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Synopsis
The contraction of hepatic stellate cells has been proposed to mediate fibrosis by regulating sinusoidal
blood flow and extracellular matrix remodeling. Abundant data from diverse, yet complementary,
experimental methods support a robust model for the regulation of contractile force generation by
stellate cells. In this model, soluble factors associated with liver injury, including endothelin-1 and
nitric oxide, are transduced primarily through rho signaling pathways that promote the myosin II-
powered generation of contractile force by stellate cells. The enhanced knowledge of the role and
differential regulation of stellate cell contraction may facilitate the discovery of new and targeted
strategies for the prevention and treatment of hepatic fibrosis.
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Introduction
Contractile force generation by hepatic stellate cells is recognized to play a key role in the
liver’s response to injury. This cellular behavior is consequently believed to contribute to
normal healing as well as the development of hepatic fibrosis. Therefore, improved
understanding of stellate cell contraction and its regulation would be predicted to facilitate
development of clinical strategies for the treatment of liver disease. Despite more than 15 years
of study, however, effective therapies based on targeting the generation of contractile force by
stellate cells have remained elusive. This chapter will examine the current state of knowledge
regarding stellate cell contraction, its role, its regulation, and its potential as a therapeutic target,
by addressing three fundamental questions:

1. What do we believe we know?
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2. What do we really know?

3. What would we like to know?

What do we believe we know about hepatic stellate cell contraction?
A number of observations in the human liver have led to the concept that stellate cells are
contractile and that generation of contractile force by these cells mediates hepatic
pathophysiology. Stellate cells express α-smooth muscle actin, a marker of non-muscle cell
contractility, in patients with various forms of chronic liver injury [1-6]. Moreover, stellate
cells of normal human livers do not express α-smooth muscle actin, suggesting that contractility
may be induced by liver injury. Human stellate cells express various receptors for well-known
contractile agonists. Studies have demonstrated stellate cell expression of receptors for
endothelin-1, arginine-vasopressin, and angiotensin II, all of which induce generation of
contractile force by contractile cell types [7-10]. The presence of these receptors suggests that
stellate cells are capable of transducing chemical signals into changes in mechanical force.
These observations indicate that stellate cells contain the cellular machinery necessary for
generation of contractile force.

The anatomic location of stellate cells in the normal human liver also suggests an important
role for contraction by these cells in the regulation of sinusoidal blood flow.
Immunohistochemical studies of normal human liver show that stellate cells reside in the
perisinusoidal space and extend elongate protrusions that run along and encircle one or more
sinusoids [3,4,11]. This anatomy is similar to that of tissue pericytes, such as the mesangial
cells of the kidney, which modulate vascular tone by contracting around their capillaries
[12-14]. In the same way, hepatic stellate cells have been theorized to regulate sinusoidal
resistance, and consequently blood flow, by contracting around sinusoids.

Studies of the injured human liver have demonstrated that stellate cells appear prominently in
fibrotic bands of collagen (scar tissue) remote from their normal location [1-5,11,15]. This
finding raised the possibility that stellate cells may function similar to cutaneous
myofibroblasts that participate in wound healing of the skin by contracting scar tissue as healing
and regeneration progresses [16-18]. Hence, it has been proposed that contractile force
generation by stellate cells may permit remodeling of extracellular matrix during the liver’s
injury response [19].

In summary, conventional wisdom holds that hepatic stellate cells are contractile, and their
capacity to generate contractile force mediates the liver’s injury response through modulation
of sinusoidal blood flow and scar contracture (Fig. 1). This current understanding of the role
of stellate cell contraction is, however, largely based on circumstantial evidence and common
logic. In the following section we will dissect the scientific methods that have been employed
to study stellate cell contraction, as well as discuss the model (Fig. 2) for the regulation of
stellate cell contraction that is best supported by the evidence.

