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ABSTRACT Complete modeling of metabolic networks is desirable, but it is difficult to accomplish because of the lack of kinetics.
As a step toward this goal, we have developed an approach to build an ensemble of dynamic models that reach the same steady
state. The models in the ensemble are based on the same mechanistic framework at the elementary reaction level, including known
regulations, and span the space of all kinetics allowable by thermodynamics. This ensemble allows for the examination of possible
phenotypes of the network upon perturbations, such as changes in enzyme expression levels. The size of the ensemble is reduced
by acquiring data for such perturbation phenotypes. If the mechanistic framework is approximately accurate, the ensemble
converges to a smaller set of models and becomes more predictive. This approach bypasses the need for detailed characterization
of kinetic parameters and arrives at a set of models that describes relevant phenotypes upon enzyme perturbations.

INTRODUCTION

The study of metabolic systems involves the examination and

manipulation of the enzymatic reactions that make up the

metabolic networks. For this reason, it is desirable to develop

mathematical models of these enzymatic reaction networks to

describe, understand, and eventually predict system behav-

ior. The creation of such models allows for the generation of a

set of hypotheses and a framework for further testing the

capabilities of the network. However, to date, the develop-

ment of detailed kinetic models (1–4) has been difficult be-

cause of the lack of kinetics, and they would be impractical

for modeling large networks. The time-course data necessary

to fit the parameters in these models can be difficult to obtain.

Several methods have been developed to circumvent these

problems and have achieved success in different aspects of

metabolic modeling. These methods include the S-system

approach (5,6), metabolic control analysis (7–11), stoichio-

metric methods (12–24) including flux balance analysis

(25,26), and C13 metabolic flux analysis (27–31).

To avoid the hurdle of quantifying detailed enzyme ki-

netics of each reaction in the system, we focus on the use of

phenotypic data, such as flux changes due to changes in en-

zyme expression. Even though such data are measured at

steady state, they are the results of interplay among many

kinetic parameters. Hence, these data provide a useful screen

for kinetic models. To take advantage of these data, we first

developed an approach that allowed for the construction of an

ensemble of models that would all reach the given steady

state in terms of flux distribution and metabolite concentra-

tions. These models span the space of kinetics allowable by

thermodynamic constraints. Once these models are con-

structed, they can be used to examine all possible phenotypes

of the system, such as flux changes due to enzyme over-

expression. When the data for flux changes due to enzyme

perturbations are available, they can be used to reduce the

size of the ensemble. We show that with a reasonable number

of data, the ensemble converges to a model that accurately

describes the system and becomes more predictive. This

approach potentially circumvents the problem of acquiring

detailed kinetic parameters and generates models that capture

phenotypes that are dependent on kinetics, such as effects of

enzyme overexpression on steady-state fluxes.

To preserve the biological mechanisms of these reactions,

we model each enzymatic reaction based on the known ele-

mentary reactions, which are more fundamental than lumped

kinetic models or other approximations. Our approach allows

for the incorporation of details about the true mechanism of an

enzymatic reaction, including regulation, but does not require

such information if it is unknown. Further, by using the ele-

mentary reaction framework, we show that nonlinear satura-

tion behavior, a fundamental property of enzymatic reactions,

is intrinsically preserved. Additional information about en-

zyme regulation, thermodynamics, and steady-state metabo-

lite levels can be readily incorporated into this approach.

METHODS

Obtaining steady-state fluxes

To develop a set of kinetic models that describe a given steady state, the first

step is to determine the steady-state fluxes for the system. If the system has

been studied previously in the literature, or is currently under study, the full

flux map may have already been determined through C13 isotopomer anal-

ysis (27–31). However, this is not always the case. Often, the external fluxes

of the system are known, or easily measurable. In this case, the internal fluxes

of the system can be estimated by the standard flux balance around each

metabolite at the steady state:

dxi

dt
¼ + vgeneration �+ vconsumption ¼ 0: (1)
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This can be represented for the entire network in matrix form:

S 3 v ¼ 0; (2)

where the matrix S is the m 3 n stoichiometric matrix consisting of m

metabolites and n net reactions, and v is the n 3 1 vector of net reactions. The

steady-state metabolite concentrations are not required, but can be incorpo-

rated into the model when available. The matching of steady-state metabolite

concentrations to the model will be discussed shortly.

Model building using elementary reactions

Elementary reactions are the most fundamental kinetic events at the molec-

ular level. Each elementary reaction is either a bimolecular or unimolecular

reaction that follows mass action kinetics. In our model, each enzymatic

reaction is broken down into a series of elementary reactions that give the

overall enzymatic reaction saturable behavior (see Fig. 2 B). This framework

also allows for the simple inclusion of regulatory steps in the mechanism. In

general, the mechanism for an enzyme catalyzed reaction can be represented

by a collection of elementary reactions illustrated by the scheme

Xi 1 Ei
��! ��vi;1

vi;2

XiEi
��! ��vi;3

vi;4

Xi 1 1Ei
��! ��vi;5

vi;6

Xi11 1 Ei

step 1 step 2 step 3;

where the rate of each individual elementary reaction, vi;k; follows the mass

action principle

vi;1 ¼ ki;1½Xi�½Ei�; (3)

where ki;1 is the rate constant of the forward reaction of step 1 of the overall

reaction catalyzed by the enzyme i, ½Xi� is the concentration of metabolite i,

and ½Ei� is the concentration of free enzyme i. By scaling the concentrations

of metabolites by the corresponding concentration at the reference steady-

state Xss;ref
i ; and those of the free enzyme and enzyme complexes by the total

concentration of the corresponding enzyme i Eref
i;total; at the reference state, Eq.

