
Increasing Sensitivity of Ca21 Spark Detection in Noisy Images by
Application of a Matched-Filter Object Detection Algorithm

Cherrie H. T. Kong, Christian Soeller, and Mark B. Cannell
Department of Physiology, University of Auckland, Auckland, New Zealand

ABSTRACT Microscopic calcium (Ca21) events (such as Ca21 sparks) are an important area for study, as they help clarify the
mechanism(s) underlying intracellular signaling. In the heart, Ca21 sparks occur as a result of Ca21 release from the
sarcoendoplasmic reticulum, via ryanodine receptor channels. Measurement of Ca21 spark properties can provide valuable
information about the control of ryanodine receptor channel gating in situ, but requires high spatiotemporal resolution imaging, which
produces noisy datasets that are problematic for spark detection. Automated detection algorithms may overcome visual detection
bias, but missed and false-positive events can distort the distribution of measured Ca21 spark properties. We present a sensitive and
reliable method for the automated detection of Ca21 sparks in datasets obtained using confocal line-scanning or total internal
reflection fluorescence microscopy. This matched-filter detection algorithm (MFDA) employs a user-defined object, chosen to mimic
Ca21 spark properties, and the experimental dataset is searched for instances of the object. Detection certainty is provided by
nonparametric statistical testing. The supplied codes can also refine the search object on the basis of those detected to further
increase detection sensitivity. In comparison to a commonly used, intensity-thresholding algorithm, the MFDA is more sensitive and
reliable, particularly at low signal/noise ratios. The MFDA can also be easily adapted to other signal-detection problems in noisy
datasets.

INTRODUCTION

Localized calcium (Ca21) release events, such as Ca21 sparks

(1), provide the basis for tight regulation between signaling

proteins (2). In heart muscle, Ca21 sparks are considered

elementary events in excitation-contraction coupling and are

due to sarcoendoplasmic reticulum Ca21 release via ryano-

dine receptor channel (RyR) activation (1,3). Spatiotemporal

summation of Ca21 sparks results in the whole-cell Ca21

transient (3) that initiates and controls muscle contraction (for

review, see Bers (4)), and alterations in RyR function have

been suggested to play a crucial role in some cardiac disease

states (5–7). However, it has proven difficult to study RyRs in

situ, so their gating properties have to be inferred from the

Ca21-release waveform associated with the Ca21 spark (e.g.

(8,9)).

Accurate and unbiased detection of Ca21 sparks (and

similar signaling events) is made problematic by their small

spatial size, fast kinetics, and limited signal/noise ratio (SNR).

A connected problem is that of ‘‘missed events’’, as previ-

ously described for single-channel recording (10), which arise

from small and/or fast events falling below the threshold for

detection. Similarly, undetected sparks (which will, on aver-

age, be associated with a smaller fluorescence signal) may

alter estimates of spark probability, average spark flux, and

other parameters (11). On the other hand, if the detection

threshold is too low, the resulting data is contaminated by

‘‘false positives’’ produced by noise. One way to minimize

the occurrence of both missed events and false positives

(assuming constant SNR) is to use a sensitive and reliable

detection algorithm.

For 2D datasets, such as fluorescence images of Ca21 sparks,

an automated double-threshold method was developed (herein

referred to as the ‘‘threshold-based’’ algorithm (11)). The first

threshold defines contiguous areas large enough to be Ca21

sparks, whereas the second, higher threshold, determines

whether the signal has sufficient amplitude to be classified as a

spark. However, this algorithm uses data smoothing and/or

median filtering to reduce noise and false positives, and al-

though such filtering increases the probability of the dataset

passing the first threshold, it also decreases the signal amplitude

so that the probability of passing the second threshold is

reduced. These opposing effects can make the correct choice of

filter and thresholds for any dataset problematic. To improve

detection reliability against noise, a ‘‘live or die’’ filter (12) and

a wavelet filter (13) have been added to threshold-based

methods. Nevertheless, the process of selecting thresholds

remains imprecise, although statistical significance for detected

events can be determined if an adjacent Ca21-spark-free region

can be defined (14).