What do we really know about hepatic stellate cell contraction?
Current understanding of hepatic stellate cell contraction has been advanced largely through
use of in vitro experimental methods. Several methods have been employed to study stellate
cell contraction, each with its own inherent limitations in spatial and temporal resolution,
accuracy and precision, and fidelity to what occurs in vivo. Hence, to properly appreciate what
we really know about stellate cell contraction it is worthwhile to appraise the strengths and
limitations of the main assays used to study this important stellate cell behavior.

An early technique for the study of stellate cell contraction examined the decrease in two-
dimensional cell surface area of cultured cells as a surrogate marker for generation of contractile
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force [20-23]. In this assay stellate cells in culture were grown to sub-confluence on a glass
cover slip and visualized with transmission light video-microscopy. Reductions in stellate cell
surface area could be measured in response to exposure to various agonists and inhibitors.
Although this assay permitted quantitative measurements with subcellular spatial resolution
and temporal resolution in seconds, changes in stellate cell surface area were not a direct gauge
of contractile force. Indeed, shrinkage of stellate cell surface area could result from a number
of non-contractile events, including changes in cellular adhesion or volume, three-dimensional
shape changes, or even focusing artifacts, making it difficult to discern how accurate a measure
of the contractile force generated by stellate cells this method provided.

Hepatic stellate cell contraction has also been evaluated using a model in which stellate cells
in culture are grown in a monolayer on silicone rubber-coated coverslips [24-27]. In this assay
the silicone rubber substrate, upon which stellate cells were grown, was visualized with
transmission light microscopy and wrinkling of the substrate was examined. This method
permitted semi-quantitative determination of substrate wrinkling, as a surrogate measure of
the tension developed by the population of stellate cells across the silicone rubber, within
seconds of exposure to various agonists and inhibitors. Increases in substrate wrinkling likely
reflect gross changes in stellate cell contractile force generation, but the tightness of that
correlation was unknown. Although determination of substrate wrinkling was subjective and
imprecise, this assay did permit examination of the formation and loss of wrinkles, putative
correlates of contractile force generation and relaxation, respectively.

Another method for examining stellate cell contraction employed a model in which stellate
cells in culture were grown on top of or within gel lattices composed of type-1 collagen
[27-35]. In this assay shrinkage of the collagen gels by the population of stellate cells was
employed as a surrogate measure of cellular contraction. After release of the gel from a
supporting culture dish and exposure to different agonists and inhibitors changes in gel
diameter could be measured with a ruler after at least an over night incubation. This technique
did not permit measurement of relaxation nor acute changes in contractile force development.
In addition, reductions in gel area were not reversible. It is uncertain how closely changes in
lattice area correlate with alterations in contractile force generation, and this model may not
differentiate between active contraction and passive changes in stellate cell tension (e.g.,
passive tension across the lattice generated by cellular spreading or increases in stellate cell
number).

High resolution intravital videomicroscopy of sinusoids within the isolated rat liver has been
used as a model for the study of stellate cell contraction [36-39]. In this assay changes in
sinusoidal diameter were visualized adjacent to stellate cell bodies demarcated by retinoid
autofluorescence as a surrogate measure of contractile force generation by stellate cells
encircling these vessels. These sinusoidal changes could be observed in real time within
minutes of exposure to different agonists and inhibitors. By finely measuring and controlling
input and output pressures across the major hepatic vessels and estimating sinusoidal blood
flow, estimates of increases and decreases in sinusoidal resistance could be derived. This
technique, however, did not permit direct measurement of contractile force generation by
stellate cells, nor did it rule out the possibility that other cell types (e.g., co-localized endothelial
cells or upstream or downstream vascular smooth muscle) or noncontractile events (e.g.,
cellular swelling) might contribute to the observed changes in sinusoidal diameter.