3 becomes

vi;1 ¼ ðki;1E
ref

i;total
X

ss;ref

i Þ3 ½Xi�
X

ss;ref

i

3
½Ei�
E

ref

i;total

¼ K̃
ref

i;1 3 X̃i 3 ẽi;1: (4)

We scale by the reference states to provide dimensionless equations, which

allow for easier and more accurate numerical simulations (32). This is a

common practice in physics and engineering (33). Note that the rate law in

Eq. 4 has the log-linear form

ln vi;1 ¼ ln K̃
ref

i;1 1 ln X̃ 1 ln ẽi;1: (5)

Assigning kinetic parameters

At the reference steady state, X̃ss;ref
i [ðXss;ref

i =Xss;ref
i Þ ¼ 1; and Eq. 5 becomes

ln v
ref

i;1 ¼ ln K̃
ref

i;1 1 ln ẽ
ref

i;1 : (6)

In general, if enzyme i participates in ni elementary reaction steps, either from

catalysis or regulation, there exist 2ni kinetic parameters, K̃ref
i;k ; for 2ni rates

vref
i;j ; and ni enzyme fractions ẽref

i;j representing different complexed forms of

the enzyme. These reference steady-state values are in turn constrained by

+
ni

j¼1

ẽref

i;j ¼ 1; (7)

and

v
ref

i;2j�1 � v
ref

i;2j ¼ V
ref

i;net; (8)

where Vref
i;net is the net flux of reaction i at the reference steady state. The

system is nonidentifiable, since the number of unknowns is greater than

the number of equations. We must provide ni � 1 additional values for the

enzyme fractions and ni values related to rate i. We can assign the forward

rate, vref
i;2j�1; which ranges from maxð0;Vref

i;netÞ to infinity, and determine the

backward rate from Eq. 8. Because the variation in the rate is large and

provides no thermodynamic insight, we instead use the reversibility, defined as

Ri;j ¼
minðvi;2j�1; vi;2jÞ
maxðvi;2j�1; vi;2jÞ

; (9)

where vi;2j�1 and vi;2j are the forward and backward rates of step j in reaction

i. Under this definition, the reversibility ranges from 0 (for an irreversible

step) to 1 (for a step at equilibrium). The reversibilities of reaction steps are

constrained by the Gibbs free energy of the overall reaction, DGi:

+
ni

j¼1

ln Ri;j ¼ signðVi;netÞ3
DGi

RT
; (10)

where ni represents the number of elementary steps for enzyme i and

sign(Vi,net) represents the direction of the net flux (positive if forward and

negative if backward). The derivation of Eq. 10 can be found in the Appendix

A. Equation 10 requires that the net flux of reaction i must be positive if

DGi , 0 and negative if DGi . 0: We use this criterion to check whether the

reference steady state is thermodynamically compliant. Furthermore, as DGi

approaches 0, this means the net reaction reaches equilibrium, and Eq. 10

implies that each mechanistic step must be at equilibrium, which satisfies the

principle of microscopic reversibility (34). In reality, we know not the exact

values for the Gibb free energies, but their ranges (35–37), so Eq. 10 at the

reference state becomes

DGi

RT

� �
lower bound

# signðV ref

i;netÞ3 +
j

ln R
ref

i;j #
DGi

RT

� �
upper bound

:

(11)

Different combinations of reversibilities constrained by Eq. 11 represent

different kinetic states. For example, if Ri;j approaches 0 while the revers-

ibility of the other steps is near 1, then step j is rate-limiting for enzyme i.
Appendix A describes in detail how we generate sets of reversibilities

satisfying Eq. 11 if no other information regarding reversibilities is given.

In brief, to calculate one set of possible kinetic parameters, K̃ref
i;k ; of each

enzyme i, we first randomly assign ni reversibilities corresponding to ni re-

action steps, and check Eq. 10 for thermodynamic feasibility. Then, the rates

of the elementary reactions are determined by Eqs. 12 and 13 from the as-

signed reversibility and net flux:

v
ref

i;2j�1 ¼
V ref

i;net

1� R
signðVref

i;netÞ
i;j

(12)

v
ref

i;2j ¼
V

ref

i;netR
signðVref

i;netÞ
i;j

1� R
signðVref

i;netÞ
i;j

: (13)

Finally, the kinetic parameters K̃ref
i;k are computed from Eq. 6 based on the

corresponding rates and assigned values of enzyme fractions ẽref
i;j :

Matching the steady-state
metabolite concentrations

Since the kinetic equations of each elementary reaction are scaled by the

reference values of metabolites at steady state, the absolute values of the

metabolite concentrations need not be known. The formulation of the lumped

kinetic parameter K̃ref
i;1 allows for simulation without the need of absolute

metabolite concentrations. However, if the steady-state metabolite concen-
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trations, Xss;ref
i ; are known, they can be input into Eq. 4 to solve for the

individual kinetic parameter, ki;1; from the lumped kinetic parameter, K̃ref
i;1 :

When this is done for all the steady-state metabolite concentrations in the sys-

tem, and the set of ordinary differential equations is solved as described below,

all the metabolites in the system will reach their given values at steady state.