An optimal processor for a signal with additive noise is the

signal itself, a ‘‘matched filter’’, which maximizes the SNR of

a dataset to facilitate detection and localization of the signal

(15). We have implemented a matched-filter detection algo-

rithm (MFDA) for detecting objects with known spatiotem-

poral properties in 2D images and applied it to the problem of

detecting Ca21 sparks in noisy data. To demonstrate the

performance of the MFDA, we compare it to a commonly

used threshold-based algorithm (11) using synthetic datasets
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over a range of SNR and spatial blur (to simulate out-of-focus

events), as well as on Ca21-spark datasets from rat ventricular

myocytes. At an SNR of 1.0, the MFDA showed threefold

improvement on both detection sensitivity (the probability

that a given true event is positively detected) and positive

predictive value (PPV, the probability that a given positive

detection is correct). Further, since the search object can be

refined after initial detection, the algorithm can be adaptive to

the dataset. To facilitate examination of this detection ap-

proach, we include a stand-alone program (Windows-based),

as well as annotated program listings that provide routines for

model spark generation, Ca21 spark detection, and model

fitting (see the Supplementary Material, Data S1).

METHODS

Isolation and loading of cardiac
ventricular myocytes

Wistar rats (250 g) were killed by lethal injection of sodium pentobarbitone

(240 mg/kg intraperitoneally) in accordance with the University of Auck-

land Animal Ethics Committee guidelines. The enzymatic cell isolation

method was as previously described (16). Briefly, the heart was perfused by a

Langendorff perfusion system at 35�C with a modified Tyrode’s solution

containing 1.0 mg/ml collagenase (Type II, Worthington Biochemical,

Lakewood, NJ) and 0.1 mg/ml protease (Type XXIV, Sigma Aldrich, St.

Louis, MO) in 200 mM Ca21. Cells were stored at room temperature in 1 mM

Ca21-Tyrode and aliquots were loaded with 5 mM Fluo-4-AM or Fluo-5F-

AM (Invitrogen; Carlsbad, CA), followed by 20 min incubation and dilution

(.64-fold) into 1 mM Ca21-Tyrode. Ca21-tolerant myocytes were selected

based on good morphology (rod-shaped with clear striations) with no visible

waves of contraction. For total internal reflection fluorescence (TIRF)

imaging, 10 mM 2,3-butanedione monoxime (BDM, Sigma-Aldrich) was

also added to reduce cell movement on stimulation. Stimulation, laser shutter,

camera shutter, and acquisition were controlled by custom protocols written

in pCLAMP 9.2 (Molecular Devices; Union City, CA).

Fluorescence imaging

For line-scanning confocal laser scanning microscopy (CLSM), a Zeiss LSM

410 was used (Carl Zeiss, Oberkochen, Germany) with a 403, 1.25 N.A. oil

objective. Illumination was provided by a 488-nm Ar1 laser (Uniphase, San

Jose, CA) and fluorescence detected via a bandpass filter (535 6 20 nm). For

TIRF microscopy, an inverted microscope (TE-2000E, Nikon, Tokyo, Japan)

was used, with a 603, 1.49 N.A. oil objective. Illumination was provided by a

488-nm Ar1 laser (150M, Laser Physics, Cheshire, United Kingdom) cou-

pled through a single-mode polarization-maintaining optical fiber (Oz Optics;

Ottawa, Canada). The fluorescence detector was a cooled, backlit, frame-

shift-enabled electron-multiplying charge-coupled device (EMCCD) (Ixon

487, Andor Technology, Belfast, Northern Ireland). The recording chamber

was treated with 0.05% w/v poly-L-lysine (Sigma Aldrich) for 15 min and

washed before cell addition. A micromanipulator was used to position a blunt

fire-polished glass microtool to increase the area of contact between cell and

coverslip.

