previous analysis, we did not fix the localiza-

tion precision here but regarded it as free parameter. Fig. 10

shows the results of the tests: hop diffusion between small

domains of size L , 80 nm cannot be ruled out over the whole

spectrum of t̂; yet for L $ 80 nm the test rules out high con-

finement strength. The results of the two analytical ap-

proaches are consistent; in particular, both indicate that hop

diffusion appears exaggerated in single-particle tracking ex-

periments. However, it should also be noted that the test

strategy applied here is more tolerant toward variations in

confinement strength. No conclusion can be drawn up to t̂ ¼
5; compared with a maximally allowed t̂;2:5 for L¼ 100 nm

reported previously. The higher accuracy of the previous

analysis was due mainly to the inclusion of prior information

on sxy¼ 22 6 5 nm, which was not taken into account here.

Indeed, the three parameters L, t̂; and sxy show mutual de-

pendencies, which result in a tilted confidence region; in

particular for L ¼ 120 nm and L ¼ 150 nm, the excluded

values of t̂ strongly depend on the choice of sxy. Further

constraining the confidence region would therefore be pos-

sible by considering additional prior information on locali-

zation errors.

Transient binding to slow receptors

Dynamic molecular interactions are fundamental to cellular

processes. Many signaling events are initiated and regulated

by the transient binding of plasma membrane associated pairs

of molecules such as receptors and ligands or enzymes and

substrates. Besides the cis interaction of two reactants (44),

the transinteraction in a cell-cell contact region is of great

interest to understand the regulation of cellular adhesion and

activation (45,46).

Currently, the preferred approach for characterizing mo-

lecular interactions between a fluorescently labeled reactant

and its receptor is based on the analysis of the fluorescence

recovery after photobleaching (FRAP) (47). In such an ex-

periment, a specific region of the cell is photobleached by a

strong laser pulse; the increase of signal due to the diffusion of

unbleached reactant into the bleach spot is measured. The

dynamics of the fluorescence recovery depends on the mo-

bility of the two reactants (D1 and D2), the binding rate con-

stants (kon and koff), and the geometry of the bleaching profile

(48). As examples, FRAP was used to deduce the rate con-

stants for a green fluorescent protein tagged glucocorticoid

receptor interacting transiently with nuclear binding sites

(49), or to characterize the transinteraction of a protein with its

counterreceptor moving in the opposing membranes of an

immunological synapse (46,50,51). Although widely used,

caution should be taken in interpreting FRAP data, as they

depend critically on the diffusion mechanism (52) and on the

geometry of the system (47).

The interaction dynamics between two proteins may also

be probed at the single-molecule level. Conceptually the most

straightforward approach would be based on two-color mi-

croscopy. The interaction time of the two reactants labeled in

two different colors could be directly read off via the duration

of the signal colocalization. However, since photobleaching

limits the observation time for a single molecule to only a few

frames, this approach would hardly produce any hits; more-

over, the few correlation events will be biased toward short

interaction times. Alternatively the change in mobility of a

fluorescent reactant upon binding to its receptor may be an-

alyzed; yet, although there are methods for detecting abrupt

changes in the mobility of a tracer (30), in this case most of the

trajectories may not be long enough to cover the full lifetime

of the interaction.

FIGURE 10 Test results for data from

experiments described in Wieser et al. (25).

We included 262 trajectories in the analysis

(mean trajectory length 8). Data were

recorded at tlag ¼ 0.7 ms, till ¼ 0.3 ms.

Probe data sets Y were simulated in a

parameter range 1 # t̂ # 20; L¼ 50–150

nm, and sxy ¼ 0–40 nm, with a size of

5240 trajectories (mean trajectory length

8). To facilitate analysis, we fixed the

macroscopic mobility at the value derived

from msd analysis Dmacro ¼ 0.47 mm2/s.

Theplots showthedecadic logarithmof the

corrected p-values as a function of D and

sxy. Display settings are identical to those

of Fig. 4. See main text for discussion.
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In the following, we describe the application of our testing

algorithm to infer kinetic binding constants from single-

molecule tracking data. The underlying model is illustrated in

Fig. 1 C. Let us assume two mobile species A and B which

may interact transiently according to the equations

A 1 B ���! ���kon

koff

AB

with kon ¼ t�1
on and koff ¼ t�1

off the forward and reverse reac-

tion rate constants for species A, which will be fluorescently

labeled. In its free form, it will diffuse with diffusion constant

DA; the bound complex is characterized by the mobility DAB,

with DAB 6¼ DA: Let us further assume the total length of

single-molecule trajectories to be distributed exponentially.

This assumption approximates real life experiments fairly

well; whenever longer tails are observed in the bleaching

curves (53), they can also be accounted for in the algorithm.