Developing an ensemble of models spanning the
kinetic space

The above process of determining kinetic parameters based on reaction re-

versibilities and enzyme distributions can be repeated thousands of times to

develop an ensemble of kinetic models that all reach the given steady state.

Each individual model can be viewed as a function of the reversibilities and

enzyme fractions:

Modelk ¼ f ðRref

k ; e
ref

k Þ: (14)

Every model reaches the same steady-state flux and metabolite concentra-

tions, and the reversibilities Rref
k and enzyme fractions eref

k are reassigned for

each subsequent model. The steps that go into forming this ensemble of

models are depicted in a flow chart in Fig. 1. This allows for the formation of

an ensemble of models that span the range of kinetics allowable by thermo-

dynamics, as demonstrated in Fig. 2 A. Details of how the range of kinetics is

spanned are further discussed in the Results section.

The metabolic network for each model in the ensemble is described by a

system of ordinary differential equations (ODEs):

dỹi

dt
¼ 1

y
ss;ref

i

�
+ vgeneration �+ vconsumption

�
; (15)

where ỹi represents both the metabolic concentration ratios based on the

reference steady state and the enzyme fractions, whereas yss;ref
i stands for the

corresponding metabolite or total enzyme concentration at the reference

state. The enzyme fractions ẽi;j; not the total enzyme concentration, now

become ODE variables, and their initial conditions must be set such that

+
ni

j¼1

ẽ
0

i;j ¼ 1; (16)

where the superscript 0 represents the initial condition of the enzyme

fractions. Once the ODEs are solved, the steady-state fluxes can be readily

calculated from Eq. 4 using the steady-state values for the metabolic con-

centration and enzyme fraction ratios.

The ensemble of models was constructed using the technical computing

language MATLAB (The MathWorks, Natick, MA) on an Intel (Santa Clara,

CA) Pentium 4 processor running Microsoft (Redmond, WA) Windows XP.

The total computational time to develop the ensemble of models and perturb

the ensemble to obtain the resulting overexpression phenotypes was ;24 h.

Determining overexpression phenotypes

The ensemble of models developed above can be used to determine all the

possible outcomes of overexpressing a particular enzyme. To do so, we

perturb the entire ensemble and determine each individual model’s response

FIGURE 1 Algorithm used by the ensemble modeling framework. Note

the concentrations of the metabolites at steady state are an optional input into

the method.

FIGURE 2 (A) Example of the behavior of different models within an

ensemble. All models reach the same given steady state, but all have

different kinetics and thus much different dynamic behavior. Each curve

represents the transient metabolite concentrations of the same metabolite

from 100 models within the ensemble. The y axis is the metabolite’s

concentration normalized by its steady-state concentration. The time courses

are generated using the network described in Fig. 3. (B) A demonstration of

the elementary reaction kinetics exhibiting saturation behavior. For a single

reaction, as the substrate concentration is increased, the net reaction rate

reaches a maximum saturated value.
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to enzyme overexpression, and characterize the statistical distribution of the

model responses. To perturb an individual model in the ensemble, we use the

equation

vi;1 ¼ ðki;1E
ref

i;total
X

ss;ref

i Þ3
E

i;total

E
ref

i;total

½Xi�
X

ss;ref

i

3
½Ei�

E
ref

i;total

¼ K̃
ref

i;1 3 Ei;r 3 X̃i 3 ẽi;1: (17)

Equation 17 is similar to Eq. 4, but we now add an additional variable, Ei;total;

which represents the new perturbed concentration of enzyme i. Therefore, the

total enzyme ratio, E
i;total
=Eref

i;total
; represents the fold change in total enzyme

concentration relative to the reference state and is an input parameter defined

by the user. If the metabolic network contains any moiety conservation

relationships (38), the initial conditions are set based on the reference steady

state. For example, the sum of cofactors and their intermediates in the new

perturbed condition must be equal to those in the reference steady state.

RESULTS

Application to central metabolism

To demonstrate the applicability of our approach to meta-

bolic modeling, we choose as a test system the primary me-

tabolism of Escherichia coli, whose stoichiometry is detailed

in Fig. 3. The structure for this system comes from the pre-

viously developed dynamic model for E. coli (4), and con-

sists of 25 metabolite and 29 net reactions. This network

contains the phosphotransferase system (Pts) for sugar up-

take, glycolysis, the pentose phosphate pathway, and several

branches that lead to biomass formation. Further, we have

included several known inhibition reactions to demonstrate

how this method can account for these inhibitory effects. An

example of how the enzymatic reactions are broken down

into their elementary set of reactions, and how the known

mechanism of the Pts is incorporated, can be seen in Fig. 4.

Also, the balancing of the cofactors (ATP/ADP, NADH/

NAD, and NADPH/NADP) is taken into account in this

network. As the reference state, we use fluxes taken from a

previously developed dynamic model for E. coli (4). Stan-

dard Gibbs free energies for each reaction were input (37) and

the thermodynamic bounds on the system were then calcu-

lated allowing for a 100-fold change in metabolite levels.

