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One hundred clinical isolates from a prospective na-
tionwide study of scedosporiosis in Australia (2003–2005) 
and 46 additional isolates were genotyped by internal tran-
scribed spacer–restriction fragment length polymorphism 
(ITS-RFLP) analysis, ITS sequencing, and M13 PCR fi nger-
printing. ITS-RFLP and PCR fi ngerprinting identifi ed 3 dis-
tinct genetic groups. The fi rst group corresponded to Sce-
dosporium prolifi cans (n = 83), and the other 2 comprised 
isolates previously identifi ed as S. apiospermum: one of 
these corresponded to S. apiospermum (n = 33) and the 
other to the newly described species S. aurantiacum (n = 
30). Intraspecies variation was highest for S. apiospermum 
(58%), followed by S. prolifi cans (45%) and S. aurantiacum 
(28%) as determined by PCR fi ngerprinting. ITS sequence 
variation of 2.2% was observed among S. apiospermum iso-
lates. No correlation was found between genotype of strains 
and their geographic origin, body site from which they were 
cultured, or colonization versus invasive disease. Twelve S. 
prolifi cans isolates from 2 suspected case clusters were ex-
amined by amplifi ed fragment length polymorphism analy-
sis. No specifi c clusters were confi rmed.

Despite efforts to identify and eliminate infectious 
agents, they continue to emerge and reemerge (1). 

Among them, pathogenic fungi contribute substantially 
to illness and death, especially in immunocompromised 
patients (2,3). In contrast to the well-documented oppor-
tunists Candida albicans, Cryptococcus neoformans, and 

Aspergillus fumigatus, the epidemiology and evolution 
of human infections caused by uncommon but emerging 
fungi are incompletely understood. Such pathogens include 
Scedosporium apiospermum (teleomorph Pseudallescheria 
boydii) and S. prolifi cans, which are inherently resistant to 
many antifungal agents (3–5).
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S. apiospermum infections occur worldwide, ranging 
from localized mycetomas to deep-seated disease such as 
cerebral abscesses (6,7). This species also colonizes the re-
spiratory tract of ≈10% of patients with cystic fi brosis and 
chronic suppurative lung disease (8–10). On the basis of 
genetic data, a new species, S. aurantiacum, was proposed 
for a subset of isolates previously identifi ed as S. apiosper-
mum (11). S. prolifi cans infections are geographically more 
restricted than those caused by S. apiospermum, being 
most prevalent in Australia, Spain, and the United States 
(12–15). S. prolifi cans typically causes localized infections 
in immunocompetent hosts but rapidly fatal disseminated 
infections in the immunocompromised among whom it has 
been associated with nosocomial outbreaks (3,12–17). 

Since scedosporiosis, in particular that caused by S. 
prolifi cans, is often refractory to treatment (3,5), preven-
tive strategies are of paramount importance. However, the 
epidemiology and mode of transmission of infection are not 
well understood. Furthermore, the environmental reservoir 
of S. prolifi cans is unknown. Molecular typing techniques 
now provide the means to elucidate the epidemiology of 
Scedosporium infections and to investigate potential case 
clusters (16,18,19). Strains recovered from patients with 
cystic fi brosis have demonstrated a high degree of genetic 
variability (10,20), although a single genetic profi le pre-
dominated in 1 study (8). The degree of genetic variation 
within S. prolifi cans is more controversial. Two studies 
have reported low to no intraspecies genetic heterogene-
ity (16,21), while a third noted substantial genetic diversity 
(19). The results of these studies may be biased because 
they included only small numbers of isolates from specifi c 
patient populations. Genetic variability among S. aurantia-
cum has not yet been studied.

In this study, we used 4 molecular tools to examine 
genetic variation among a large number of Australian clini-
cal Scedosporium isolates: 1) internal transcribed spacer 
(ITS)–based restriction fragment length polymorphism 
(ITS-RFLP) analysis; 2) DNA sequence analysis of the ITS 
region (selected isolates); 3) PCR fi ngerprinting using the 
microsatellite specifi c core sequence of phage M13; and 4) 
amplifi ed fragment length polymorphism (AFLP) analysis 
(isolates from suspected case clusters). We also searched 
for the newly described species, S. aurantiacum and for 
genetic clustering of strains according to their geographic 
origin, body site from which they were cultured, and ability 
to cause invasive disease.