Data processing

CLSM data was saved as 8-bit unsigned integer TIFF images, whereas TIRF

camera data was converted to a 16-bit unsigned integer format. Data nor-

malization was carried out before spark detection by dividing image data by

an average intensity array (black-level subtracted for both types of data) that

represents basal fluorescence. In the case of CLSM data, this was an average

of 1024 lines; for TIRF data, a moving average over time (three frames

immediately preceding the frame of interest) was used. Program develop-

ment and data analyses were performed using Interactive Data Language

(IDLV6.3, ITT Visual Information Solutions, Boulder, CO).

Automated detection of Ca21 sparks

The MFDA involves two sequential cross-correlations between normalized

data and model arrays (Fig. 1 shows the data processing path). The algorithm

provides the most likely central location of a detected Ca21 spark (or other

event), which can then be the basis for further analysis of event properties. The

event to be detected could be any arbitrary function of amplitude and time

centered on the model array, but for this study, a model Ca21 spark was used

(generated by the flexible basis function MAKESPARK_FUNC (see Data

S1)), although the event could also be based on actual experimental data.

In the first step, input data and model arrays are cross-correlated to produce

an initial array of correlation coefficients (array R0). This quantifies the degree

of similarity between the data and the model as a function of model position

relative to the data. The calculation is performed by the routine FFTCORREL,

which multiplies the Fourier transform of the data with the complex conjugate

of the model transform. This first step is calculated with a fast Fourier

transform (FFT) to allow efficient cross-correlation of large datasets and is

mean-subtracted and normalized so that it is equivalent to Pearson’s product-

moment correlation coefficient.

To detect events, the cross-correlation array Ri (where i denotes the iter-

ation count) is interrogated iteratively for the maximum value. A parameter

RSTOP is used to define the minimum correlation coefficient so that if

Max(Ri) # RSTOP, the procedure stops and the detection count is i. RSTOP is

determined by cross-correlating a randomized version of the normalized

dataset with the model array to give correlation coefficients associated with

noise of comparable power to the normalized dataset. The value of RSTOP is

obtained from this correlation array by calculating at six standard deviations

above the mean (which is ;0). Because pixel randomization will be different

for each MFDA run, the number of detected events for a given dataset and

model may vary slightly if the dataset contains events that are near the limit of

detection.

If Max(Ri) . RSTOP, the coordinates of this maximum value are used as

the initial location of detected event i (which are stored as Pre-XYi). To refine

this estimate of position, further local cross-correlations are used to calculate

the nonparametric Spearman rank correlation coefficient (r (Eq. 1)) as a

function of position of a kernel containing the model object (computed by the

routines STATMAP and RANK_CORREL, see Data S1):

r ¼ +
i
ðRi � RÞðSi � SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+
i
ðRi � RÞ2

q
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+

i
ðSi � SÞ2

q : (1)

The kernel is shifted relative to the data over a region surrounding Pre-XYi.

The kernel size in x and y is defined by the vector WINA (window area), which

is determined within the algorithm such that WINA width and height are three

times the full width at half-maximum (FWHM) in x and y of the model, but the

kernel can be any shape. The region over which the kernel was shifted was

a 10 3 10 area surrounding Pre-XYi. At these values, execution time is

minimized, although enough pixels are still processed to reliably determine

object location. In these calculations, only model pixels significantly above

background were used to avoid a large number of background pixels inflating

the correlation coefficient. Since the tests were directed toward measuring

Ca21 sparks, the background of the model was normalized to 1.0, so that all

pixels above this value were used. For example, in the spark model presented

here, N¼ 435 pixels met this criterion (WINA¼ (15, 54), x¼ 0.4 mm/pixel,

t ¼ 1.4 ms/pixel).

At each shift, RANK_CORREL also calculates the two-tailed P-value for

a nonzero value of r (Eq. 2), where t approximates a Student’s t-distribution

with N – 2 degrees of freedom (17):
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t ¼ r 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1� r
2

s
: (2)

The coordinates of the local P-value minimum are then the most likely

location of the detected spark. If this P-value is less than or equal to a user-

defined significance level, SIGP, then it is considered a detected event,

otherwise, the event is rejected.