We constructed an ensemble of .1000 models (n¼ 1010)

to span the model space. We then perturbed each internal

enzyme by twofold overexpression to see the resulting

change in the glucose uptake rate (the Pts flux). We grouped

the resulting changes into five categories: 1), a .20% de-

crease in flux; 2), a decrease in flux between 5% and 20%; 3),

a change within positive or negative 5%; 4), an increase in

flux between 5% and 20%; and 5), a .20% increase in flux.

The results of these perturbations can be seen in Fig. 5 A.

To demonstrate the model screening ability, we indepen-

dently constructed a test model based on lumped Michaelis-

Menten-type kinetics for each enzyme (39). For enzymatic

reactions with more complicated mechanisms, such as the Pts

for sugar uptake, the elementary reactions making up the

mechanism in question were used. The steady-state fluxes for

this test model were chosen to match the previously reported

dynamic model of E. coli central metabolism (4). The pa-

rameters were then randomly assigned such that the test

model reached the same steady state as the ensemble. This

was done for the purpose of avoiding introduction of any bias

FIGURE 3 Metabolic network of central metabolism

used to test the methodology. Enzyme names are shown

in italics. Metabolites are in all caps. Inhibitors are shown in

gray octagons.
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in the dynamics of the test model and to keep its development

completely independent from the ensemble of models. For

the purpose of this demonstration, we treat the test model as

the true system. The details of the test model, including how

each enzymatic reaction was modeled and the assigned pa-

rameters, are discussed in more detail in Appendix B.

In the first screen, we chose phosphofructokinase (Pfk)

overexpression as the first experiment since Fig. 5 A shows

that Pfk is one of the enzymes that may affect the Pts flux

when overexpressed. The true system was subjected to two-

fold overexpression of Pfk and the results showed a slight

increase in the Pts flux. Therefore, in the ensemble, we retain

only the models that agree with this behavior. This reduces the

number of models from n ¼ 1010 to n ¼ 251, and the re-

sulting behavior of the screened models is shown in Fig. 5 B.

As a second screening step, we chose phosphoglucose

isomerase (Pgi) overexpression, as Fig. 5 B indicates that Pgi

may be an effective target for increasing the Pts flux. Over-

expression of Pgi in the true model significantly increases the

Pts flux. Screening the ensemble for this behavior, we reduce

the model space from n ¼ 251 to n ¼ 15. The result of this

screening step is shown in Fig. 5 C. For the third and final

screening step, we chose 6-phosphogluconate dehydroge-

nase (Gnd) overexpression, as this enzyme seems like a likely

target to increase the Pts flux in Fig. 5 C. Overexpression of

Gnd in the true model significantly increases the Pts flux.

Screening the ensemble for this behavior, we reduce the

model space from n¼ 15 to n¼ 1. The result of this screening

step is shown in Fig. 5 D.

To give a close-up view of how the distribution of each

enzyme’s behavior is affected by this screening procedure,

FIGURE 4 Example of how the enzymatic reactions are broken down into

their elementary mechanistic reactions for the phosphotransferase system

(Pts) and phosphoglucose isomerase (Pgi).

FIGURE 5 Phenotypes of the twofold

overexpression of each enzyme on the

glucose uptake (Pts flux). Values are

expressed as the fraction of the total

number of models (n) that exhibit that

phenotype. No change (green bars) in-

dicates a change of ,5% in either

direction. A slight increase (light blue

bars)/decrease (pink bars) indicates a

change in Pts flux of between 5% and

20%. A large increase (dark blue bars)/

decrease (red bars) indicates a change in

Pts flux of .20%. The enzyme used for

screening in each step is underscored in

red. (A) The unscreened ensemble of

1010 models. (B) The screened ensem-

ble of 251 models when Pfk is overex-

pressed shows a slight increase in Pts

flux. (C) The second-level screening

when Pgi is overexpressed gives a sig-

nificant increase in Pts flux (15 models).

(D) The third-level screening when Gnd

is overexpressed gives a large increase

in Pts flux (one model).

5610 Tran et al.

Biophysical Journal 95(12) 5606–5617



we can look at a cross section of the plots in Fig. 5, focusing

on a particular enzyme. When we do so, we see that each

subsequent screening step tightens the distribution of possi-

ble phenotypes, finally reaching a sharp peak. This is dem-

onstrated for ribose-5-phosphate isomerase (Rpi) in Fig. 6.

Model convergence is independent of
path chosen

It is important to note that the single model the screening

strategy converges to is independent of the data used to

screen. Although screening with various phenotypic data

may lead to convergence in a different number of steps, all

screening paths will converge to the same model, as dem-

onstrated in Fig. 7. This is significant, as the original distri-

bution of predicted phenotypes in the full ensemble may

suggest various enzymes for experimentation, and the

screening strategy introduced here is robust, such that the

convergence to a single model is insensitive to the screening

path taken.

Behavior of the converged model

To further determine the validity of this approach, we com-

pare the behavior of the single screened model to that of our

true system. We overexpress each enzyme twofold in both

the true system and our screened model, and compare the

results of both models. The results of this comparison can be

seen in Fig. 8. As seen from these results, the behavior of the

screened model is very similar to that of the true system,

indicating that the screening strategy used above is an ef-

fective way of converging to a kinetic model that accurately

describes the system behavior without the need for the ded-

icated experiments examining each enzyme in the network to

develop a detailed kinetic model.