Materials and Methods

Scedosporium Isolates and Data Collection
A total of 146 Scedosporium isolates were studied 

(online Technical Appendix, available from www.cdc.
gov/EID/content/14/2/282-Techapp.pdf). Forty-six were 

from the culture collection at the Clinical Mycology Labo-
ratory, Centre for Infectious Diseases and Microbiology 
Laboratory Services, Westmead Hospital, Sydney, Austra-
lia. For these isolates, the following data were captured: 
demographic information, patient coexisting conditions 
and risk factors (summarized in the online Technical Ap-
pendix). The remaining 100 isolates were obtained through 
a national, prospective, laboratory-based surveillance for 
scedosporiosis in Australia (the Australian Scedosporium 
[AUSCEDO] Study) from January 2003 to December 
2005. The following data were collected: clinical status, 
risk factor (defi ned according to published risk factors for 
scedosporiosis [4,12–15]), major comorbidity (based on the 
International Classifi cation of Diseases, 10th revision, Aus-
tralian Modifi cation [ICD-10 AM] diagnostic classifi cation 
system [22]), isolated species, treatment and outcome. Sce-
dosporium strains obtained from a single colony from the 
primary isolation plate from all patients were forwarded 
to the Molecular Mycology Research Laboratory, West-
mead Hospital, for genotyping. Isolates were identifi ed as 
S. prolifi cans or S. apiospermum by standard phenotypic 
methods (23). Species were confi rmed as S. prolifi cans or 
S. apiospermum, and S. aurantiacum was identifi ed (11) by 
ITS-RFLP analysis.

Defi nitions
An episode of scedosporiosis was defi ned as the in-

cident isolation of Scedosporium spp. from any body site. 
Two or more episodes, fulfi lling the case defi nition and 
occurring in different patients that were epidemiologically 
linked were defi ned as a potential case cluster. Invasive dis-
ease was defi ned according to the European Organization 
for Treatment of Cancer/Mycoses Study Group criteria for 
“defi nite” or “probable” infection (24). All other patients 
not fulfi lling these criteria, including those with “possible” 
infection were considered colonized. Coincident hospital 
renovations or construction was considered to be a potential 
risk factor if major work was undertaken within 3 months 
before the isolation of Scedosporium spp. from a patient.

Description of 2 Potential Case Clusters
The fi rst potential case cluster involved 8 patients lo-

cated in the same hematology/hemopoietic stem cell trans-
plant (HSCT) unit at the Alfred Hospital, a large university 
hospital in Melbourne (September 2000–October 2001; 
[15]). The second consisted of 3 patients located in the 
same hematology/HSCT ward at Westmead Hospital a ma-
jor university hospital in Sydney (September 2003–January 
2004; unpub. data). Details of the patients involved in these 
suspected case clusters are summarized in the online Tech-
nical Appendix). On each occasion, patient isolates were 
submitted for genetic analyses to inform infection control 
responses (see Results).
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Genomic DNA Extraction and ITS-RFLP Analysis
Genomic DNA was isolated as described previously 

(18). The ITS1, 5.8S, and ITS2 regions of the rDNA gene 
cluster were amplifi ed with the primers SR6R and LR1 (Ta-
ble 1) as described previously (25). Amplicons were double 
digested with the restriction endonucleases Sau96I and HhaI 
(New England BioLabs, Ipswich, MA, USA) in accordance 
with the manufacturer’s recommendations. Digested prod-
ucts were separated by electrophoresis in 3% agarose gels at 
100 V for 3–4 h. Banding patterns were analyzed visually.

