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ABSTRACT Molecular dynamics simulations were carried out on Thermus thermophilus 70S ribosome with and without a
nascent polypeptide inside the exit tunnel. Modeling of the polypeptide in the tunnel revealed two possible paths: one over Arg92

of L22 and one under (from the viewpoint of 50S on top of 30S). A strong interaction between L4 and Arg92 was observed
without the polypeptide and when it passed over Arg92. However, when the polypeptide passed under, Arg92 repositioned to
interact with Ade2059 of 23S rRNA. Using steered molecular dynamics the polypeptide could be pulled through the L4-L22
constriction when situated under Arg92, but did not move when over. These results suggest that the tunnel is closed by the
Arg92-L4 interaction before elongation of the polypeptide and the tunnel leads the entering polypeptide from the peptidyl
transferase center to the passage under Arg92, causing Arg92 to switch to an open position. It is possible, therefore, that Arg92

plays the role of a gate, opening and closing the tunnel at L4-L22. There is some disagreement over whether the tunnel is
dynamic or rigid. At least within the timescale of our simulations conformational analysis showed that global motions mainly
involve relative movement of the 50S and 30S subunits and seem not to affect the conformation of the tunnel.

INTRODUCTION

Ribosome is one of the supra-biomolecules used in the process

of translating genetic information for the synthesis of poly-

peptides. The 70S ribosome from eubacteria is composed of a

small (30S) and a large (50S) subunit. The 30S subunit de-

codes genetic information (1), and the 50S subunit is consid-

ered to be responsible for the formation of peptide bonds, and

the elongation of the nascent polypeptide (2). The nascent

polypeptide is generated at the peptidyl transferase center

(PTC) of the 50S subunit, where a new amino acid from

aminoacyl-tRNA is added to the carboxyl terminus of the

growing polypeptide (3,4). The nascent polypeptide passes

through a tunnel, which starts at the PTC and continues

through the 50S subunit (4–6). The length of the tunnel is

;100 Å and the diameter is between 10 and 20 Å. Crystal

structures have shown that the tunnel is rather kinked, has a

nonuniform diameter, and contains grooves and cavities (3–5).

As the nascent polypeptide passes through the tunnel and

leaves the ribosome, it encounters three main environments:

the entrance, the constriction, and the exit (7).

The entrance part of the tunnel is formed by the central loop

of domain V in 23S rRNA, and can be targeted by several

antibiotics such as chloramphenicol, clindamycin, and several

members of the macrolide family such as erythromycin. They

inhibit protein elongation by binding to the entrance and

blocking the path of the nascent polypeptide (8,9).

At about one third of the tunnel length away from the PTC,

the nascent peptide meets a narrow constriction. The wall of

the tunnel at this region is composed mainly of ribosomal

RNA (nucleotides of domain I through V of the 23S rRNA).

However, the narrowest part of the tunnel is formed by the

protruding loops of two ribosomal proteins L22 and L4,

which approach the tunnel from opposite sides and interca-

late between rRNA segments of the 23S rRNA (3–5). The

tips of these protrusions form an ;12 Å long and 15 Å wide

segment of the exit tunnel (3,5). It is known that specific

amino acid sequences in nascent polypeptides found in TnaC

(the leader peptide of Escherichia coli tryptophanase operon)

and SecM (a protein belonging to the secretion monitoring

system) interact with the tunnel around the L4-L22 con-

striction and induce translation arrest (10–13). The x-ray

crystallographic structure of Deinococcus radiodurans ri-

bosome suggests that the conformational change of the ex-

tended loop of L22 could block the tunnel, and this might

cause elongation arrest of these special sequences (14).

After the nascent polypeptide has passed through the L4-

L22 constriction, the tunnel widens and branches out. Crystal

structures have revealed that this widening of the tunnel is

flanked by L23 and L29, which are positioned at the surface

of the 50S (3,5). It is known that the ribosome-associating

chaperone trigger factor in eubacteria specifically interacts

with L23, and binds to nascent polypeptides to prevent their

aggregation and assist their folding (15).

There is some disagreement over whether the tunnel is

dynamic or rigid. Based on cryo-electron microscopy (cryo-

EM) data, Gabashvili et al. suggested that the tunnel is dy-

namic (6). Voss et al. claim that the tunnel is rigid (16,17) as

thermal fluctuations estimated from the Debye-Waller factors

(B-factors) of atoms that form the wall of the tunnel are low

(3), and structures of RNA surrounding the tunnel are basi-

cally identical in a variety of 70S ribosome crystallographic

structures (3,4,18–22).
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To understand the dynamics of the 70S ribosome, a number

of computational studies have been carried out. Some have

used elastic network models (23,24) and coarse-grained mo-

lecular dynamics (MD) simulations (25) to analyze the global

motions. Of note is all-atom MD simulations with explicit

water molecules (26–28) to analyze the translocation of tRNA

through the 70S ribosome (26).

Here, all-atom MD simulations were carried out on a

Thermus thermophilus 70S ribosome in water with and with-

out a nascent polypeptide inside the tunnel. The purpose is to

understand how the exit tunnel of ribosome regulates the

passage of the polypeptide on an atomic level and to assess the

role of global motions in the conformation of the exit tunnel.

Simulations on this ;1,900,000 atom system were carried out

for a total time of 20 ns using massive parallel computers. The

probable path of the nascent polypeptide through the L4-L22

constriction was determined, and the relationship between

global motions of the whole 70S ribosome molecule and the

conformation of the exit tunnel were analyzed.

MATERIALS AND METHODS

Modeling of T. thermophilus 70S ribosome

There have been several attempts to create all-atom models of the 70S ri-

bosome (29,30). Here, we constructed an atomic model of the 70S ribosome

and a nascent polypeptide inside the tunnel. The crystallographic structure of

T. thermophilus 70S ribosome including mRNA and two tRNA molecules at

the aminoacyl-tRNA (A) and peptidyl-tRNA (P) sites (Protein Data Bank

(PDB) code: 1YL3 and 1YL4, resolution: 5.5 Å) (31) was used. The missing

parts in 1YL3 were modeled by using T. thermophilus (PDB code: 487D,

resolution: 7.5 Å) (32) and homologous molecules from Haloarcula

marismortui (PDB code: 1YJW, resolution: 2.9 Å) (33), (PDB code: 1QVG,

resolution: 2.9 Å) (34), and Deinococcus radiodurans (PDB code: 1NJM,

resolution: 3.6 Å) (35) as templates. Modeling of the missing residues in

1YL3 was done by superposing 1YL3 and one of the aforementioned

structures that contained the missing residues on regions that flank them.

Details are given in Table 1. The missing nucleotides 2157–2173 of the 23S

ribosomal RNA in 1YL3 were modeled using InsightII.

Building a nascent polypeptide chain inside
the 70S ribosome

As the atomic structure of a nascent polypeptide inside the exit tunnel has not

yet been determined by x-ray crystallography, we modeled possible con-

formations of a polyalanine inside the tunnel. A nascent polypeptide chain

was built in the exit tunnel from the outside to the PTC using two procedures,

a path finding procedure and a polypeptide building procedure.