Effect of missing regulation

We also wish to examine how sensitive our converged

model’s behavior is to missing connections in the enzymatic

FIGURE 6 Individual view of the phenotypes for the Rpi enzymatic

reaction over the same screening steps shown in Fig. 5. As the ensemble of

models is screened and converges, the distribution of possible dynamic

phenotypes for Rpi also converges.

FIGURE 7 Overexpression phenotypes chosen to screen the ensemble all

converge to the same model, albeit in a different number of steps, indicating

that the screening strategy is robust to the path chosen. Enzymes used for

screening each step are indicated next to the appropriate arrow, and are

color-coded according to their overexpression phenotype.
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reaction network. To test this sensitivity, we repeat the above

mentioned screening steps. In this case, we input the same

reaction network into the framework (Fig. 3) but remove the

feedback inhibition of phosphoenolpyruvate (PEP) on the

Pfk reaction. We again screen the original ensemble of n ¼
1010 models using the aforementioned phenotypes. If we

then perturb the screened model through a twofold over-

expression of each enzyme, and compare this behavior to the

true model, we again see similar behavior in how the Pts flux

is influenced for most of the enzymes, as shown in Fig. 9.

However, we see a difference in model behavior when PGI

is overexpressed, which is directly upstream and in close

proximity to where the missing regulatory connection of PEP

to Pfk is located. This indicates that even when the regulation

of network is not completely characterized, or a connection is

missed, the screened ensemble still captures much of the

system behavior. Further, this presents the opportunity to

identify areas of possible missing connections.

Spanning the kinetic space

Through this scheme, an ensemble of models is generated

that spans the range of all kinetics allowable by thermody-

namics. Each elementary reaction is legitimately governed by

mass action, which is readily formulated and linear in loga-

rithmic scale. However, because we do so only for the ele-

mentary reactions and not for the overall enzymatic reaction,

we intrinsically preserve the saturation behavior that is a

fundamental property of enzymatic reactions, as shown in

Fig. 2 B. This can further be shown by looking at the resulting

ratio of Km/X, where X is the steady-state concentration of the

corresponding metabolite, when all the elementary steps for a

given reaction are lumped together into a steady-state Mi-

chaelis-Menten form (39). We desire that the Km values range

from severalfold below the steady-state metabolite concen-

trations to well above this value. This would indicate that the

reactions range from linear mass-action type behavior to

operating at or near a saturated state. To demonstrate that the

Km values for our model system do range from well below to

well above the metabolite steady state levels, we plot a his-

togram of the Km/X ratios for all reactions in Fig. 10. As can

be seen, some of the Km values range from severalfold below

the metabolite levels to severalfold above the steady-state

metabolite concentrations.

DISCUSSION

The difficulty in developing kinetic models for metabolic

systems due to lack of kinetic parameters is well recognized.

FIGURE 8 Comparison of the behavior of the ‘‘true’’ model based on in-

dividual Michaelis-Menten kinetics and the one model screened out in Fig. 5.

The influence of each enzyme’s twofold overexpression on the PTS flux is

very similar between the true model and the model obtained through our

screening strategy.

FIGURE 9 Comparison of the behavior of the Michaelis-Menten model

used as the true system and the models screened using a network with

inconsistent regulatory connections. In this case, we remove the feedback

inhibition of PEP on the Pfk flux in the ensemble network. Even with the

inconsistent regulatory pattern between models, we see a similar behavior

when each enzyme is overexpressed twofold. However, when PGI is

overexpressed, we see a difference in model behavior directly upstream of

the missing regulatory feature of PEP as an inhibitor to Pfk.

FIGURE 10 Histogram of log10(Km/X) values for the glycolysis model

system, where X is the steady-state metabolite concentration for the

corresponding metabolite. Km values range from severalfold below the

steady-state metabolite concentrations to severalfold above the metabolite

concentrations, indicating that the kinetics within our system range from

saturation to linear behavior.
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Tuning a kinetic model that reaches a desired steady state is

the first step of model building, but is often challenging.

Here, we circumvented the problem of kinetic parameter

identification by using enzyme-overexpression phenotype

data, which are much more abundant and relatively easy to

obtain. In doing so, we also solved the steady-state tuning

problem. Our strategy constructs an ensemble of all allow-

able kinetic models that reach the same steady state. The

ensemble is then screened using enzyme overexpression

data. We show that with only a few data (three screening

steps), the central metabolism model converges to the be-

havior of the true test model.

As one looks to expand the ensemble modeling approach

to larger genome-scale systems, determining both the steady-

state flux for that system and the increase in computational

time required to develop an ensemble of models may become

challenges that need to be overcome. The ensemble modeling

approach is limited by one’s access to, or ability to calculate,

the reference steady-state flux of the network. As the refer-

ence flux constitutes the primary input into the algorithm, its

determination may limit the scope of networks that can be

examined.