ITS Sequencing
Eleven isolates, representative of each of 3 ITS-RFLP 

patterns obtained, were selected for ITS sequencing: ITS-
RFLP profi le A (S. prolifi cans, WM 06.378, WM 06.440, 
and WM 06.393), ITS-RFLP profi le B (S. apiospermum, 
WM 06.389, WM 06.471, and WM 06.497), and ITS-RFLP 
profi le C (S. aurantiacum, WM 06.388, WM 06.482, WM 
06.495, WM 06.496, and WM 06.498). The ITS region was 
amplifi ed as described above and commercially sequenced 
in both directions by using SR6R or LR1 (Table 1) as for-
ward and reverse primers.

PCR Fingerprinting
The minisatellite-specifi c core sequence of the wild-

type phage M13 was used as a single primer for PCR fi nger-
printing (Table 1). Amplifi cation reactions were performed 
as previously described (18). Blank control tubes containing 
all reagents except template DNA were included for each 
run; each sample was analyzed at least twice. PCR products 
were separated by electrophoresis on 1.4% agarose gels at 
60 V for 14 cm. Strains were defi ned to be identical if their 
PCR fi ngerprinting profi les had a similarity of >97% ( = 1 
band difference). Reproducibility of the PCR fi ngerprinting 
technique was accessed by re-amplifying 1 strain of each of 
the 3 Scedosporium spp. with all PCR amplifi cations car-
ried out and re-running those on each gel.

AFLP Analysis
AFLP analysis was performed as described previously 

by using either EcoRI-GT 6-FAM-labeled and MseI-GT 
or EcoRI-TC 6-FAM-labeled and MseI-CA as selective 
primer pairs (QIAGEN, Valencia, CA, USA; Table 1) (26). 
All samples were analyzed by using the ABI Prism 3730 
system (Applied Biosystems, Foster City, CA, USA). Data 
collation, fragment sizing, and pattern analyses were per-
formed with GeneMapper software version 3.5 (Applied 
Biosystems). Only electrophoregram peaks above 1,000 
fl uorescent units were scored for the presence or absence 
of bands of the same size (range 50–500 bp) relative to the 
GeneScan 500 LIZ DNA size standard (Applied Biosys-
tems). Only bands detected in duplicate AFLP experiments 
were included in the analysis.

Data Analysis

Clinical Data
Statistical analysis was performed by using SPSS ver-

sion 10.0.07 (SPSS, Chicago, IL, USA) and EpiInfo ver-
sion 6.0 (Centers for Disease Control and Prevention, At-
lanta, GA, USA). Proportions were compared by using the 
χ2 or Fisher exact test. A p value <0.05 was statistically 
signifi cant.

ITS Sequences
ITS sequences obtained from 11 isolates (see above) 

were aligned with the ITS sequences of the following refer-
ence strains obtained from GenBank: S. apiospermum CBS 
101.22 (accession no. AJ888435), S. aurantiacum FMR 
8630 (accession no. AJ888440), S. aurantiacum IHEM 
15458 (accession no. AJ888441) and S. prolifi cans CBS 
114.90 (accession no. AY882369) as well as 2 outgroup 
sequences: Pseudallescheria africana CBS 311.72 (acces-
sion no. AJ888425), and Petriella setifera CBS 164.74 (ac-
cession no. AY882352). Phylogenetic analyses were per-
formed by using PAUP* version 4.06.10 (27).

PCR Fingerprinting Patterns and AFLP Fragments
PCR fi ngerprinting patterns were analyzed by using 

the 1D gel analysis module (BioGalaxy  [BioAware, Han-
nut, Belgium]) in BioloMICS version 7.5.30 (BioAware). 
Images were normalized for lane to-lane differences in 
mobility by the alignment of patterns obtained on multi-
ple loadings of the 1kb DNA size marker (GIBCO-BRL, 
Gaithersburg, MD, USA). The unweighted-pair group 
method by using arithmetic averages and the procedures 
of Nei and Li (28), both implemented in BioloMICS, were 
used to generate dendograms based on the coeffi cient of 
similarity (29) between the isolates. In addition, principal 
coordinate analysis (PcoA; BioloMICS) was conducted to 
give an overall representation of the observed strain varia-
tion. AFLP fragments were analyzed with BioloMICS.