This process is repeated on a revised array, Ri11, which is constructed by

subtracting the model autocorrelation centered at Pre-XYi. This enables the

routine to sequentially examine all local maxima in the correlation array and

the process continued automatically until the stop criterion is reached.

Spark model generation

Adjustable synthetic Ca21 spark models were used as matched filters for the

MFDA, as well as for generation of synthetic datasets for testing algorithm

performance.

To simulate Ca21 sparks recorded using a line-scanning CLSM system,

the fluorescence signal (S), was given by

Sðx; tÞ ¼ DFðtÞ 3 exp �ðx � x0Þ2

2sðtÞ2
� �

1 F0; (3)

where

DFðtÞ ¼ K 3 exp �exp �ðt � t0Þ
trise

� �
� t � t0

tdecay

� �
(4)

and

sðtÞ ¼ speak 3 ðt � startÞ2 1 0:0001
� �0:25

: (5)

FWHM in x was set to 2.0 mm, K was chosen so that the maximum of DF/F0

was 1, F0 was 1, and trise and tdecay were chosen so that time to peak was 10

ms and half time of decay was ;20 ms. speak was determined from the

FWHM, using the formula FWHM ¼ 23speak3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
23ln2
p

; whereas start was

FIGURE 1 MFDA processing path. Solid lines indicate

the normal algorithm processing path and dotted lines the

path for utilizing model refinement (see text). The prepro-

cessing steps usually involve data normalization, since a

nonstationary background affects the magnitude of the

cross-correlation whose value is used for initial site detec-

tion. RSTOP is a parameter that determines when all events

have been detected, and SIGP sets the limit of detection

reliability.
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numerically determined from DF(t) as the initial start time for fluorescence

increase.

These equations and partial derivatives (coded in the routines

MAKESPARK_FUNC and MAKESPARK) were used in a nonlinear least-

squares fitting method (CURVEFIT in IDL) to obtain measures of DF,

FWHM, trise, tdecay, x0, t0, and F0 from aligned and averaged Ca21 sparks in

the original data.

To demonstrate the utility of the algorithm, fluorescence of Ca21 sparks

recorded using TIRF microscopy was also analyzed. In this case, the spark

model was a 2D Gaussian function,

Sðx;yÞ ¼DF3exp �ðx� x0Þ2

2s
2

x

� �
3exp �ðy� y0Þ2

2s
2

y

 !
1F0:

(6)

Validation and comparison of the MFDA

Synthetic line-scanning CLSM Ca21-spark datasets (512 3 512-pixel

arrays), each with 10 sparks, were produced using the described CLSM spark

model (Eqs. 3–5) as a template. Datasets over a range of SNR (defined here as

the square root of the mean background photon count) were generated with

Poisson-distributed noise. Of the many possible definitions of SNR, this was

chosen to enable comparison with other algorithms (e.g., (11,13)). In addi-

tion to SNR, the effect of defocus (as occurs in confocal microscope imaging)

on MFDA performance was investigated by blurring the template Ca21

sparks before noise addition. This was achieved by convolution with a 2D

Gaussian of width s. Thus, as s increased, spark amplitude decreased in an

approximately inverse square relation, whereas spatial extent and time course

increased proportionately (data not shown).

MFDA performance testing employed 100 datasets at each combination

of SNR and blur. Alterations of SIGP (0.0005–0.002) and RSTOP (2–10

standard deviations) were examined for their effect on MFDA performance.

To provide a benchmark, the threshold-based algorithm (11) was also used to

process the same datasets. Performance measures included sensitivity and

PPV. A detected spark location from the MFDA was considered correct if it

was within the FWHM of the actual spark location. In a similar way, a de-

tected spark region from the threshold-based algorithm was considered a

positive result if it included the true spark location. Smooth curves illus-

trating data trends were manually fitted using Bezier splines and contours

generated by the IDL CONTOUR routine.