Path finding procedure

Possible paths for the polypeptide were determined using the full-atom

model of ribosome. The basic idea was to simulate moving a sphere from the

PTC to the exterior of the ribosome. The following five-step procedure was

used. 1), A sphere with a diameter of 6.0 Å was placed at the PTC, specif-

ically at an arbitrarily chosen ‘‘vacant point’’ 2.0 Å away from the N6 atom

of Ade76 of tRNA. This point was called the origin. A ‘‘vacant point’’ is

where the sphere could be placed without overlapping any atom (with van der

Waal’s radius) of the ribosome. 2), A vacant point 1.0 Å away from the origin

was randomly chosen. We name this point A. 3), A point 1.0 Å away from

point A was randomly chosen and checked for being a vacant point. We

named this point B. 4), The distances between point B and the origin (¼ dist1),

and between point A and the origin (¼ dist2) were calculated. If dist1 . dist2,

then we accepted point B as the new point A and placed a new sphere there. If

dist1 # dist2, then the acceptance of point B as the new point A was deter-

mined by the following criterion:

E ¼ exp �dist2
2 � dist1

2

a

� �

E $ b : accept as new point A and return to step ð3Þ
E , b : reject the point and return to step ð3Þ:

�
(1)

a was a constant set so that E ranged between 0 and 1, and b was a random

number between 0 and 1 generated each time the evaluation was carried out.

If dist1 was .100 Å, namely far greater than the radius of the ribosome, the

procedure was terminated. By repeating this procedure, we obtained 1,000

different paths. For the current study, we selected 10 paths that ran through

the exit tunnel proposed by Voss et al. (16), as representatives.

Polypeptide building procedure

The peptide was built on each path using empirical distributions of bond

lengths and bond angles found in nonhomologous proteins with known

three-dimensional (3D) structures from the PDB. From 3D structures of

proteins whose amino acid sequence identities are ,50% among one an-

other, we extracted the values of the following and built tables: i), distance

between ith Ca and i 1 1th Ca; ii), distance between ith Ca and C; iii),

distance between ith Ca and i 1 1th N; iv), distance between ith C and i 1 1th

N; v), coordinate of i 1 1th C and i 1 2th N, based on the local coordinate

spanned by ith C, i 1 1th N and i 1 1th Ca; vi), coordinate of i 1 1th Ca,

based on the local coordinate spanned by ith Ca, ith C and i 1 1th N; and vii),

coordinate of i 1 1th Cb and ith O, based on the local coordinate spanned by

ith N, Ca, and C. The peptide was built using the following steps: 1), the first

Ca atom was placed on the path at the terminus furthest from the PTC; 2), the

TABLE 1 Modeling of T. thermophilus 70S ribosome

Modeled residues in 1YL3 Modeled using PDB Modeled by fitting to residues

64–66 of L1 487D 5–63 and 67–228 of L1

1–37, 113–170 and 321–337 of L3 1YJW 36–49, 61–67, 69–113 and 172–309 of L3

70–78 and 121–137 of L4 1YJW 1–69 and 138–246 of L4

157–174 of L5 1QVG 10–29 and 35–156 of L5*

111–130 of L13 1YJW 4–110 and 131–140 of L13

9-50 of L15 1YJW 51–145 of L15

130–186 of L18 1YJW 9–129 of L18

178–223 of L25 1NJM 1–177 of L25y

*Missing residues 30–34 of L5 in 1YL3 were modeled using the Biopolymer module in InsightII (Accelyrs, San Diego, CA).
yMissing atoms along the modeled Ca trace were modeled using InsightII.
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C atom was placed at a distance, randomly chosen from Table (ii), from the

first Ca atom, and the Ca atom for the second residue was placed at a distance,

randomly chosen from Table (i), from the first Ca atom; 3), the N atom for the

second residue was placed in the plane spanned by the first Ca, the first C and

the second Ca, and with a distance between Ca and N atoms chosen randomly

from Table (iii); if the distance between the N atom and the C atom was not

found in Table (iv), then we discarded the coordinate of the C atom and went

back to step 2; and 4), the C atom for the second residue and the N atom for

the third residue were placed using Table (v), and the Ca atom of the third

residue was placed using Table (vi). If the Ca atom of the third residue was

not located on the path, we discarded the C, N, and Ca atoms, and placed

these atoms anew. By applying step 4 repeatedly, we could extend the poly-

peptide backbone until the C-terminal Ca atom located within the 9.0 Å

distance from N6 atom of Ade76 of tRNA at the P-site. Once the whole

polypeptide backbone was built (without O atoms), we finally placed Cb and

O atoms for all residues based on Table (vii) and finished the procedure. This

resulted in 10 polyalanines, one for each path.

We removed some N-terminal amino acids to set the length of each chain

to 36 residues. The constructed polyalanines were all in an extended con-

formation with ;3.5 Å per amino acid. Thus, the length of the modeled

polyalanine is ;100 Å and this is long enough for it to fit along the path from

the PTC to the distal end of the tunnel. Analysis of the polyalanine confor-

mations revealed that they followed two distinctive and well defined paths,

one over Arg92 of L22, the other under Arg92 of L22 as shown in Fig. 1. To

define ‘‘over’’ and ‘‘under’’ the ribosome is oriented so that 50S is on top of

30S. They will be referred to as ‘‘case-over’’ and ‘‘case-under’’ from here

on. Of the 10 polyalanines, 6 were positioned over Arg92 and 4 were posi-

tioned under.

To optimize the conformations, a simulated annealing (SA) was carried

out for each polyalanine in vacuum. The SA was carried out using AMBER

8.0 (36) with the force-field of Cornell et al. (37), included in the parm98.dat

parameter set. To reduce the computation time, ribosome molecules that

were .30 Å from the tunnel, (ribosomal proteins L1, L5, L6, L7, L12, L9,

L11, L13, L14, L15, L16, L18, L19, L25, L30, L27, L31, L33, L35, L36,

16S, mRNA, and the 30S subunit) were removed from the system. The total

number of atoms in the system (polyalanine, 5S rRNA, 23S rRNA, L2, L3,

L4, L15, L16, L22, L23, L24, L29, L17, L20, L21, L32, L34, tRNA at the

A-site, and tRNA at the P-site) was 130,147. A distance-dependent dielectric

constant of 4.0 r was used, and nonbonded interactions were evaluated with a

cut-off radius of 14 Å. A time step of 0.5 fs was used throughout the SA.

Except for the modeled polyalanine, all the atoms in the system were re-

strained by a strong harmonic force constant of 10 kcal/mol Å2. The atoms of

the polyalanine, except for the Ca of the C-terminal, were free to move. The

Ca atom at the C-terminal near the PTC was restrained by a force constant of

1.0 kcal/mol Å2 to keep the C-terminal near the PTC and to mimic a situation

where the polyalanine was elongating from the PTC. The system was heated

from 0 to 800 K during the first 10 ps and was then equilibrated for 20 ps. The

system was then gradually cooled for 70 ps from 800 K to 350 K. The SA was

repeated 10 times for each of the 10 models, and the resulting coordinate sets

were stored as possible conformations of the polyalanine at local minimum

energy regions. Each of the 100 conformations was minimized for 1,000

steps using steepest descent followed by 5,000 steps of conjugate gradient

without constraining the polyalanine.