The contraction of hepatic stellate cells in culture has been directly and quantitatively measured
[40-42]. In this assay stellate cells were grown within a three-dimensional type-1 collagen gel
lattice, which was placed in an organ bath and attached to a sensitive force transducer. This
model permitted real time measurement in actual force units of the contractile tension generated
by stellate cells within the gel in response to various agonists and inhibitors. The method
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exhibited temporal resolution in the range of seconds, and it permitted precise quantification
of both contraction and relaxation within the same sample. Although this technique allowed
direct measurement of the contractile forces exerted by stellate cells populating a collagen gel,
determination of the contractile force generated by a single stellate cell could only be estimated.

When evaluating the methods employed to study hepatic stellate cell contraction, a critical
consideration is how closely the assay is likely to reflect what actually occurs within the human
liver, in other words the fidelity of the experimental model. Despite the diverse experimental
models and substantial efforts to better understand stellate cell contraction important factors
limit what we really know about stellate cell contraction in vivo. Except for intravital
microscopy, all of the methods used to study stellate cell contraction employed cells in culture.
This raises the concern that isolated stellate cells do not function in an identical fashion to
stellate cells in the liver. This is particularly true in studies that employed secondary cultures
of stellate cells [7,33,41,43]. Thus, it is generally recognized that the results of experiments
performed using stellate cells in primary culture may have greater clinical relevance. Another
point is that experiments performed on stellate cells in monolayer do not replicate the normal
three-dimensional environment in which stellate cells reside in vivo. Therefore, studies of
stellate cells grown within collagen gels more likely replicate the authentic milieu within the
liver. However, intravital microscopy of hepatic sinusoids in intact liver, both in vivo and ex
vivo [36-39], are most likely to be relevant to human pathophysiology. Despite the shared and
unique limitations of each of the different methods used to study stellate cell contraction,
together these assays complement each other and have contributed to a robust understanding
of stellate cell contraction.

A number of chemicals have been demonstrated to stimulate stellate cell contraction, including
endothelin-1, arginine-vasopressin, angiotensin-II, thrombin, eicosanoids, and α1-adrenergic
agonists [9,10,20,24,35,40-42]. The best-studied and most prominent agonist for stellate cell
contraction is endothelin-1. Circulating levels of this peptide are elevated in patients with liver
disease [7,44,45], and increased in animal models of liver injury [46,47]. Endothelin-1 can
induce markers of stellate cell contraction in every one of the assays discussed earlier [20,25,
29,36,40]. In particular, the magnitude and speed of the contractile force generated by stellate
cells in response to endothelin-1 has been predicted to be sufficient to regulate sinusoidal
resistance to blood flow [40]. Even more significant, perfusion of isolated rodent livers with
endothelin-1 caused a reduction in sinusoidal diameter colocalized with stellate cells that was
paralleled by an increase in portal pressure [36,48-51]. Moreover, administration of
endothelin-1 receptor antagonists decreased portal pressure in portal hypertensive rats [52].
These experimental findings indicate that endothelin-1 is a potent agonist of stellate cell
contraction and suggest an important contribution of this mediator to the regulation of hepatic
blood flow.

Several agents, including nitric oxide, carbon monoxide, and prostaglandins, may counteract
the effects of contraction-inducing stimuli by causing stellate cell relaxation [24,25,38,
53-55]. Nitric oxide production is reduced in the injured liver [56-58]. In vitro studies have
suggested that activation of nitric oxide signaling (through nitric oxide donors or cytokine
stimulation of nitric oxide production) causes relaxation in stellate cells and attenuates agonist-
induced contraction [10,25,53,56,59,60], a process that might occur through cGMP-dependent
activation of myosin light chain phosphatase, similar to what has been demonstrated in smooth
muscle cells [61-63]. Finally, nitric oxide donors can attenuate elevations in portal pressure in
the perfused rodent liver induced by endothelin-1 or other contraction-inducing stimuli [36,
48,64]. These observations have led to a proposed model in which sinusoidal tone is finely
modulated by the net balance of agents that induce stellate cell relaxation, such as nitric oxide,
and agonists of stellate cell contraction, such as endothelin-1 [65-67].
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It has long been known that the motor protein complex, myosin II, powers contractile force
generation in smooth muscle and fibroblasts through its action on the actin cytoskeleton [68,
69]. Numerous studies observed that hepatic stellate cells in culture express both myosin II
[31,41,42,70-73] and a fully formed actin cytoskeleton [31,41-43,70-74]. Myosin II activation,
as assessed by myosin regulatory light chain phosphorylation, correlates with various surrogate
measures of stellate cell contraction [31,43,71], as well as with the actual contractile force
generated by stellate cells [41]. Moreover, antagonism of myosin phosphorylation inhibited
contractile force generation by stellate cells [42]. Finally, the myosin regulatory light chain
expressed by stellate cells is phosphorylated at serine 19 [73], the consensus activation site for
myosin II. Taken together these results indicate that stellate cell contraction is powered by
myosin II, which is activated by phosphorylation of its myosin regulatory light chain.