In this method, the entire enzymatic network is broken

down into elementary reactions rather than being composed of

net reactions whose kinetics are described by the steady-state-

derived Michaelis-Menten equations. The most important

advantage of this formulation is that it retains the mechanistic

features of enzymatic reactions, such that the resulting model

can incorporate the growing knowledge of enzyme mecha-

nisms. Second, the elementary reactions intrinsically follow

mass action kinetics, which allows the log-linear formulation

in Eq. 5. Third, the elementary reactions naturally give rise to

the saturation behavior seen in biological systems. Further,

more complicated kinetic mechanisms, such as enzyme reg-

ulation, are easily implemented into this framework through

the addition of new elementary reactions. Finally, these reac-

tions are more fundamental than lumped kinetic forms and are

better posed for wide applications. These properties permit us

to automate the model building procedure, allowing us to ef-

ficiently and systematically generate and test many models

from the given metabolic network information. If protein ex-

pression data is available, the data can be incorporated into the

framework to refine the kinetics of the ensemble to reflect the

relative protein amounts present in the cell. In lieu of protein

expression data, gene expression data could be used under the

assumption that protein expression is roughly proportional to

gene expression. If more information is given, more con-

straints can be applied to the models, bringing them closer to

the real biological system.

APPENDIX A

In this appendix, we first derive the relationship between reversibility and

Gibbs free energy described by Eq. 10 in section titled ‘‘Assigning kinetic

parameters’’, and then describe how to generate the reversibilities satisfying

the imposed criterion. As an example, we use the same three-step reaction

mechanism described in the main text:

Xi 1 Ei
��! ��vi;1

vi;2

XiEi
��! ��vi;3

vi;4

Xi11Ei
��! ��vi;5

vi;6

Xi11 1 Ei:

step 1 step 2 step 3

The Keq of the reaction i above is the ratio of the product of the forward rate

constants to the product of the backward rate constants:

Ki;eq ¼
ki;1ki;3ki;5

ki;2ki;4ki;6

: (18)

Since we have normalized the metabolic and enzyme concentrations by the

values at the given steady state, the lumped kinetic parameter, K̃ref
i;k ; replaces

the corresponding rate constant, ki;k; in the kinetic equation. For example,

from Eq. 4, the lumped kinetic parameter K̃ref
i;1 is defined as

K̃
ref

i;1 ¼ ki;1E
ref

i;totalX
ss;ref

i : (19)

In a similar way, the other lumped kinetic parameters are also defined as

K
ref

i;l ¼ ki;lE
ref

i;total for l ¼ 2; 3; 4; 5 (20)

and

K̃
ref

i;6 ¼ ki;6E
ref

i;totalX
ss;ref

i11 : (21)

The Keq can be expressed in terms of K̃ref
i;k by substituting Eqs. 19–21 into

Eq. 18:

Ki;eq ¼
K̃

ref

i;1 K̃
ref

i;3 K̃
ref

i;5

K̃
ref

i;2 K̃
ref

i;4 K̃
ref

i;6

3
X

ss;ref

i11

X
ss;ref

i

¼
K̃

ref

i;1 K̃
ref

i;3 K̃
ref

i;5

K̃
ref

i;2 K̃
ref

i;4 K̃
ref

i;6

3 Q
ref

i ; (22)

where Qref
i ¼ ðX

ss;ref
i11 =Xss;ref

i Þ is the reaction quotient at the reference steady

state. The first term on the righthand side of Eq. 22 reflects how far the

reaction is from its equilibrium. In other words, the lumped kinetic param-

eters are constrained by the Gibbs free energy of the reaction at the reference

steady state by the expression

+
ni

j¼1

ln K̃
ref

i;2j � +
ni

j¼1

ln K̃
ref

i;2j�1 ¼ ln Q
ref

i � ln Ki;eq ¼
DG

ref

i

RT
; (23)

where R is the universal gas constant. Next, we need to link the lefthand side

of the Eq. 23 to the individual reversibilities of the elementary steps.

The reversibility defined in Eq. 9 can be written as

Ri;j ¼
vi;2j

vi;2j�1

� �signðVi;netÞ

; (24)

where sign(Vi,net) represents the direction of the net flux (positive if forward

and negative if backward). If the net flux of the reference steady state is

Vi;net , 0; then vi;2j�1 , vi;2j and Ri;j ¼ ðminðvi;2j�1; vi;2jÞ=maxðvi;2j�1; vi;2jÞÞ¼
ðvi;2j�1=vi;2jÞ ¼ ðvi;2j=vi;2j�1Þ�1: It is easy to see that Eq. 24 also satisfies the

definition of reversibility in the opposite case, when Vi;net $ 0: By taking the

logarithm of both sides of Eq. 24, we get

ln Ri;j ¼ signðVi;netÞ � ðln vi;2j � ln vi;2j�1Þ: (25)

Summing up Eq. 25 for each of the elementary steps, and substituting the

elementary rates as defined by Eq. 3, we get
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+
ni

j¼1

ln Ri;j ¼ signðVi;netÞ +
ni

j¼1

ln vi;2j � +
ni

j¼1

ln vi;2j�1

 !

¼ signðVi;netÞ
 

+
ni

j¼1

ln K̃i;2j � +
ni

j¼1

ln K̃i;2j�1

1 ln X̃i 1 1 � ln X̃i

!
; (26)

which gives the following expression after combining Eqs. 23. and 26:

+
ni

j¼1

ln Ri;j ¼ signðVi;netÞ
 
ðln Q

ref

i � ln Ki;eqÞ

1 ln
Xi11

Xss;ref

i11

� �
� ln

Xi

Xss;ref

i

� �!