Despite this procedure, the 100 polyalanine chains still followed two

distinct paths through the L4-–L22 constriction, one over Arg92 (case-over),

the other under Arg92 (case-under). As a representative of the 60 chains

following the case-over path the minimum energy (energy was defined as the

total of the internal energy of the polyalanine and the interaction energy

between the polyalanine and the ribosome) chain was selected, likewise for

the 40 chains of case-under. The distance between the Ca atoms of the

N-terminal and C-terminal of these two models decreased during the SA

from an initial distance of 90 Å and 88 Å to 57 Å and 41 Å, respectively. By

adding the parts of the 70S ribosome that had been removed, two structural

models of the 70S ribosome with a polyalanine inside the tunnel were con-

structed. Finally, each of the assembled structures was minimized to alleviate

the stress at the interfaces between the constructed optimal structure and the

parts of the 70S ribosome that had been removed.

Free MD simulation of the 70S ribosome

In addition to the two models of the 70S ribosome with a polyalanine inside

the exit tunnel, a model of the 70S ribosome without a polyalanine was

constructed to analyze the influence of the polyalanine on the dynamics of the

70S ribosome. These three models were independently placed in a rectan-

gular box 286 Å 3 286 Å 3 263 Å. In this box, all the atoms of the 70S

ribosome were .15 Å from the edge of the box. A large buffer size of 15 Å

was used to avoid possible artificial interactions with the periodic image even

if large conformational changes were to occur. To neutralize the negative

charges of the 70S ribosome, sodium ions were placed at positions with large

negative electrostatic potential. Then 539,992 water molecules were added to

surround the two systems with the polyalanine. For the system without the

polyalanine 540,043 water molecules were added. Each of the three systems

comprised 1,878,425 atoms. For the two systems with a polyalanine, the

number of atoms was as follows: 70S ribosome ¼ 253,897, polyalanine ¼
363, sodium ions¼ 4,399, and water¼ 539,992 3 3. For the system without

a polyalanine the number of atoms was: 70S ribosome ¼ 253,897, sodium

ions ¼ 4,399, and water ¼ 540,043 3 3.

Although metal ions such as magnesium or potassium are necessary for

ribosomal function, they were not included in our study because: 1), mag-

nesium and potassium ions are not given in the PDB files for ribosome, and it

is not easy to correctly locate and equilibrate them inside and around ribo-

some in our rather short timescale MD simulations; in addition, it has been

reported that potassium and chloride aggregate in biomolecular simulations

using the AMBER force field (38), indicating that the simple inclusion of

these ions may unnaturally affect the system; 2), our main intention is to

observe the movement of the polypeptide inside the tunnel using steered MD

(SMD) simulations (39); we assume that, in the SMD simulations in which

the polypeptide is pulled through the tunnel, the movement of the poly-

peptide inside the tunnel is not significantly affected by the presence or ab-

sence of a particular type of ion; and 3), we assume that they do not

significantly affect large-scale movements of the 70S ribosome.

Recent developments in computer technology have made all-atom mo-

lecular dynamics simulations of ribosome possible (26–28). In our study, to

simulate the 70S ribosome in explicit water (using TIP3P model (40)), we

FIGURE 1 Two of the modeled polyalanines inside the exit tunnel.

Ribosomal proteins L4 and L22 are located at the back and front, respec-

tively. L4 and L22 (wire-ribbon models) are shown in dark khaki and coral,

respectively. From the PTC, two nascent polyalanines (space-filling models)

pass through the exit tunnel in the large subunit, 50S, passing over and under

Arg92 of L22. They are shown in blue and red, respectively. Ade76 of tRNA

at the P-site is depicted in space-filling model. For clarity other molecules in

the 70S ribosome have not been included.
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used an in-house MD simulation program, called SCUBA (Simulation Codes

for hUge Biomolecular Assembly) that is now being developed by the Japan

Atomic Energy Agency and the University of Tokyo (41). The dielectric

constant used was 1.0 and the van der Waals interactions were evaluated with

a cut-off smoothly shifted to zero at 8 Å. The nonbonded list, including

neighboring atoms within 8 Å, was updated every 50 fs. The particle-particle

particle-mesh method (PPPM) was used for the electrostatic interactions

(42). These interactions were split into short- and long-range contributions

and the long-range potential was obtained by gridding the charges. The long-

range contributions were evaluated with grid spacing of ;1 Å. To utilize

parallel computers using 128 CPUs efficiently, the size of the charge grid was

chosen to be 28 ¼ 256 for each dimension so that the fast Fourier transform

could be applied to increase the speed of the calculation of the long-range

contributions.

Steepest descent was carried out for 1,000 steps, followed by conjugate

gradient for 9,000 steps. All heavy atoms of the 70S ribosome from

T. thermophilus, tRNA at the A-site, tRNA at the P-site, mRNA, and the

polyalanine were harmonically restrained using a force-constant of 10 kcal/

mol Å2. The modeled parts of the 70S ribosome based on H. marismortui, the

nonheavy atoms of the 70S ribosome and the nascent peptide, and all ions

and water molecules were free to move. The average gradient of the potential

energy at the final step of the minimization was 1.36 3 10�3 kcal/mol Å.

The MD simulation of the system was carried out for 3.5 ns at a constant

pressure of one bar and a temperature of 350 K. The temperature of 350 K

was chosen to match the optimal conditions for growth of T. thermophilus

(43). The constant temperature and pressure algorithm developed by Martyna

et al. (44) was used to control the temperature and pressure of the system. To

integrate the equation of motion, the multi time step (MTS) algorithm de-

veloped by Zhou et al. (45) was used with a time step of 1 fs for short forces

with the smooth cut-off of 8 Å and 2 fs for other long-range forces. Each

system was first heated from 0 K to the 350 K within 500 ps during which the

molecules and sodium ions were fixed with decreasing restraints and the

water molecules were allowed to move. After the restraints were removed,

the system was equilibrated for 1 ns with no restraint. During the equili-

bration the weights of barostat and thermostat were set at 105 ps2 � kcal/mol

so that the relaxation times for the temperature and pressure control were

both ;1 ps. After equilibration, the weights were set at 109 ps2 � kcal/mol so

that the relaxation times were 100 ps. These values make the coupling to the

temperature and pressure baths weak enough to avoid any significant arti-

ficial effects on the atomic properties of the system. The 2-ns MD trajectory,

from 1.5 ns to 3.5 ns, was analyzed. The coordinates of all the atoms in-

cluding those of water and hydrogen atoms were collected every 1 ps for later

analysis.