Results
A total of 146 Scedosporium isolates from 120 epi-

sodes (119 patients) were studied (online Technical Ap-
pendix). Demographic data were available for 108 (90%) 
episodes and coexisting conditions and risk factor data for 
115 (95.8%). Most episodes were reported from New South 
Wales (64.2%), followed by Victoria (19.2%) and Western 
Australia (9.2%). The male: female ratio was 1.3: 1. The 
major patient coexisting conditions and known risk factors 
for scedosporiosis are summarized in the online Technical 
Appendix. Thirty-nine patients (32.7%) had no underlying 
medical condition. Coincident building construction was 
noted in 27 cases (22.5%). Scedosporium isolates were 
associated with invasive disease in 46 (38.3%) instances; 
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the remaining 74 (61.7%) were isolated from patients who 
were colonized (Table 2).

Molecular Typing of Scedosporium Isolates
All 146 isolates were examined by ITS-RFLP analy-

sis and PCR fi ngerprinting. ITS sequencing was performed 
on 11 strains as described above. AFLP analysis was per-
formed only for selected S. prolifi cans isolates, including 
the isolates of the suspected case clusters and isolates rep-
resentative of the S. prolifi cans branches identifi ed by PCR 
fi ngerprinting (online Appendix Figure 1, available from 
www.cdc.gov/EID/content/14/2/282-appG1.htm). 

ITS-RFLP Analysis
RFLP analysis found 1 RFLP profi le specifi c for S. 

prolifi cans isolates (ITS-RFLP profi le A) and 2 profi les 
(ITS-RFLP profi les B and C) for isolates previously phe-
notypically identifi ed as S. apiospermum (Figure 1, panel 
A). ITS-RFLP profi le B corresponded to S. apiospermum 
and ITS-RFLP profi le C to the newly described species, S. 
aurantiacum.

ITS Sequencing
Sequencing of the ITS 1, 5.8S, and ITS2 regions of the 

11 strains, representative of each of the 3 ITS-RFLP pro-
fi les found the following results: BLAST searches against 
the corresponding GenBank reference sequences identi-
fi ed strains: WM 06.389 (accession no. EF639870), WM 
06.497 (accession no. EF639872), and WM 06.471 (acces-
sion no. EF639871) (ITS-RFLP profi le B) as S. apiosper-

mum (96%–99% sequence similarity to strain CBS 101.22). 
Strains WM 06.388 (accession no. EF639865), WM 06.482 
(accession no. EF639866), WM 06.495 (accession no. 
EF639867), WM 06.496 (accession no. EF639868), and 
WM 06.498 (accession no. EF639869) (ITS-RFLP pro-
fi le C) were identifi ed as S. aurantiacum (100% sequence 
identity with strains FMR 8630 and IHEM 15458). Isolates 
WM 06.393 (accession no. EF639863), WM 06.440 (ac-
cession no. EF639864) and WM 06.378 (accession no. 
EF639862) (ITS-RFLP profi le A) were identifi ed as S. pro-
lifi cans (100% identity with strain CBS 114.90).

Phylogenetic analysis of the sequences demonstrated 
3 distinct clades, the fi rst corresponding to S. prolifi cans 
as the basal clade. The other 2 corresponded to the 2 more 
closely related but clearly distinct clades, S. apiosper-
mum, and S. aurantiacum (Figure 2). S. apiospermum 
showed intraspecies sequence variation of 2.2% compared 
to S. aurantiacum and S. prolifi cans, which displayed no 
variation.

Final Identifi cation of Scedosporium spp. 
and Clinical Associations

S. prolifi cans accounted for 75 patient episodes (83 of 
146 isolates; 56.9%), S. apiospermum for 25 (33 isolates; 
22.6%), and S. aurantiacum for 23 (30 isolates; 20.6%) 
(online Technical Appendix). More than 1 Scedosporium 
spp. was isolated from the same patient in 3 instances: Pa-
tient 83: S. apiospermum (WM 06.471, WM 06.472, WM 
06.474, and WM 06.475) and S. prolifi cans (WM 06.473); 
patient 91: S. apiospermum (WM 06.486) and S. prolifi -
cans (WM 06.485); and patient 102: S. apiospermum (WM 
06.500) and S. prolifi cans (WM 06.501) (online Techni-
cal Appendix). In 6 episodes, the same species was recov-
ered from more than 1 body site in the same patient at the 
same time (patients 57 [blood, bronchial washing, skin], 73 
[blood, sputum], 80 [sputum, bone, wound fl uid], 83 [bron-
chial washing, bronchoalveolar lavage], 118 [pleural fl uid, 
bone, wound fl uid, chest tissue], and 119 [blood, skin]; on-
line Technical Appendix).