Next, every trajectory is analyzed by calculating an estimator

of the single-molecule mobility according to Dest ¼
Æðr2ðtlagÞÞ=4tlagæ: The top panel of Fig. 11 shows the results

of Dest for a simulation of 2500 trajectories with the param-

eters DA ¼ 1 mm2/s, DAB ¼ 0.1 mm2/s, toff ¼ 100 ms, ton ¼
200 ms, and sxy ¼ 0 nm. We assumed a mean number of 10

steps per trajectory, which was distributed exponentially. In

panel A, we show Dest for a simulation which was run at a

delay of 1 ms. Two peaks can be discriminated, corresponding

to the diffusion constants DA and DAB. The normalized area of

the left and right peak specifies the bound and unbound

fraction K ¼ toff=ðton1toffÞ and 1� K; respectively. Upon

increasing the delay between two consecutive observations to

25 ms, transitions between the bound and the unbound state

within a single trajectory become likely (B). Consequently,

the peaks become connected, and the maxima shift toward an

intermediate mobility ð1� KÞDA1KDAB:This effect is more

pronounced at a delay of 300 ms, where the peaks have

merged to a single peak (C). In essence, the ratio between the

transition rate constants and the delay time defines the shape

of the histogram.

We therefore based our testing approach on the parameter

Dest, with an attempt to extract information on K and toff. The

remaining parameter DA, DAB, sxy, and the trajectory length

are assumed to be known from independent experiments. The

bottom panels of Fig. 11 show the test results for the respec-

tive virtual data sets Xbinding in the top panel; probe data sets Y
were simulated with a 100-fold larger size than Xbinding. The

simulated bound fraction K0 ¼ 33% can be extracted at high

precision for all chosen delay times. The high sensitivity for K
originates from the strong effect of changes in the area pro-

portion on the shape of the cdf; this effect appears at any time

delay. In contrast, the confidence regions for the interaction

time depend strongly on the settings of tdel. For a delay of 25

ms, we find a sharp region in toff including the set point of

toff,0 ¼ 100 ms; the p-values rapidly decline when testing

against values of toff which deviate from the set point by a

factor of 2 (Fig. 11 B). An experiment performed at tdel ¼
1 ms, however, would only provide a lower boundary for toff

at ;25 ms. This effect is plausible, since at short delays hardly

any transition between fast and slow diffusion occurs within a

single trajectory. Yet the test can rule out rapid turnovers, as

such a scenario would have been inconsistent with the well-

separated peaks observed in the histogram. The effect is re-

versed when too long a delay is (tdel ¼ 300 ms); in this case,

the test senses the single peak in the distribution of Dest (Fig.

11 C), which would agree with any turnover faster than the

upper boundary for toff at ;250 ms but would be inconsistent

with a slower off-rate.

FIGURE 11 Test of a virtual data set

Xbinding simulated at DA¼ 1 mm2/s, DAB¼
0.1 mm2/s, toff¼ 100 ms, ton¼ 200 ms,

and sxy ¼ 0 nm. We included 2500

trajectories of exponentially distributed

length with mean 10. A, B, and C show

simulations for tdel ¼ 1 ms, 25 ms, and

300 ms, respectively. In the top panel,

histograms of the estimated single-mol-

ecule diffusion coefficient Dest are de-

picted. For tdel ¼ 1 ms the two mobile

species can be well separated, as hardly

any transition occurs within the individ-

ual trajectories. For tdel¼ 25 ms, the two

peaks start to merge, yielding a pro-

nounced shoulder around DAB. For tdel ¼
300 ms, no indication for two different

species remains. The bottom panel

shows the corresponding test results,

using a 100-fold larger probe data set Y.

The decadic logarithm of the p-values is

shown as a function of the bound fraction

K and the off-rate toff. The a¼ 5% significance contour is indicated by a thick solid line, the set point by a dotted line. Gray scales were chosen to highlight the

p-value range 1%–100%. Additional contours were added for p-values smaller than a (10�2, 10�4, 10�6, 10�8). The three simulations exemplify the extreme

cases: A (C) allows us to specify a lower (upper) boundary for toff; B yields a precise estimate of the set point. The precision in estimating K hardly depends on tdel.
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To further evaluate the potential of the test for extracting

the two parameters K0 and toff,0 under various constraints of

the known parameters, we determined the average square

deviation of K and toff from the set points K0, toff,0 in the

significance region:

Dtoff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
P . a
ðlog toff � logtoff;0Þ2d log toffR

P . a
d log toff

s

DK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
P . a
ðK � K0Þ2dKR

P . a
dK

s
:

Fig. 12 summarizes the results. Panel A shows a more

detailed characterization of the dependence on tdel, confirm-

ing the trends visible in Fig. 11. Precise estimation of the

bound fraction K is barely affected by variation of tdel. For

toff, lower boundaries (for tdel � toff) or upper boundaries

(for tdel� toff) can be specified; around tdel ; toff, a correct

estimate of the set point can be achieved. We next varied the

assumed bound fraction K from 15% to 85%. The plot reveals

an interesting asymmetry: both Dtoff and DK increase when

K decreases from 50%, but there is barely any effect when K
increases. This is caused by the residual asymmetry of the

distributions of Dest, a consequence of the rather short

trajectories used for the calculation; a sharper edge on the

right side of the Dest histograms allows higher reliability in

detecting a shoulder on the high mobility side.