Steered MD simulations

Spontaneous movement of the polyalanine through the exit tunnel cannot be

observed within several nanoseconds as the rate of elongation of the nascent

polypeptide is ;20 amino acids per second in vivo (46). To observe the

movement of the polyalanine through the exit tunnel, we employed steered

MD (SMD) simulations (39) by imposing a biased force on an atom of the

polyalanine, to pull the nascent polyalanine along the tunnel. The purpose of

applying SMD is to determine which of the two paths, case-over (over

Arg92), or case-under (under Arg92), is the true path of the polyalanine.

During the SMD simulation, the pulling force exerted on the Ca atom was

f ¼ kjrfðtÞ � rCa
ðtÞjuðtÞ; (2)

where k is the force constant and rCa
ðtÞ is the coordinate of the selected Ca

atom at time t, the time elapsed from the beginning of the SMD simulation.

rfðtÞ is the coordinate on which the center of the harmonic potential to

produce the pulling force is located:

rfðtÞ ¼ rN6ðtÞ1 ðjrCa
ð0Þ � rN6ð0Þj1 vtÞuðtÞ; (3)

where v is the constant velocity, and rN6ðtÞ is the coordinate of the N6 atom

of Ade76 of tRNA at the P-site. uðtÞ is the unit vector from the N6 atom in the

direction of rfðtÞ; and is described as

uðtÞ ¼ rCa
ðtÞ � rN6ðtÞ

jrCa
ðtÞ � rN6ðtÞj

: (4)

In our SMD simulations, the value of v was set at 10 Å/ns (106 mm/s)

to move the polyalanine along the tunnel slowly. This speed is significantly

slower than the diffusion of the water molecules in the tunnel (see Results).

The value of k was set at 10 pN/Å, corresponding to the root mean-square

fluctuation, equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bk)�1

p
; of 2.2 Å at 350 K. The force is sufficiently

weak to allow the Ca atom to fluctuate in directions other than that of the

applied force. This would enable the polyalanine to move along the curved

tunnel naturally. The six rotational and translational motions of the ribosome

in the simulation box were set to zero every 1 ps.

SMD simulations were carried out for 4 ns after the equilibration

period for the free MD simulations. In our SMD simulations, a Ca atom of

the polyalanine was pulled. To select the atom to be pulled, the Ca atom of

L4 and the Ca atom of L22 closest to each other at the start of the

SMD simulation were identified. The Ca atom to be pulled satisfied

the following criteria: 1), it was .10 Å from both the Ca atoms on L4

and L22; 2), it was the closest Ca atom to the Ca atoms on L4 and L22;

and 3), it was on the exit side of the line joining the Ca atoms of L4 and

L22. The tunnel expands outward rapidly from the place around the selected

Ca atoms, thus, a distance of 10 Å would prevent the L4-L22 constriction

from being excessively disturbed when the selected Ca atom in the poly-

alanine was pulled. The selected Ca atom was pulled from the N6 atom of

Ade76 of tRNA at the P-site in the direction of this selected Ca atom.

Visualization of the location of the L4-L22
constriction and the polyalanine in the tunnel

To visualize the mobile water around the L4-L22 constriction and the poly-

alanine in the tunnel, the diffusion of water molecules in the tunnel was

calculated. To calculate the diffusion constant of the water molecules, the

space of the system was divided into cells. The mean-square displacement of

the ith water molecule at a cell coordinate, rcell; at the center of each cell can

be calculated as

dðrcell; tÞ2i ¼
+

t

riðt 1 tÞ � riðtÞ½ �2 � diðrcell; tÞ

+
t

diðrcell; tÞ
; (5)

where ri(t) is the coordinate of the ith water molecule at a given time t. The

term within the square brackets is the square of the displacement of the ith
water molecule during a time interval t. diðrcell; tÞ is 1 if the ith water

molecule is within the cell at rcell at a given time t; otherwise, it is 0. The

average mean-square displacement at a given cell coordinate is then

6Dðrcell; tÞt ¼
+

i

ni � dðrcell; tÞ2i
+

i

ni

; ni ¼ +
t

diðrcell; tÞ; (6)

where ni is the number of times the ith water molecule was found in the cell at

rcell in the saved MD trajectories, and D is the diffusion constant of the water

molecules. To calculate the diffusion constant, we set the length of each cell

and the interval time t at 0.5 Å and 100 ps respectively. The positions of the

water molecules were measured by best-fitting the atoms of ribosome that are

within 50 Å of the tip of the side chain of Arg92 of L22 with those of the initial

structure.
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PCA and domain motion analysis: influence on
tunnel conformation

To investigate the influence of the global dynamics of the 70S ribosome on

the dynamics of the tunnel, a principal component analysis (PCA) of the

atomic fluctuations (47–50) was carried out to analyze the large-scale col-

lective motions of the 70S ribosome for 2 ns for both case-over and case-

under. The covariance matrix was calculated from the MD trajectory using

the phosphorus atoms of all the ribosomal RNA and the two tRNA mole-

cules, and the Ca atoms of all the ribosomal proteins. The order of the co-

variance matrix was 33,162. The covariance matrix was diagonalized to

identify the most significant motions of the solute along the corresponding

eigenvectors.

DynDom3D

DynDom (51,52) is able to determine dynamic domains, hinge axes, and

hinge-bending residues from two protein structures that have different con-

formations. DynDom generates short segments of the amino-acid chains of

these proteins by use of a sliding window and the calculation of the rotation

vector associated with the rotation of these segments between the two

structures. By treating the components of these rotation vectors as coordi-

nates in a ‘‘rotation space’’, segments that rotate together will have rotation

points colocated, indicating possible rigid domains within the structure. Thus

domains can be identified from the distribution of rotation points. The

original DynDom, however, can only analyze single protein chains; it cannot

analyze nucleotides or supra-molecules comprising two or more biomole-

cules. Consequently, we have used a new program, DynDom3D (manuscript

in preparation), which was specifically developed to deal with supra-mole-

cules. DynDom3D samples atoms using a sliding 3D block. Unlike the

original DynDom, DynDom3D is blind to atomic bonding and atom type

making it suitable for the analysis of multimeric complexes of any type of

constituent molecule.

The input parameters of the DynDom3D program were set as follows: the

maximum number of clusters was 5, the grid size for determining the rotation

of the block was 7 Å, the block factor was 4, the occupancy was 0.3, and the

minimum ratio of external to internal displacement was 0.4. The ratio of

internal to external displacement determines the acceptance criterion for a

given domain pair. This low value was required due to noise often seen from

MD results. The minimum size for a dynamic domain was set to 10,000

atoms as we are not interested in local motions of small regions.

Computational resources

All the MD and SMD simulations covering a total time of 20 ns were carried

out on 128 Itanium-2 processors of the Altix 3700 Bx2 supercomputer of

Japan Atomic Energy Agency and 128 vector processors of the Earth Sim-

ulator of the Japan Agency for Marine-Earth Science and Technology. More

than 300,000 CPU hours were used.

RESULTS

MD simulation with no polyalanine present

Structure of L4-L22 loops

A snapshot of a part of the structure around the L4-L22

constriction at 1 ns is shown in Fig. 2 A. L4 and L22 have

extended loops around residues 56–85 in L4 and residues 80–

99 in L22 respectively. The extended loop of L4 can be de-

scribed as having two tips, one at residues 60–68, and the

other at residues 72–79.