Approximately half (40%–52.2%) of S. apiospermum 
and S. aurantiacum isolates were from the respiratory tract/
lung compared to 20% for S. prolifi cans. Conversely, all 
isolates from blood, 57.2% isolates from skin/soft tissue 
and 66.7% from eye were S. prolifi cans (Table 2). Inva-
sive disease was more likely to be caused by S. prolifi cans 
than non-prolifi cans Scedosporium spp. (83% versus 17% 
of isolations; odds ratio (OR) 5.3, 95% confi dence interval 
(CI) 2.0, 14.2, p = 0.002) (Table 2). This association was 
signifi cant when compared with S. apiospermum as well as 
with S. aurantiacum (p<0.05; data not shown). The relative 
proportions of invasive disease among S. apiospermum and 
S. aurantiacum were similar (Table 2). Coincident build-
ing construction (27 cases, 22.5%) was more likely to be 
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Table 1. Primer and adaptor oligonucleotide sequences used in 
the study 
Primer or adaptor 
oligonucelotide Sequence (5′→3′)
rDNA primers 
 SR6R AAGTARAAGTCGTAACAAGG 
 LR1 GGTTGGTTTCTTTTCCT 
M13 fingerprinting primer 

  Phage M13 GAGGGTGGCGGTTCT 
EcoRI adapters 
 EA1 CTCGTAGACTGCGTACC 
 EA2 CATCTGACGCATGGTTAA 
Msel adapters 
 MA1 GACGATGAGTCCTGAG 
 MA2 TACTCAGGACTCAT 
Preselective primers 
 EcoRI-T GACTGCGTACCAATTCT 
 EcoRI-G GACTGCGTACCAATTCG 
 Msel-C GATGAGTCCTGAGTAAC 
 Msel-G GATGAGTCCTGAGTAAG 
Selective primers 
 EcoRI-TG 6 FAM-GACTGCGTACCAATTCTG 
 EcoRI-GT 6 FAM-GACTGCGTACCAATTCGT 
 Msel-CA GATGAGTCCTGAGTAACA 
 Msel-GT GATGAGTCCTGAGTAAGT 
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associated with isolation of S. prolifi cans compared with 
non-prolifi cans Scedosporium spp. (OR 11.5, 95% CI 2.4, 
74.5; p<0.001; data not shown).

Molecular Epidemiology

Strain Typing
PCR fi ngerprinting delineated 3 major clusters concor-

dant with S. apiospermum, S. aurantiacum, and S. prolifi -
cans (online Appendix Figure 1; Figure 1, panel B; Figure 
3). Clusters corresponding to S. aurantiacum and S. prolifi -
cans were substantially more densely grouped than the S. 
apiospermum cluster (Figure 3).

PCR fi ngerprinting profi les showed polymorphisms 
within each of the 3 species, allowing for a clear differen-
tiation, by using a “cut-off point” of  >97% similarity. Mul-
tiple isolates from the same patient obtained from different 
anatomic sites (online Technical Appendix) had identical 
or >97% similarity between their PCR fi ngerprints, except 
for 1 patient (patient 118). In 8 instances, PCR fi ngerprint-
ing showed that patients were infected with 2 different 
strains: (patients 1, 10, 27, 57, 83 99, 118 [online Appen-
dix Figure 1, online Technical Appendix]). For all species, 
genetic profi les were independent of geographic origin, 
body site of isolation or whether the patient was infected 
or colonized (online Appendix Figure 1). Profi les were also 
independent of patient comorbidityity and risk factors for 
scedosporiosis (data not shown). Intraspecies PCR fi nger-
printing variation was highest for S. apiospermum (58%) 
followed by S. prolifi cans (45%) and S. aurantiacum (28%) 
(online Appendix Figure 1).