¼ signðVi;netÞðln Qi � ln Ki;eqÞ

¼ signðVi;netÞ
DGi

RT
: (27)

At the reference steady state, the above equation becomes

+
ni

j¼1

ln R
ref

i;j ¼ signðV ref

i;netÞ
DG

ref

i

RT
: (28)

In reality, we do not know the exact values for the Gibb free energies, but their

range is described by ðDGi=RTÞlower bound#ðDGi=RTÞ#ðDGi=RTÞupper bound: The

above equality expression turns to an inequality expression represented by Eq. 11:

DGi

RT

� �
lower bound

# signðV ref

i;netÞ3 +
j

ln R
ref

i;j #
DGi

RT

� �
upper bound

:

(11)

In general, the information regarding reversibility is often not available, so

we have to generate sets of reversibilities satisfying Eq. 11 before calculating

the kinetic parameters. We first check whether the direction of Vref
i;net is

thermodynamically allowable. If it is, then Eq. 11 becomes

�di;1# +
ni

j¼1

ln R
ref

i;j #�di;2; (29)

where

di;1 ¼ max

����DGi

RT

����
lower bound

;

����DGi

RT

����
upper bound

 !
; (30)

and

di;2 ¼ min

����DGi

RT

����
lower bound

;

����DGi

RT

����
upper bound

 !
: (31)

Individual reversibilities, Rref
i;j ; are generated randomly under the constraint of

Eq. 29.

APPENDIX B

We constructed a test model to be used as the true system for the purpose of

demonstrating the screening strategy introduced in the text. In this model,

TABLE 1 List of reactions and equation forms used in test model

Reaction Overall equation Inhibitor Kinetic equation

Pts GLC 1 PEP / G6P 1 PYR – Elementary reactions as described in Fig. 3

Pgi G6P / F6P 6PG Eq. 2.15 from (39)*

Pfk F6P 1 ATP / FBP 1ADP PEP Eq. 6.2 from (39)**

Ald FBP / DHAP 1 GAP – Eq. 33

Tim DHAP / GAP – Eq. 2.15 from (39)

Gapdh GAP 1 NAD / BPG 1 NADH – Eq. 6.2 from (39)

Pgk BPG 1 ADP / 3PG 1 ATP – Eq. 6.2 from (39)

Pgm 3pg / 2PG – Eq. 2.15 from (39)

Eno 2PG / PEP – Eq. 2.15 from (39)

G6pdh G6P 1 NADP / 6PG 1 NADPH NADPH Eq. 6.2 from (39)*

Gnd 6PG 1 NADP / Ru5P 1 NADPH NADPH Eq. 6.2 from (39)*

Rpe Ru5P / X5P – Eq. 2.15 from (39)

Rpi Ru5P / R5P – Eq. 2.15 from (39)

TktAB1 X5P 1 R5P / S7P 1 GAP – Eq. 6.2 from (39)

TktAB2 X5P 1 E4P / F6P 1 GAP – Eq. 6.2 from (39)

Tal S7P 1 GAP / F6P 1 E4P – Eq. 6.2 from (39)

Pk PEP 1 ADP / PYR 1 ATP ATP Eq. 6.2 from (39)**

Ppc PEP / OAA – Eq. 2.15 from (39)

AroG PEP 1 E4P / DAHP – Eq. 34

SerSynth 3PG / out – Eq. 32

Synth1 PEP / out – Eq. 32

Synth2 PYR / out – Eq. 32

Pdh PYR / out – Eq. 32

Rpkk R5P / out – Eq. 32

DAHP out DSHP / out – Eq. 32

OAA out OAA / out – Eq. 32

– �KA
m�app ¼ KA

mð11i=Kl1Þ=ð1 ¼ i=Kl2Þ
and fV�app ¼ Vf=ð11i=K2

1lÞ-
�� KA

m�app ¼ KA
mð11i=KlÞ
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most reactions were based on lumped Michaelis-Menten-type kinetics, as

indicated in Table 1. However, for the phosphotransferase system for sugar

uptake, the elementary reactions making up the known mechanism were

used. For reactions containing inhibition, the referenced equation forms were

modified to include an inhibition term (Table 1). The transport reactions out

of the system are modeled with mass-action kinetics:

v ¼ K 3 x: (32)

Ald and AroG require modified kinetic equations because they represent one

reactant going to two products (Ald) or two reactants becoming one product

(AroG), which are derived from the reference used to formulate the other

equations (39):

TABLE 2 Kinetic parameters used in test model

Reaction Parameter Value Reaction Parameter Value Reaction Parameter Value Reaction Parameter Value