RESULTS

MFDA performance

Detection of Ca21 sparks in noisy datasets by eye can be

compared to the performance of MFDA in Fig. 2, which

shows Ca21 sparks of fixed amplitude (DF/F0 ¼ 1.0) at var-

ious SNR (Fig. 2 A) and also at fixed background SNR (1.5) at

varying DF/F0 (Fig. 2 B). At an DF/F0 of 1.0 and SNR of 0.5,

sparks are detected with the automated algorithm, although

they can hardly be seen by eye.

On a portable personal computer (Sony Vaio, 2.0 GHz Intel

Core 2 processor, Windows XP Professional, 2.0 GB RAM), a

total of 500 synthetic CLSM sparks in 50 data arrays required

an average MFDA (SIGP ¼ 0.001) execution time of 93 s to

detect all sparks, which gives a detection rate of ;5.4 sparks/s.

This is slightly slower than the execution time of 36 s for the

same dataset using the threshold-based algorithm, but yields

fewer missed events (see below).

To further characterize MFDA performance (at SIGP ¼
0.001) and to compare it with the threshold-based algorithm

(cri ¼ 3.8 (11)), 100 synthetic datasets at each of nine SNRs

and nine s values were used. At an SNR of ,0.6, the

threshold-based algorithm would spontaneously halt and

generate no detected events. Fig. 3, A and B, shows the sen-

sitivity and PPV, respectively, of both algorithms as functions

of SNR and blur (left panels; the extent of blurring is indicated

by the approximate resulting spark FWHM on the vertical

axis) and SNR only (right panels). In comparing these data, a

contour shifted toward the top left indicates an improvement

in the performance measure. For example, at SNR ¼ 1.0,

FWHM ¼ 2 mm, the sensitivity and PPV of the MFDA were

;0.55 and 0.85, respectively. In comparison, the threshold-

based algorithm gave 0.2 and 0.25, respectively. This im-

provement further increased at lower SNR and increased blur

(FWHM). As shown in the righthand panels in Fig. 3, the SNR

(with no blurring) at which the MFDA offers half-maximal

sensitivity (SEN50) and PPV (PPV50) were ;0.8 and ;0.5,

respectively. With the threshold-based algorithm, SEN50 and

PPV50 were approximately twice that of the MFDA (;1.2 and

;1.35 respectively), implying a fourfold increase in the re-

quired number of photons at the limits of spark detection.

FIGURE 2 MFDA Ca21 spark detection (SIGP ¼ 0.001), using the same

spark model at varying SNR and DF/F0. At left, raw data is shown to allow

visual examination of the effect of varying SNR and signal strength. At right

is shown the location (circles) of sparks detected by the MFDA, as well as

the actual locations of the events (crosses). (A) Synthetic Ca21 sparks with

DF/F0¼ 1.0 at SNR levels (top to bottom) of 0.5, 1.0, 1.5, and 2.0. Note that

the display is scaled to the maximum range. (B) Ca21 sparks at SNR ¼ 1.5,

with DF/F0 (top to bottom) of 0.5, 1.0, 1.5, and 2.0. Note that the display is

scaled by the same factor. Scale bars: horizontal, 20 mm; vertical, 35 ms.
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Implementing the MFDA with RSTOP from 4 to 10 stan-

dard deviations above the mean noise correlation increased

SEN50 from ;0.7 to ;1.3 and PPV50 from ;0.4 to ;0.9.

Increasing SIGP (0.0005–0.002) decreased both SEN50 and

PPV50. The standard errors associated with these tests (n ¼
100 datasets) were on average 0.006 for sensitivity and 0.02

for PPV. The standard errors associated with the threshold-

based algorithm were 0.004 for sensitivity and 0.005 for PPV.

The errors between actual and detected spark positions

were also calculated, but there were no clear relationships

between position errors and SNR or blur, and these errors

were typically less than a single pixel (not shown).