Fig. 2 A shows that the extended loop of L22 and its Arg92

that protrudes into the tunnel extends toward L4. The side

chain of Arg92 blocks the tunnel and separates it into two

passages, one that passes over and one that passes under

Arg92. Water-mediated interactions exist between Arg92 of

L22 and Phe61 of L4. However, this water-mediated inter-

action is not very strong as the tip of the side chain of Arg92

often swayed between Gln67 and Asp94, and interacted with

them via other bridging water molecules.

Fig. 3 A shows a snapshot of a part of the L4-L22 con-

striction at 1 ns, in the large tunnel where water molecules

have diffusion constants .1.67 3 10�5 cm2/s (meaning that

after 100 ps, the water molecules had moved an average of

10 Å (¼
ffiffiffiffiffiffiffiffiffi
6Dt
p

; t¼ 100 ps)). This value of 1.67 3 10�5 cm2/s

was ;25% of the diffusion constant of the bulk water at

350 K. The diameter of the high diffusion region over and

under the side chain of Arg92 of L22 was .6 Å, large enough

for the modeled polyalanine to pass over or under the side

chain of Arg92.

MD simulation with polyalanine under
loop (case-under)

Structure of L4-L22 loops

A snapshot of a part of the L4-L22 constriction and the

polyalanine at 1 ns is shown in Fig. 2 B. The interactions

between Phe61, Gln67, and Asp74 of L4 and Arg92 of L22,

which were observed in the case without the polyalanine,

were not observed. Interestingly, the tip of the side chain of

Arg92 moved ;8 Å from its initial position, and repositioned

to interact with Ade2059 of 23S rRNA during equilibration.

As Ade2059 and the neighboring nucleotide Ade2058 are well

known to be important for interacting with some antibiotics

such as erythromycin (8,53), this may imply that Arg92 of

L22 also plays an important role in determining the way these

antibiotics bind to the entrance of the tunnel. As Arg92 of L22

moved from its initial position, the side chain of Phe61of L4

also flipped to widen the tunnel and interacted with residues

20–25 of the polyalanine, as shown in Fig. 2 C.

Steered MD

Following the procedure in Materials and Methods, the Ca

atom of residue 15 was selected to be pulled. Residue 15 is

shown in red, in Fig. 2 B.

The amplitude of the pulling force was monitored at each time

step and is shown in Fig. 4 A. Fig. 4 A shows that the pulling force

gradually increases up to ;250 pN. This is comparable to forces

used in atomic force microscopy experiments.

The movement of the polyalanine from its initial position

in the direction of the exit tunnel is shown in Fig. 4 B. To

show the movement of the polyalanine around the L4-L22

constriction clearly, the movements of only the pulled Ca

atom of residue 15 and three Ca atoms of residues 18–20 are

shown in Fig. 4 B. Representative points of these three res-
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idues are shown in blue in wire model in Fig. 2 B. The di-

rection of the movement along the exit tunnel was from the

N6 atom of Ade76 of tRNA at the P-site to the middle point of

the line joining the Ca atom of Asp74 of L4 and that of Arg92

of L22. Displacements were measured from the middle point.

Fig. 4 B shows that in case-under, the pulled Ca atom

started moving as soon as the force was applied. The average

displacement of the Ca atoms of residues 18–20 around the

L4-L22 constriction along the tunnel during 0–3 ns was 5.2 Å.

As a result, two Ca atoms of residues 19 and 20 crossed the

line between the Ca atoms of Asp74 of L4 and Arg92 of L22

within 3 ns. This indicates that the polyalanine could move

through the L4-L22 constriction.

Fig. 3 B shows a snapshot of a part of the L4-L22 constriction

and polyalanine at 3 ns of the SMD simulation, in the high

diffusion region for water molecules with a diffusion constant

of at least 1.67 3 10�5 cm2/s. The high diffusion region spans

the L4-L22 constriction connecting the PTC and the exit.

MD simulation with polyalanine over
loop (case-over)

Structure of L4-L22 loops

A snapshot of a part of the L4-L22 constriction and the

polyalanine at 1 ns is shown in Fig. 2 D. In contrast to case-

under, strong interactions among Gln67, Phe61, and Asp74 at

the tips of L4, and Arg92 of L22 were maintained during the

MD simulations.

Steered MD

Following the procedure in Materials and Methods, the Ca

atom of residue 19 was selected to be pulled. Residue 19 is

shown in red, in Fig. 2 D.

The amplitude of the pulling force was monitored at each

time step and is shown in Fig. 4 A. Fig. 4 A shows that the

pulling force gradually increases up to ;250 pN. The in-

crement of the pulling force in case-over is larger than that in

case-under. This indicates that the pulled atom in case-under

moved more easily than that in case-over.

The movement of the polyalanine from its initial position

in the direction of the exit tunnel is shown in Fig. 4 C. To

show the movement of the polyalanine around the L4-L22

constriction clearly, the movements of only the pulled Ca

atom of residue 19 and three Ca atoms of residues 25–27 are

shown in Fig. 4 C. Representative points of these three res-

idues are shown in blue in wire model in Fig. 2 D. Fig. 4 C
shows that all the residues basically stayed in the same po-

sitions during 0–1 ns, indicating that the structure of the

polyalanine around residues 19–27 was stable. The pulled Ca

atom then started to move at ;1 ns. Interestingly, as the

FIGURE 2 Snapshot of the conforma-

tions around the L4-L22 constriction at

1ns of the free MD simulation. Residues

56–85 of L4 and 80–99 of L22 that form

extended loops are shown in dark khaki

and coral. They are depicted as a ribbon .

Phe61, Gln67, Asp74 of L4, Arg92 of L22,

Ade2059 of the 23S ribosomal RNA and

Ade76 of tRNA at the P-site are shown in

blue, cyan, red, yellow, deep pink and

black, respectively. They are all depicted

as wire models. The polyalanines are

depicted as backbone models. (A) Case

without the polyalanine (B) In case-un-

der, Ala15 and Ala18–20 of the polyala-

nine are shown in red and blue,

respectively. Other residues of the poly-

alanines are shown in black. (C) Super-

position of the conformations in the case

without the polyalanine and case-under.

In the case without the polyalanine, L4

and L22 are shown in white, and resi-

dues are depicted as thin wire models.

Color coding is the same as that used in

(B and C). The view is from the PTC in

the direction of the tunnel. The yellow

and blue arrows show the large move-

ments of Arg92 of L22 and Phe61 of L4,

respectively. To keep the image clear,

the polyalanines have not been included.

(D) In case-over, Ala19 and Ala25–27 of

the polyalanine are shown in red and

blue, respectively. The figure was illus-

trated using Chimera (59).
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pulled Ca atom moved rapidly in the direction of the exit at

;1.2 ns, residues 25–27 around the L4-L22 constriction

moved in the opposite direction as if they resisted moving

with the pulled Ca atom. This indicates that the structure

between the pulled Ca atom and residue 25 was stretched due

to the resistance of residues 25–27, and residues 25–27 went

backward to release the stress accumulated at the L4-L22

constriction due to its having been dragged along with resi-

dues 25–27. This phenomenon was observed again at ;3 ns.