Examination of Isolates from 
Suspected Case Clusters
Twelve isolates from 2 presumptive case clusters of 

S. prolifi cans infection (Alfred Hospital, Melbourne pa-
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Figure 1. Internal transcribed spacer–restriction fragment length 
polymorphism (ITS-RFLP) patterns obtained by double digestion 
with the enzymes Sau96I and HhaI (A) and of the PCR fi ngerprinting 
profi les obtained with the microsatellite specifi c primer M13 (B) for 
Scedosporium prolifi cans: lane 1, WM 06.457; lane 2, WM 06.458; 
lane 3, WM 06.503; lane 4, WM 06.502; lane 5, WM 06.399; lane 
6, WM 06.434. S. aurantiacum: lane 7, WM 06.495; lane 8, WM 
06.496; lane 9, WM 06.386; lane 10, WM 06.385; lane 11, WM 
06.482; lane 12, WM 06.390. S. apiospermum: lane 13, WM 
06.475; lane 14, WM 06.474; lane 15, WM 06.472; lane 16, WM 
06.471; lane 17, WM 06.424; lane 18, WM 06.443; lane M, 1-kb 
marker (GIBCO-BRL, Gaithersburg, MD, USA).

Figure 2. Rooted phylogram (outgroup Pseudallescheria africana 
CBS 311.72 and Petriella setifera CBS 164.74), showing the 
relationships among 11 selected strains representing each obtained 
internal transcribed spacer (ITS)–restriction fragment length 
polymorphism pattern and 4 reference strain sequences obtained 
from GenBank by using PAUP* version 4.06.10 (29). 
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tients: isolates WM 06.392, WM 06.393, WM 06.395, 
WM 06.399, WM 06.400, WM 06.401, WM 06.402, and 
WM 06.405; Westmead Hospital, Sydney patients: isolates 
WM 06.432, WM 06.434, WM06.457, and WM 06.458; 
online Technical Appendix) as well as 23 additional iso-
lates, representative of the S. prolifi cans branches iden-
tifi ed by PCR fi ngerprinting (online Appendix Figure 1) 
were further investigated by AFLP typing. S. prolifi cans 
was not isolated from the environment in either setting 
despite extensive sampling. The AFLP bands were found 
to be 50–493 bp by using the primers EcoRI-GT and 
MseI-GT (data not shown), and from 52–468 bp by using 
the primers EcoRI-TG and MseI-CA (online Appendix 
Figure 2, available from www.cdc.gov/EID/content/14/2/
282-appG2.htm). These 35 isolates exhibited 32 different 
AFLP profi les, with isolates from the same patient (pa-
tients 1, 73, and 119) showing identical profi les (online 
Appendix Figure 2), confi rming the PCR fi ngerprinting 
results (online Appendix Figure 1). PcoA of the combined 
AFLP and PCR fi ngerprinting data demonstrated no clus-
tering of these isolates (Figure 4), which ruled out the 
possibility of nosocomial transmission.

Discussion
We examined genetic variation among a large num-

ber of population-derived Scedosporium isolates across the 
Australian continent. In line with previously reported ge-
netic variability in the S. apiospermum/P. boydii species 
complex (30–32), we observed 2 distinct ITS-RFLP pat-
terns among S. apiospermum isolates, showing the pres-
ence of the newly described species S. aurantiacum (11). 
Notably, we have identifi ed by ITS sequencing that S. au-
rantiacum comprised 45% of the current collection of Aus-
tralian “S. apiospermum” isolates and documents genetic 
variability within S. aurantiacum.

Epidemiologic investigation of Scedosporium infec-
tion requires accurate identifi cation and typing. S. apio-
spermum, S. aurantiacum, and S. prolifi cans were clearly 
distinguished from each other by PCR fi ngerprinting and 
ITS-RFLP analysis. This is consistent with previous rDNA 
sequence-based studies (30,33,34). The observation of 2 
distinct genetic groups, corresponding to S. aurantiacum 
and S. apiospermum, supports the proposal that S. auran-
tiacum be designated a separate species (11). This proposal 
is also supported by the 5%–10% ITS sequence variation 
found between S. aurantiacum and S. apiospermum com-
pared to an absence of intraspecies variation in S. aurantia-
cum and S. prolifi cans and a 2.2% variation in S. apiosper-
mum (30,32; current study).