Pts K1 ¼ 156.30 Ald Vf ¼ 69.91 Gnd Vf ¼ 75.65 Tal Vf ¼ 16.57

K2 ¼ 2000.00 Vr ¼ 1.00 Vr ¼ 564.17 Vr ¼ 11.23

K3 ¼ 625.00 KA
m ¼ 1:11 KA

m ¼ 0:29 KA
m ¼ 0:94

K4 ¼ 15.60 KP
m ¼ 10:87 KB

m ¼ 0:01 KB
m ¼ 0:57

K5 ¼ 65.80 KQ
m ¼ 0:15 KP

m ¼ 1:03 KP
m ¼ 2:10

K6 ¼ 1.60 KA
i ¼ 11:06 KQ

m ¼ 9:24 KQ
m ¼ 10:35

K7 ¼ 96.20 KP
i ¼ 12:28 KA

i ¼ 5:16 KA
i ¼ 0:72

K8 ¼ 180.60 KQ
i ¼ 11:95 KB

i ¼ 0:18 KB
i ¼ 1:22

K9 ¼ 170.60 Gapdh Vf ¼ 671.72 KP
i ¼ 1:39 KP

i ¼ 9:18

K10 ¼ 132.30 Vr ¼ 370.47 KQ
i ¼ 1:27 KQ

i ¼ 23:91

K11 ¼ 328.10 KA
m ¼ 1:25 Ki1 ¼ 0:91 Pk Vf ¼ 10.17

K12 ¼ 41.30 KB
m ¼ 1:38 Ki2 ¼ 0:29 Vr ¼ 0.59

K13 ¼ 1010.30 KP
m ¼ 0:03 Rpe Vf ¼ 21.05 KA

m ¼ 0:29

K14 ¼ 3168.90 KQ
i ¼ 0:22 Vr ¼ 10.62 KB

m ¼ 0:39

K15 ¼ 870.70 KA
i ¼ 2:89 KA

m ¼ 0:41 KP
m ¼ 1:48

K16 ¼ 1159.10 KB
i ¼ 2:43 KP

m ¼ 1:03 KQ
m ¼ 0:17

K17 ¼ 705.90 KP
i ¼ 7:60 Rpi Vf ¼ 15.95 KA

i ¼ 0:02

K18 ¼ 115.20 KQ
i ¼ 127:17 Vr ¼ 4.31 KB

i ¼ 0:02

K19 ¼ 63.89 Pgk Vf ¼ 2225.00 KA
m ¼ 0:09 KP

i ¼ 20:91

K20 ¼ 583.18 Vr ¼ 589.80 KP
m ¼ 0:09 KQ

i ¼ 4:59

K21 ¼ 973.44 KA
m ¼ 1:40 TktABI Vf ¼ 55.57 ki ¼ 0.64

K22 ¼ 17.22 KB
m ¼ 2:00 Vr ¼ 48.08 Ppc Vf ¼ 13.74

K23 ¼ 240.86 KP
m ¼ 0:30 KA

m ¼ 2:49 Vr ¼ 1.41

K24 ¼ 137.46 KQ
m ¼ 0:90 KB

m ¼ 0:25 KA
m ¼ 2:11

Pgi Vf ¼ 11.09 KA
i ¼ 1:90 KP

m ¼ 32:69 KP
m ¼ 24:97

Vr ¼ 0.31 KB
i ¼ 3:10 KQ

m ¼ 1:33 AroG Vf ¼ 1.00

KA
m ¼ 60:25 KP

i ¼ 0:50 KA
i ¼ 3:18 Vr ¼ 0.001

KP
m ¼ 60:57 KQ

i ¼ 4:00 KB
i ¼ 0:58 KA

m ¼ 0:12

Ki1 ¼ 0:25 Pgm Vf ¼ 90.55 KP
i ¼ 80:45 KB

m ¼ 0:002

Ki2 ¼ 24:06 Vr ¼ 6.21 KQ
i ¼ 2:09 KP

m ¼ 0:02

Pfk Vf ¼ 135.66 KA
m ¼ 1:59 TktAB2 Vf ¼ 15.45 KA

i ¼ 0:0001

Vr ¼ 16.07 KP
m ¼ 5:17 Vr ¼ 2.04 KB

i ¼ 0:002

KA
m ¼ 7:06 Eno Vf ¼ 355.79 KA

m ¼ 1:02 KP
i ¼ 83:35

KB
m ¼ 0:32 Vr ¼ 4.98 KB

m ¼ 0:38 SerSynth K ¼ 1.75

KP
m ¼ 0:06 KA

m ¼ 4:54 KP
m ¼ 0:82 Synth1 K ¼ 1.41

KQ
m ¼ 1:29 KP

m ¼ 0:87 KQ
m ¼ 0:97 Synth2 K ¼ 5.36

KA
i ¼ 0:84 G6pdh Vf ¼ 109.60 KA

i ¼ 0:14 Pdh K ¼ 18.80

KB
i ¼ 0:38 Vr ¼ 0.80 KB

i ¼ 0:40 Rpkk K ¼ 1.03

KP
i ¼ 3:11 KA

m ¼ 2:80 KP
i ¼ 11:55 DAHP out K ¼ 0.69

KQ
i ¼ 58:60 KB

m ¼ 1:60 KQ
i ¼ 13:83 OAA out K ¼ 4.27

Ki�PEP ¼ 100:00 KP
m ¼ 33:60

Tim Vf ¼ 56.87 KQ
m ¼ 2:60

Vr ¼ 38.34 KA
i ¼ 0:00

KA
m ¼ 0:99 KB

i ¼ 0:90

KP
m ¼ 1:78 KP

i ¼ 2629:40

KQ
i ¼ 356:40

vAld ¼

V
f
a

KA

i KA

m

� V
r
pq

KP

mKQ

i

1 1
a

K
A

i

1
K

Q

mp

K
P

mK
Q

i

1
q

K
Q

i

1
a

K
A

i K
A

m

1
K

Q

map

K
A

i K
P

mK
Q

i

1
q

K
A

i K
Q

i

1
pq

K
P

mK
Q

i

1
ap

K
A

i K
A

mK
P

i

(33)
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The parameter values used for the reactions are indicated in Table 2.
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