As a result, the average displacement of the Ca atoms of

residues 25–27 along the tunnel during 0–3 ns was negative

(�1.4 Å). These results indicate that the polyalanine was not

able to move through the L4-L22 constriction at all.

These results contrast with those of case-under where the

polyalanine moved 5–10 Å with a lower average force.

Consequently, out of the two paths determined by modeling,

case-under seems the likely path for elongation of the poly-

alanine. It is possible that case-under represents an open-gate

conformation, and case-over a closed-gate conformation (see

Discussion).

Fig. 3 C shows a snapshot of a part of the structure around

the L4-L22 constriction and the polyalanine at 3 ns of the

SMD simulation in a high diffusion region for water mole-

cules with a diffusion constant of at least 1.67 3 10�5 cm2/s.

The high diffusion region in case-over is smaller than in case-

under, and it does not form a connected region. (They are

connected under the threshold of 1.20 3 10�5 cm2/s.) This

might be because the L4-L22 constriction is closed, hinder-

ing the movement of water molecules.

Global motions in the ribosome and effect on
tunnel conformation

It has been suggested that the conformational change of the

70S ribosome may be accompanied by changes in tunnel

conformation (6), such as would be the case for a peristaltic

pump facilitating the movement of the polyalanine along the

tunnel. However, Voss et al. (16) and Stietz (17) have con-

cluded that the tunnel is rigid.

We carried out principal component analysis on the free

MD simulations and a subsequent conformational analysis to

determine whether global motions affect the tunnel confor-

mation. It has been shown that a large portion of the overall

fluctuations of a macromolecule can often be accounted for

by a small number of eigenvectors having the largest eigen-

values and that these modes are sometimes related to the

function of the macromolecule (54). In both case-under and

case-over, fluctuation in first principal component eigen-

vector (PC1) was significantly larger than in the other prin-

cipal components. The ratio of the first eigenvalue to the

second eigenvalue was .3 (data not shown). However, due

to the size and complexity of the 70S ribosome it is difficult to

interpret this conformational change, even when it is re-

stricted to a single principal component. Therefore, we used

domain movement analysis software, DynDom3D (see Ma-

terials and Methods), to analyze the movement along PC1.

Polyalanine present (case-under)

Fig. 5 A shows the dynamic domains of the 70S ribosome of

the first PC in case-under. DynDom3D classified the dynamic

domains into three parts: domains I and III included a large

part of 50S and the head part of 50S, respectively. Domain II

comprised a large part of 30S. The axis of domains I and II

FIGURE 3 Location of the L4-L22 constriction and the polyalanine in the

tunnel. Regions of the high diffusion constant of water molecules (.1.67 3

10�5 cm2/s) in the exit tunnel are represented. L4 and L22 are depicted as

ribbon model. The diffusion constant was calculated as in Eq. 6. The

polyalanine is shown in green and depicted in backbone model. (A) Case

without the polyalanine. (B and C) cases over and under. The figure was

illustrated using Chimera (59).
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was located at the boundary between 50S and 30S and passed

near to L1 in domain I, L2, S11, S13 in domain II, and L5 in

domain III. This indicates that when the space between 50S

and 30S at the A-site opens, the space between 50S and 30S

at the E-site closes. This opening and closing motion would

facilitate the incorporation and emission of the tRNA mole-

cules. Domain III rotates against domain I as well as domain

II. Domain III included most of L5, L18, L21, L25, L27, L30,

and 5S RNA of 50S. The axis of domains I and III passed

nearby L27 in domain III and L22 and L34 in domain I.

This motion seems to be similar to the motion of the 70S

ribosome of mode 5 analyzed by elastic network model (24).

(Animation of this mode is available at http://ribosome.

bb.iastate.edu/70SnKmode.)

Polyalanine present (case-over)

Fig. 5 B shows the dynamic domains of the 70S ribosome of

the first PC in case-over. DynDom3D classified the dynamic

domains into two parts: domains I and II. Domains I and II

included a large part of 50S and 30S, respectively. The axis of

domains I and II passed near S12 in 30S, the acceptor stem

and anticodon loop of tRNA at the A-site, the intersubunit

bridges B2a, B3 at the boundary between 50S and 30S, the

L4-L22 constriction, and L24 in 50S. B2a is composed of

helix44 of 16 rRNA (h44) and helix69 of 23S and 5S rRNA

(H69), and B3 is composed of h44 and H71 (hereafter, ‘‘h’’

will be used for the helices of 16S rRNA and ‘‘H’’ will be

used for those of 23S and 5S rRNA.) The movement ana-

lyzed by DynDom3D seems to correspond with a so-called

ratchet-like motion of the 30S and 50S subunits. This

movement was observed by cryo-EM as a functional move-

ment between the free state and the binding state of elonga-

tion factor G (55). This ratchet-like movement has also been

observed by elastic network models (23,24), and a coarse-

grained MD simulation (25).

The differences in conformation of the polyalanine and the

L4-L22 constriction between case-under and case-over may

not be large enough to influence the global dynamics of the

system. It is likely therefore that the difference between PC1

in these two cases is due to a lack of sampling in this very

large system within a 2-ns time period. However, the

movements seen in PC1 are functionally plausible in that one

corresponds to the ratchet-like movement (55) and the other

to an open and closing movement between 50S and 30S.

In both cases domain I includes the L7/L12 stalk that

comprises L7/L12, L11, and H42-44 in 23S rRNA. The L7/

L12 stalk is considered to interact with initiation, elongation

and termination factors (56). In both cases domain II includes

FIGURE 4 Results of SMD. (A) The amplitudes of the pulling force are

plotted against the time. The unit of the force is pN. The straight and broken

lines represent in case-over and case-under, respectively. (B and C)

Distances moved along the exit tunnel are plotted against the time. The

vertical axis shows the distance of the four Ca atoms of the polyalanine

measured by projecting their positions onto the line passing the N6 atom of

Ade76 of tRNA at the P-site and the middle point of the line joining the Ca

atom of Asp74 of L4 and that of Arg92 of L22 at the starting time of the SMD

simulation. The origin of the vertical axis is the middle point. The units of

the distance and time are Å and ps, respectively. (B) Case-under, distance

moved along the exit tunnel for the pulled Ca atom of residue 15 and the Ca

atoms of residues 18–20 of the polyalanine are plotted against the time with

broken and straight lines, respectively. Residue 15 and residues 18–20 are

shown in red and blue in Fig. 2 B, respectively. (C) Case-over, distance

moved along the exit tunnel for the pulled Ca atom of residue 19 and the Ca

atoms of residues 25–27 of the polyalanine are plotted against the time with

broken and straight lines, respectively. Residue 19 and residues 25–27 are

shown in red and blue in Fig. 2 D, respectively.
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the L1 stalk that comprises L1 and H76–H78. This is con-

sistent with cryo-EM studies (57) and a coarse-grained MD

simulation (25) that have shown that the rotation of 30S is

accompanied by the movement of the L1 stalk, The move-

ment of the L1 stalk is also considered to be involved in the

release of tRNA at the E-site and to facilitate the translational

movement of tRNA from the P-site to the E-site (22).