Using PCR fi ngerprinting, intraspecies variation was 
greatest (58%) among S. apiospermum isolates (Figure 
3). This diversity is generally consistent with the high 
degree of polymorphism (15–20 genotypes) previously 
found (10,20,32). In contrast, genetic variation was lowest 
(28%) among the S. aurantiacum isolates (online Appen-
dix Figure 1; Figure 3). Nevertheless, PCR fi ngerprinting 
polymorphisms clearly differentiated all 30 strains (online 
Appendix Figure 1). Further genotyping studies of a greater 
number of and more geographically diverse S. aurantiacum 
isolates are warranted.

The intraspecies PCR fi ngerprint variation in S. pro-
lifi cans (45%) was greater than that in S. aurantiacum but 
less than that in S. apiospermum. Given that S. aurantia-
cum is phylogenetically more closely related to S. apio-
spermum than to S. prolifi cans (11,33; current study), this 
result was unexpected. It may be due to different evolu-
tionary pressures acting on the 3 different species or the 
relatively small numbers of S. aurantiacum isolates studied 
to date. The moderate genetic diversity among S. prolifi -
cans confi rms previous fi ndings (19). Despite the observed 
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Table 2. Selected characteristics for 120 isolations (episodes) of Scedosporium spp. 

Characteristic*
No.Scedosporium prolificans; 

n = 75 (%)† 
No. S. apiospermum; 

 n = 25 (%)† 
No. S. aurantiacum;

n = 23 (%)† 
Male sex 40 (53.3) 12 (48) 8 (34.8) 
Risk factor 
 Surgery d30 d 3 (4) 1 (4) –
 Trauma 5 (6.7) – 1 (4.4) 
Clinical status‡ 
 Invasive disease 39 (52) 4 (16) 4 (17.4) 
 Colonization 36 (48) 21 (84) 19 (82.6) 
Body site of isolation 
 Blood 18 (24) – –
 Eye 2 (2.7) – 1 (4.4) 
 Skin/soft tissue 4 (5.3) 1 (4) 2 (8.7) 

 Lung/respiratory tract 15 (20) 10 (40) 12 (52.2) 
 Ear 4 (5.3) 10 5 (21.2) 
*Some patients had Scedosporium isolated from more than 1 body site. 
†Refers to no. episodes in which each species was isolated. The total no. of isolates was 146 comprising 83 S. prolificans, 33 S. apiospermum, and 30 
S. aurantiacum.
‡More than 1 Scedosporium spp. was isolated from 4 patients. 
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polymorphisms, PcoA of PCR fi ngerprint profi les showed 
dense clustering for S. prolifi cans (Figure 3), which is con-
sistent with the low to absent intraspecies variability in S. 
prolifi cans found by others (20,21,33). These apparently 
contradictory fi ndings emphasize the importance of choos-
ing the optimum molecular typing tool with the most ap-
propriate discriminatory power for the organism or species 
being studied.

The high degree of intraspecies variation detected by 
PCR fi ngerprinting and AFLP analysis supports the use of 
these methods to establish genetic relatedness between iso-
lates recovered from different patients or multiple isolates 
from the same patient. In comparison, the variation detect-
ed by ITS-RFLP analysis and ITS sequencing correspond-
ed to interspecies variation, which makes those techniques 
ideal for identifi cation of any given isolate to the species 
level. Individual patients are most likely infected or colo-
nized with genetically distinct strains (19–21; this study). 
Identical PCR fi ngerprint or AFLP profi les were noted in 
multiple isolates recovered simultaneously from differ-
ent anatomic sites in the same patient (21; current study). 
However, 8 patients were infected or colonized by at least 
2 strains as refl ected by their different genetic profi les (on-
line Technical Appendix). Possible explanations include 
concomitant infection by multiple strains from which only 
a restricted number were recovered, or colonization by 1 
strain followed by infection or colonization with a second 
strain of a different genotype. Longitudinal genotyping 
studies are required to determine the likelihood that per-
sistence of >1 genotypes later leads to clinically important 