We also assessed the quality of the test for different ratios

DA/DAB (panel C). Evidently, the test strategy depends crit-

ically on a significant difference between DA and DAB, which

is reflected in this plot by an increase of both Dtoff and DK
with decreasing DA/DAB. Interestingly, the off-rate can be

well estimated when the diffusion constants between the

bound and unbound forms differ only by a factor of 3 (see

also Fig. S3, Data S1).

Fig. 12 D shows the dependence of the results on the lo-

calization precision. Higher errors—if taken correctly into

account—deteriorate the results only modestly. However,

when localization errors are wrongly estimated from prior

experiments, the results may be biased (Fig. 13). In this case,

the bound fraction in particular will be underestimated for too

low sxy or overestimated for too high sxy; yet, the test does

not sense an erroneous estimation of sxy,0. The effect is

caused by a shift of the distribution of Dest to higher values

when increasing sxy. Interestingly, toff is less affected. The

magnitude of the bias may further depend on the set points for

DA, DAB, and tdel (compare with Fig. 4). Note that we have

chosen here rather large deviations of sxy from the set point.

CONCLUSIONS

We have described a test-based approach for the analysis of

single-molecule tracking data. Although generally applicable,

the approach is particularly useful for models where analytical

treatment is challenging. We demonstrated the working

principle for the analysis of free diffusion, hop diffusion, and

transient binding of the tracer molecule to slowly moving

receptors. The test directly yields significance contours in a

FIGURE 12 Evaluation of the test for

different parameter ranges. Data sets

Xbinding were simulated at DA ¼ 1

mm2/s, DAB ¼ 0.1 mm2/s, toff ¼ 100

ms, ton ¼ 200 ms, tdel ¼ 25 ms, and sxy

¼ 0 nm, except where indicated. We

included 2500 trajectories of exponen-

tially distributed length with mean 10.

We plotted Dtoff and DK to measure the

mean deviation of the confidence region

from the set point. Whenever the conf-

idence region exceeds the simulated

parameter space (0.02–0.5 s for toff,

26%–40% for K), data points are put in

brackets; in these cases, only a lower

boundary can be provided. A shows a

systematic variation of tdel between 1 ms

and 300 ms, including the data shown in

Fig. 11. Optimum readout of the inter-

action lifetime can be performed with a

delay of ;25 ms. The precision for

estimating the bound fraction hardly

depends on tdel. (B) We varied the bound

fraction K by changing ton while keeping toff ¼ 100 ms constant. The test precision improves for both K and toff by increasing the bound fraction. Note the

asymmetry in the plot, which is a consequence of asymmetric histograms for Dest. (C) Variation of the ratio DA/DAB. DA was kept constant at 1 mm2/s; DAB was

adjusted. For all chosen settings, the bound fraction can be extracted with fairly good precision. Interestingly, a ratio of 3 is sufficient to significantly restrict the

parameter range for toff. Data obtained for a ratio of 2, however, contain hardly any information on the interaction lifetime. (See Fig. S3, Data S1, for all contour

plots). (D) To mimic a real life experiment more closely, we also included localization errors sxy in the analysis. In this plot, the errors are assumed to be known

from prior experiments. We find only a modest deterioration of the results with increasing sxy.
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multidimensional parameter space, which allows us to dis-

criminate consistent from inconsistent parameter settings.

We foresee two main applications of the test strategy. First,

the test will help in the analysis of data when no analytical

theory is at hand. It is ironic that the majority of membrane

proteins are found to diffuse anomalously. However, since the

according deviations from free Brownian motion are difficult

to tackle, experimentalists restrict themselves to specify

subdiffusion coefficients; model-based analysis is hardly

possible. With the described approach, analysis may be per-

formed on the basis of even complex models, including, e.g.,

the partitioning of the tracer molecule to mobile plasma

membrane domains such as rafts, the presence of obstacles, or

the effect of altered matrix geometry. It should be emphasized

that our approach is not limited to the analysis of short traces;

long trajectories obtained in single-particle tracking studies

also can be used as input sample. In fact, any test data set with

elements following a Markov chain may be analyzable. In

particular, single-molecule Förster resonance energy transfer

data frequently contain specific substates which may transit in

time; also in such cases, the test approach will allow extracting

transition times from the characteristic shapes of the Förster

resonance energy transfer histograms.

Second, the testing approach enables the precise configu-

ration of the measurement parameters to maximize the

sensitivity. In particular, potential pitfalls due to the inap-

propriate selection of the measurement parameter can be

avoided a priori. Having selected a specific experimental

design, it may well be appropriate to compare the power of

different two-sample tests (e.g., Kolmogorov-Smirnov ver-

sus the Wilcoxon rank sum).
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