Spark detection in CLSM and TIRF data

The MFDA was applied to Ca21 spark data recorded from

isolated myocytes using CLSM. Fig. 4 A shows raw fluores-

cence data, which was then normalized (Fig. 4 B) with the

model Ca21 spark shown as an inset. Intermediate and final

outputs of the MFDA are shown in Fig. 4, C–E. Note that the

MFDA detects more events than are easily discerned in the

original data. The output of the threshold-based algorithm is

shown in Fig. 4 F, and there are clear differences between this

data and the output of the MFDA. Although the brightest

events are detected by the threshold-based algorithm,

a number of small detected regions are also present. For the

events bounded by the square brackets (Fig. 4 F), the noise in

the data leads to detected regions breaking into several smaller

regions that are not always correctly identified as individual

events, a problem not seen in the MFDA data (Fig. 4 D). Two

events (Fig. 4 F, asterisks) were detected only by MFDA,

whereas a number of small regions that were detected by the

threshold-based algorithm (Fig. 4 F, arrows) were not present

in the MFDA. The event at lower left (Fig. 4 F, lower asterisk)

is visible by eye, suggesting that the MFDA is more sensitive.

The smaller events (Fig. 4 F, arrows), detected only by the

threshold-based algorithm, may be false positives since they

appear to occupy a very small region.

The MFDA was also used to detect Ca21 sparks in data

recorded by TIRF microscopy. Fig. 5 shows the raw data,

averaged data, and normalized data (Fig. 5, A–C, respec-

tively) together with intermediate and final outputs of the

MFDA (Fig. 5, D–F). Comparison of Fig. 5, C and E, illus-

trates the comparative reliability of the MFDA against noise.

Although the spark in Fig. 5 C is detectable by visual in-

spection, it would be hard to define either the center of the

spark or its extent. However, Fig. 5 E shows a remarkably

clean result, which makes possible accurate location of the

spark center to be defined (Fig. 5 F).

FIGURE 3 Comparison of the performance of the

MFDA (solid lines; SIGP¼ 0.001) and the threshold-based

algorithm (dashed lines; cri ¼ 3.8) on synthetic CLSM

datasets (n ¼ 100). (A) The left panel shows a contour plot

of sensitivity over a range of SNRs (tested at 0.3, 0.5, 0.6,

0.8, 1.0, 1.25, 1.5, 2.0, and 3.0) and Gaussian blur (indi-

cated by the resulting FWHM as a factor of the original

FWHM; tested at 2, 4, 6, 8, 10, 12, 14, 16, and 18 mm with

an original FWHM of 2 mm). Right panels summarize the

effect of SNR on sensitivity with no blur (i.e., the model

spark is in focus). Standard errors were smaller than the

symbol size. (B) Quantification of PPV over the same range

of values for SNR and blur as in A. Both sensitivity and

PPV curves for the MFDA show left-shifted behavior

compared to the threshold-based algorithm, indicating im-

proved performance, particularly at low SNR and/or blur

extent. Note that blurring also affected spark amplitude (see

Methods).
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Model refinement

Although it is an optimal filter, the MFDA was also able to

detect simulated out-of-focus events. Such events could be

extracted and used to refine the model to further increase

sensitivity. To demonstrate this adaptive ability, 10 syn-

thetic sparks of known parameters (Fig. 6 B) were used to

create a data array (SNR ¼ 1.25 (Fig. 6 A)), which was then

processed using an ‘‘incorrect’’ spark model (Fig. 6 C). This

resulted in five detected events (Fig. 6 B, white arrows), but

subsequent averaging of these five events and fitting the

spark basis function (Eqs. 3–5) generated a refined model

(Fig. 6 D) whose application resulted in detection of all 10

events (Fig. 6 B, red arrows). These 10 events were then

averaged and the basis function refitted to give the results

shown in Fig. 6 E, a spark that was very similar to the

original synthetic spark (see Fig. 6 legend for parameters).