Interestingly in case-under, the tRNA at the P-site spans all

three domains, and in case-over it spans both domains. This

suggests that translocation of tRNA is related to these global

movements. However, in both case-under and case-over the

tunnel is situated within a single domain (domain I) spanning

a large part of 50S that indicates that there is no twist or

peristaltic motion in the tunnel. The fact that both of the axes

of domains I and III in case-under and the axis of domains I

and II in case-over pass near the region of the tunnel implies

that the motion of the tunnel is small. Indeed, the mass-av-

eraged root mean square of the atomic fluctuations (RMSF)

of the heavy atoms within 10 Å of the polypeptide were very

small, 1.0 Å and 0.96 Å and in case-under and case-over,

respectively. Therefore, our results do not support the case

for a peristaltic pump facilitating the movement of the poly-

peptide along the tunnel but favor the interpretation that the

tunnel is rigid (16,17). However, our results cannot rule out

the possibility that a large conformational change of the

tunnel could occur during the entire reaction cycle that is not

covered by our simulations.

DISCUSSION

Comparison with structures determined by
x-ray crystallography

From our results case-under clearly represents the poly-

alanine in the state of elongation. What could case-over

represent? It is possible that it is a state of elongation arrest as

the polyalanine is unable to move through the L4-L22 con-

striction possibly due to the Arg92 of L22 interacting strongly

with L4. This could be similar to the elongation arrest of a

polypeptide with special sequences such as SecM or TnaC,

where it has been suggested that two arginines on L22 block

the tunnel in D. radiodurans ribosome (14).

In D. radiodurans ribosome, a large conformational change

in the L4-L22 constriction between its open and closed states

was actually observed by x-ray crystallography. Structural

studies of D. radiodurans 50S (D50S) by Berisio et al. (14)

have shown that a macrolide antibiotic, troleandomycin

(TAO), binds to Ade2041 (that corresponds to Ade2058 in

T. thermophile 70S ribosome (T70S) in our study) of the RNA

wall of the exit tunnel and flips the b-hairpin of L22 from a

region around Ade2041 to block the tunnel. They also specu-

lated that the SecM and TnaC sequences may act like TAO and

induce the extended loop of L22 to block the tunnel to prevent

elongation. In D50S, Arg109 and Arg111 of L22 (that corre-

spond to Arg88 and Arg90 of L22 in T70S in our study) are

considered to form a ‘‘double hook’’ that switches between the

open and closed states of the tunnel (14).

Taking this into account it is possible that in T70S the side

chain of Arg92 of L22 plays the role of a ‘‘switch’’ that opens

FIGURE 5 Dynamic domains analyzed by DynDom3D. Each dynamic

domain is colored. The regions that were not assigned to a dynamic domain

are shown in green. tRNA at the P-site and the other molecules are depicted

as space-filling and wire models. (A) The first mode in case-under: the

opening and closing motion of 50S and 30S. The dynamic domains are

composed of domain I (a large part of 50S including L7/L12 stalk and the

body-part (the T-loop, T-stem, D-loop, and D-stem) of tRNA at the A-site

and the P-site shown in blue), domain II (a large part of 30S, L1 stalk, and

the anticodon stem and anticodon loop of tRNA at the A-site and the P-site

shown in red), domain III (L5, L18, L21, L25, L27, L30, and 5S RNA of

50S, and nucleotides Gua15–Gua22 and Ura50–Ade64 of tRNA at the P-site

shown in yellow). The axis for domains I and II is depicted as an arrow in

blue with a tip in red, whereas the axis for domains I and III is depicted as an

arrow in blue with a tip in yellow. (B) The first mode in case-over: ratchet-

like movement of 50S and 30S. The dynamic domains are composed of

domain I (a large part of 50S including L7/L12 stalk and region of the body-

part of tRNA molecules at the P-site and the A-site shown in blue), domain II

(a large part of 30S, L1 stalk, and the anticodon stem and anticodon loop of

tRNA at the A-site and the P-site shown in red). The axis for domain I and

domain II is depicted as an arrow in blue with a tip in red.
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and closes the exit tunnel at the L4-L22 constriction. If this

mechanism can be applied to the double-hook of D50S, when

an antibiotic such as TAO comes near Ade2059, the side chain

of Arg92 of L22, interacting with Ade2059 during the elon-

gation of a polypeptide through the tunnel, as in case-under,

would flip from the open position to the closed position, as in

case-over. This conformational change would block the

tunnel and induce elongation arrest of the nascent polypep-

tide.

We infer that the basic mechanism of opening and closing

the L4-L22 constriction in D. radiodurans and T. thermo-
phile ribosome is similar. However, several differences in the

conformational change of the L4-L22 constriction in D50S

and T70S should be noted: 1), the native conformation

without the polypeptide in the tunnel is open in D50S, but

closed in T70S; and 2), the conformational change of the L4-

L22 constriction between the open and closed states was only

observed at a small region around Asp92 of L22 in T70S in

our study, whereas in D50S a large region including residues

105–107 and 113–115 (that correspond to residues 84–86

and 92–94 in T70S) was involved in the conformational

change of the L4-L22 constriction.

Influence of global motions of the 70S ribosome
on the conformation of the tunnel

PCA showed that the main modes of motion are global mo-

tions mainly involving the relative movement of the 50S and

30S subunits. These motions may be important for the

translocation of tRNA molecules between 50S and 30S, but

did not show any conformational changes within the tunnel

such as a peristaltic pump to facilitate the movement of the

polypeptide.

How does the polypeptide leave the ribosome through the

exit tunnel? It is unlikely that the newly added carboxyl

terminus at the PTC simply pushes the preceding part of the

polypeptide, because the flexible parts of the polypeptide

would fold and clog up the tunnel. We speculate that the

driving force for the nascent polypeptide to move along the

tunnel may come from an external force derived not from

the dynamics of the tunnel itself but from a static property of

the tunnel such as a gradual decrease of the electrostatic

potential inside the tunnel (58), or an entropic force that is

derived from the flexibility of the polypeptide. Mobile water

molecules surrounding the polypeptide may assist on its

smooth movement through the tunnel.

CONCLUSION

Modeling of a nascent polypeptide in the tunnel of the 70S

ribosome in the crystal form has shown that the extended

loops of L4 and L22 partially hinder the passage of the poly-

peptide. With 50S on top and 30S underneath, modeling

revealed two possible paths for the polypeptide: one over

Arg92 of L22 and one under Arg92. Our simulations of the

70S ribosome revealed the likely path of nascent polypeptide

in the exit tunnel to be under Arg92 of L22. Our results

suggest that the tunnel is closed by the Arg92-L4 interaction

before the reaction of elongation of the polypeptide and that

the tunnel leads the entering nascent polypeptide from the

PTC to the passage passing under Arg92, causing it to switch

to an open position. Subsequently, the L4-L22 constriction

would open the passage for the polypeptide to enable it to

move along the tunnel. In particular, the conformational

change of the side chain of Arg92 seems to play the role of a

gate, opening and closing the exit tunnel at the L4-L22

constriction.