infection or whether the disease is more likely to be caused 
by an unrelated genotype. In this context, the development 
of a multilocus sequence typing scheme for Scedosporium, 
as has been developed for Candida spp. (35), would be of 
great advantage to overcome interlaboratory reproducibil-
ity problems, which are known to be associated with PCR 
fi ngerprinting or AFLP data. However, developing such a 
scheme remains cumbersome due to the current lack of ge-
nomic data of Scedosporium spp. 

For all 3 Scedosporium spp., there was no clustering 
of strains according to their geographic or body site of ori-
gin or by their ability to cause invasive disease, which is 
in agreement with previous fi ndings for S. apiospermum 
(20,30) and S. prolifi cans (16,17,21). Of note, no specifi c 
genotypes were associated with underlying medical condi-
tions or risk factors. Compared with S. apiospermum and S. 
aurantiacum S. prolifi cans was more frequently associated 
with  coincident hospital renovation, and invasive disease, 
had a greater predilection to cause disseminated infection 
and was the predominant species isolated from blood and 
other sterile sites (12–16,36; current study). Our prelimi-
nary observations indicate that the epidemiology and clini-
cal relevance of recovering S. aurantiacum may be similar 
to that of S. apiospermum. S. aurantiacum has been report-
ed to colonize the respiratory tract of at-risk patients (8).
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Figure 3. Three-dimensional presentation of the principal coordinate 
analysis of the PCR fi ngerprinting data showing 3 distinct clusters 
which correspond to Scedosporium prolifi cans (black dots), S. 
aurantiacum (dark gray dots), and S. apiospermum (light gray 
dots), with S. apiospermum showing the highest genetic variation. 

Figure 4. Three-dimensional presentation of the principal 
coordinate analysis of the combined M13 PCR fi ngerprinting, 
amplifi ed fragment length polymorphism (AFLP) primers EcoRI-GT 
and MseI-GT, and AFLP primers EcoRI-TG and MseI-CA data from 
the suspected Sydney and Melbourne case cluster isolates and 23 
other Australian isolates. None of the investigated isolates showed 
any epidemiologic connection except 3 isolates obtained from the 
same patient (nos. 1, 73, 119). Blue dots, Melbourne outbreak 
isolates; pink dot, Melbourne-related isolate; red dots, Sydney 
outbreak isolates; green dots, Sydney-related isolates; yellow dots, 
unrelated Australian isolates. 
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In addition to PCR fi ngerprinting, we applied AFLP 
analysis to investigate the possibility of 2 case clusters 
caused by S. prolifi cans. AFLP analysis was chosen as an 
independent technique using 2 combinations of selective 
primers (Table 1), which have been previously shown to 
have good discriminatory power for fungal strain differen-
tiation (26). Both techniques, previously used to identify 
outbreak strain clusters in the recent cryptococcosis out-
break on Vancouver Island (37), generated in the current 
situation distinct patterns from all S. prolifi cans isolates 
except serial isolates obtained from the same patient (on-
line Appendix Figures 1, 2). These fi ndings exclude the oc-
currence of nosocomial outbreaks or any close relationship 
with the nonoutbreak isolates, a result similar to those ob-
tained previously (38). Overall nosocomial acquisition of 
infection has been demonstrated in only 2 instances (16,17). 
Scedosporium spp. have rarely been isolated from hospital 
air or from indoor or outdoor surface samples (13,39,40, 
current study), which raises questions about the mode of 
acquisition by patients and the mechanisms of the selection 
of this specifi c fungus as an infectious agent from among 
the high biodiversity of environmental molds.

In conclusion, ITS-RFLP analysis is a powerful tool 
for distinguishing between isolates of the new species S. 
aurantiacum and S. apiospermum. PCR fi ngerprinting and 
AFLP analysis are useful techniques for determining ge-
netic relatedness between Scedosporium isolates and for 
investigating potential case clusters.  
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