The asterisks in Fig. 6 B show the two events detected with

the threshold-based algorithm. The utility of model refine-

ment is further illustrated in Fig. 6 F, which shows a nor-

malized CLSM dataset. Processing the dataset with the

initial model guess (Fig. 6 G) resulted in 22 detected events

(Fig. 6 F, white arrows), whereas a refined model based on

these events (Fig. 6 H) detected 17 events (Fig. 6 F, red
arrows). Two of the four events detected in the first iteration

and not in the second are seen to be in the tails of detected

events, suggesting that the initial model was too short in

duration and generated two false positives.

DISCUSSION

The detection of events in noisy data is a common problem

and has been the subject of a great deal of research. In the case

of Ca21-spark properties, detection and subsequent quantifi-

cation of these microscopic and transient events is limited by

the sensitivity, resolution, and noise profile of the sensing

system, and measurement bias must be avoided. In this study,

a matched-filter approach has been implemented as an im-

proved method to automatically detect Ca21 sparks, and the

code provided here may be easily adapted to other 2D de-

tection and localization problems.

As might be expected, decreasing SNR adversely affects

the performance of both the MFDA and the threshold-based

algorithm, but the MFDA is less sensitive to this problem (see

Fig. 3). Though the SNRs of the CLSM and TIRF datasets

FIGURE 4 Detection of Fluo-4 Ca21 sparks in CLSM

data using the MFDA (SIGP ¼ 0.001). (A) Raw intensity

data. (B) Normalized data (DF/F0). Inset shows (to the same

scale) the model Ca21 spark (matched filter). (C) Initial

cross-correlation array, R0, showing peak correlations at

tentative spark locations. (D) Regional Spearman rank

correlation array, r, with peaks indicating the most likely

locations of the detected sparks. (E) Overlay of normalized

data from B with detected locations of Ca21 sparks and

associated P-values. (F) Results from the threshold-based

algorithm (cri ¼ 3.8, black level ¼ 25, N ¼ 7). Arrows

show events detected by the threshold-based algorithm but

not by the MFDA. Asterisks indicate events that were

detected by the MFDA but not by the threshold-based

algorithm. Brackets show where a collection of discrete

regions were identified by the threshold-based algorithm as

two events. Scale bars: horizontal, 20 mm; vertical, 50 ms.
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presented here were ;3.0, at which both algorithms have

comparable sensitivity for in-focus events (see Fig. 3, upper
right), a marked difference in performance was seen when

events were blurred with smaller SNR. Since sparks are likely

to be recorded with some degree of defocus, this improve-

ment may be significant. In addition, we can compare the

performance of both algorithms with that expected from the

Rose criterion (18) of visual detection in the presence of

noise. If a spark occupies a region of typically 60 pixels (;2

mm by 20 ms), then the mean of those pixels must be five

times larger than the background noise (18). Since the noise

is Poisson, the mean equals the variance, so that we can

estimate that the limit of human detection for a typical spark

might occur at a SNR of 1–1.5 (see Fig. 2 A). At SNR ¼ 1.0,

the MFDA gave a sensitivity of ;0.9 and PPV of ;0.95,

whereas the threshold-based algorithm gave ;0.4 for both

measures. This means that compared with the threshold-

based algorithm, the MFDA would detect twice the number

of events and generate half as many false positives. Put

another way, the MFDA can outperform visual detection (see

Fig. 2 A), because the MFDA showed improved performance

over the threshold-based algorithm (Fig. 3), which in turn

outperformed visual detection in tests presented in the study

in which it was introduced (11). Comparison of our perfor-

mance curves with those of a wavelet algorithm (13) shows

that the MFDA has SEN50 and PPV50 at DF/F0 of 0.35 and

0.27, compared to 0.29 and 0.22, respectively, for the wavelet

(at SNR ¼ 2.0 with Gaussian noise, d ¼ 4.0, t ¼ 3.25, see

Fig. 4 of Wegner et al. (13)). Although these performance

measures are similar, the MFDA requires only a model spark

(which may be refined), whereas a wavelet approach requires

(possibly extensive) testing of different wavelet functions to

optimize detection efficiency.