PCA showed that within the timescale of several nano-

seconds, the main modes of motion are global motions

mainly involving the relative movement of the 50S and 30S

subunits. These motions may be important for the translo-

cation of tRNA molecules between 50S and 30S, but do not

show any conformational changes within the tunnel that fa-

cilitate the movement of the polypeptide such as would be the

case for a peristaltic pump.
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at 7.5 Å resolution. J. Mol. Biol. 298:35–59.

33. Tu, D., G. Blaha, P. B. Moore, and T. A. Steitz. 2005. Structures of
MLSbK antibiotics bound to the mutated large ribosomal subunits
provide a structural explanation of resistance. Cell. 121:257–270.

34. Schmeing, T. M., P. B. Moore, and T. A. Steitz. 2003. Structures of
deacylated tRNA mimics bound to the E site of the large ribosomal
subunit. RNA. 9:1345–1352.

35. Bashan, A., I. Agmon, R. Zarivach, F. Schluenzen, J. Harms, R.
Berisio, H. Bartels, F. Franceschi, T. Auerbach, H. A. Hansen, E.
Kossoy, M. Kessler, and A. Yonath. 2003. Structural basis of the
ribosomal machinery for peptide bond formation, translocation, and
nascent chain progression. Mol. Cell. 11:91–102.

36. Pearlman, D. A., D. A. Case, J. W. Caldwell, W. S. Ross, I. Cheatham,
T. E. S. DeBolt, D. Ferguson, G. Seibel, and P. A. Kollman. 1995.
AMBER, a package of computer programs for applying molecular
mechanics, normal mode analysis, molecular dynamics and free energy
calculations to simulate the structural and energetic properties of
molecules. Comput. Phys. Commun. 91:1–41.

37. Cheatham, T. E., P. Cieplak, and P. A. Kollman. 1999. A modified
version of the Cornell et al. force field with improved sugar pucker
phases and helical repeat. J. Biomol. Struct. Dyn. 16:845–862.

38. Auffinger, P., T. E. Cheatham III, and A. C. Vaiana. 2007. Spontane-
ous formation of KCl aggregates in biomolecular simulations: a force
field issue? J. Chem. Theory Comput. 3:1851–1859.

39. Isralewitz, B., M. Gao, and K. Schulten. 2001. Steered molecular
dynamics and mechanical functions. Curr. Opin. Struct. Biol. 11:224–230.

40. Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and
M. L. Klein. 1983. Comparison of simple potential functions for
simulating liquid water. J. Chem. Phys. 79:926–935.

41. Ishida, H., M. Higuchi, Y. Yonetani, T. Kano, Y. Joti, A. Kitao, and N.
Go. 2006. Analysis of the function of a large-scale supra-biomolecule
system by molecular dynamics simulation system, SCUBA (Simulation
Codes for hUge Biomolecular Assembly). Annual Report of the Earth
Simulator Center April 2005–March 2006. 237–240.

42. Hockney, R. W., and J. W. Eastwood. 1981. Computer Simulation
Using Particles. McGraw-Hill, New York.

43. Oshima, T., and K. Imahori. 1974. Description of Thermus thermo-
philus (Yoshida and Oshima) comb. nov., a nonsporulating thermo-
philic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol.
24:102–112.

44. Martyna, G. J., M. E. Tuckerman, D. J. Tobias, and M. L. Klein. 1996.
Explicit reversible integrators for extended systems dynamics. Mol.
Phys. 87:1117–1157.

45. Zhou, R., E. Harder, H. Xu, and B. J. Berne. 1996. Efficient multiple
time step method for use with Ewald and particle mesh Ewald for large
biomolecular systems. J. Chem. Phys. 87:1117–1157.

46. Kjeldgaard, N. O., and K. Gaussing. 1974. Regulation of biosynthesis
of ribosomes. In Ribosomes. M. Nomura, et al., editors. Cold Spring
Harbor Laboratory, Cold Spring Harbor, NY. 369–392.

47. Ichiye, T., and M. Karplus. 1991. Collective motions in proteins: a
covariance analysis of atomic fluctuations in molecular dynamics and
normal mode simulations. Proteins. 11:205–217.

48. Kitao, A., F. Hirata, and N. Go. 1991. The effects of solvent on the
conformation and the collective motions of protein: normal mode
analysis and molecular dynamics simulations of melittin in water and in
vacuum. Chem. Phys. 158:447–472.

49. Garcı́a, A. E. 1992. Large-amplitude nonlinear motions in proteins.
Phys. Rev. Lett. 68:2696–2699.

50. Amadei, A., A. B. Linssen, and H. J. Berendsen. 1993. Essential
dynamics of proteins. Proteins. 17:412–425.

5972 Ishida and Hayward

Biophysical Journal 95(12) 5962–5973



51. Hayward, S., and H. J. C. Berendsen. 1998. Systematic analysis of
domain motions in proteins from conformational change: new results
on citrate synthase and T4 lysozyme. Proteins. 30:144–154.

52. Hayward, S., and R. A. Lee. 2002. Improvements in the analysis of
domain motions in proteins from conformational change: DynDom
version 1.50. J. Mol. Graph. Model. 21:181–183.

53. Tenson, T., M. Lovmar, and M. Ehrenberg. 2003. The mechanism of
action of macrolides, lincosamides and streptogramin B reveals the
nascent peptide exit path in the ribosome. J. Mol. Biol. 330:1005–1014.

54. Berendsen, H. J. C., and S. Hayward. 2000. Collective protein
dynamics in relation to function. Curr. Opin. Struct. Biol. 10:165–169.

55. Frank, J., and R. K. Agrawal. 2000. A ratchet-like inter-subunit
reorganization of the ribosome during translocation. Nature. 406:
318–322.

56. Helgstrand, M., C. S. Mandava, F. A. A. Mulder, A. Liljas, S. Snayal,
and M. Akke. 2007. The ribosomal stalk binds to translation factors
IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12
C-terminal domain. J. Mol. Biol. 365:468–479.

57. Valle, M., A. Zavialov, J. Sengupta, U. Rawat, M. Ehrenberg, and J.
Frank. 2003. Locking and unlocking of ribosomal motions. Cell.
114:123–134.

58. Lu, J., W. R. Kobertz, and C. Deutsch. 2007. Mapping the electrostatic
potential within the ribosomal exit tunnel. J. Mol. Biol. 371:1378–
1391.

59. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M.
Greenblatt, E. C. Meng, and T. E. Ferrin. 2004. UCSF Chimera—
a visualization system for exploratory research and analysis. J. Comput.
Chem. 25:1605–1612.

MD Simulation of the 70S Ribosome 5973

Biophysical Journal 95(12) 5962–5973