An important feature of the MFDA is the use of a non-

parametric statistical test to measure the reliability of the

detected location. For a spark-background SNR of 1.5, the

;0.98 sensitivity and ;0.99 PPV of the MFDA (SIGP ¼
0.001 (see Fig. 3, right panels)) implies that only ;2% of

events should be false positives. It is notable that this high

performance has been achieved without the need for the ad

hoc selection of detection thresholds used in other algorithms.

The MFDA is based on the idea of knowing the spatio-

temporal properties of the event of interest, so that one might

expect that out-of-focus and/or nonstereotypically-shaped

events would be poorly detected. However, the loss of signal

amplitude associated with defocus affects threshold-based

algorithms more strongly, and as a result, the MFDA is still

able to outperform a threshold-based algorithm even when

moderate blurring has altered event shape (see Fig. 3). In any

case, it is possible to refine the model shape on the basis of

detected events, in which case the MFDA would still further

increase its PPV, as demonstrated in Fig. 6. The only penalty

associated with model optimization in the MFDA is an

increase in computer execution time, which increases in

proportion to the number of models tested. It is possible that

extensive testing of experimental data with a variety of

models could provide greater insight into the statistical spa-

tiotemporal variability of the underlying events. This is not

possible, to our knowledge, with any other published algo-

rithm for Ca21 sparks.

It should be noted that the MFDA has to exclude data at the

edges of the dataset due to the need to construct a cross-cor-

FIGURE 5 Detection of Fluo-5F Ca21 sparks

in TIRF data using the MFDA (SIGP ¼ 0.001).

(A) Raw image data. (B) Smoothed mean of

three frames used for data normalization. (C)

Normalized data (DF/F0). Inset shows (to the

same scale) the model Ca21 spark (matched

filter). (D) Initial FFT cross-correlation, R0,

showing a peak correlation at the tentative spark

location. (E) Regional Spearman rank correla-

tion array, r, with the peak indicating the most

likely central location of the detected spark. (F)

Overlay of normalized data shown in C, with

the detected location of a Ca21 spark with the

associated P-value. Scale bar, 20 mm.
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relation between model and data. Since there would be no way

to correctly pad the edge of a data set if an event were at the

edge, we have to accept the slight reduction in the size of the

analyzable data set and therefore, also, the number of detected

events. Although this problem also exists for other algo-

rithms, it can be minimized by ensuring that the region of

interest is centered and completely covered in the field of

view. A second problem arises from the effect of background

changes that alter the amplitude of the cross-correlation so that

normalization becomes problematic if the background is

changing during the experiment. More sophisticated nor-

malization routines that correct for a time-varying back-

ground could be developed, but such approaches are dataset

specific and not examined here. As it stands, the MFDA prints

a warning that ‘‘nonstationary’’ data has been detected but

proceeds nonetheless. A related problem exists in cases where

large numbers of line scans are taken when cell damage may

appear. Therein lies an advantage of using a sensitive detector,

as lower laser powers can be used while preserving event

detection. In connection with this point, the data shown in Fig.

6 F is only a short segment of a 12,000-line line-scan image.

The MFDA offers improved sensitivity for low-amplitude

events (see Fig. 2 B). The importance of this is underscored by

the history of Ca21 spark discovery; although Ca21 had been

imaged for some years with confocal microscopes, it was not

until the laser power was increased closer to the damage

threshold that sparks became visually apparent (M. B. Cannell,

University of Auckland, personal communication). By in-

creasing the sensitivity of the detector and detection algo-

rithm, we can reduce the risk of sample damage. With modern

high-quantum-efficiency dyes and the limits of numerical

aperture set by the refractive index of biological media, it

seems unlikely that improvements in instrumentation will

provide a major increase in sensitivity. Therefore, development

of more sensitive and reliable algorithms such as the MFDA

may be crucial to increasing biophysical insight. Code listings

are included in Data S1. A stand alone Windows demonstra-

tion program may be obtained by contacting the authors.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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