Evidence suggests that Ca2+ signaling pathways regulate stellate cell contraction by activating
myosin light chain kinase, which selectively phosphorylates the myosin regulatory light chain
[20,75-77], similar to what has been demonstrated in smooth muscle. This notion was supported
by several experimental observations. First, ligands including endothelin-1, thrombin, and
angiotensin II, that induced transient increases in cytosolic Ca2+ concentration also stimulated
stellate cell contraction [7,10,20,25,40,41]. Second, plasma membrane Ca2+ channel
expression, Ca2+ influx through these channels, and cytosolic Ca2+ concentration, each
correlated with reductions in stellate cell surface area [23,60,77]. Third, inhibitors of Ca2+-
dependent myosin light chain kinase attenuated the shrinkage of collagen gels populated with
stellate cells [35,43]. Although these findings suggested an important role for Ca2+ signaling
in the control of stellate cell contraction, they did not provide any direct evidence to support
this model.

In contrast to previously held views, current data indicate that Ca2+ signaling pathways play a
subordinate role in the regulation of contractile force generation by stellate cells. The
contribution of Ca2+ signaling pathways to the regulation of stellate cell contraction was
directly tested by modulating cytosolic Ca2+ and directly measuring the contractile force
generated by this cell type [42]. Increases in cytosolic Ca2+ induced by depolarizing the plasma
membrane did not provoke contractile force generation. Superphysiological elevations in
cytosolic Ca2+ triggered by a calcium ionophore induced minimal increases in contractile force.
Eliminating increases in cytosolic Ca2+ with a calcium chelator had no effect on endothelin-1-
induced contractile force generation. This study provided surprising evidence indicating that
Ca2+ signaling is neither necessary for contractile force generation by stellate cells, nor is it
sufficient to provoke stellate cell contraction. This fresh perspective was supported by the
recent observation stellate cell contraction was stimulated by the inhibition of myosin
phosphatase despite the absence of any changes in cytosolic Ca2+ concentration [35].

Over the past decade substantial data have emerged demonstrating that contractile force
generation by certain non-muscle cell types, including fibroblasts and endothelial cells, is
predominantly regulated by transduction pathways that signal through the ras-like GTPase,
rhoA, rather than Ca2+ [69,78-80]. Mounting evidence indicate that rho signaling pathways
also control stellate cell contraction. Stellate cells express rhoA and rho-associated kinase
[31,70,71]. Specific inhibition of rhoA caused derangement of the stellate cell actin
cytoskeleton [70,74]. Highly selective antagonism of the rhoA effector protein, rho-associated
kinase, impeded shrinkage of collagen gels populated with stellate cells [31,43,71], inhibited
myosin regulatory light chain phosphorylation [31,41-43,71,73], and blocked contractile force
generation by stellate cells [41,42]. Attenuation of myosin phosphatase also reduced stellate
cell contraction as assessed by the shrinkage of stellate cell-populated collagen gels [35]. In
combination with studies of the contribution of Ca2+ signaling, these studies support a model
in which contractile force generation by stellate cells is mediated primarily by rho signal
transduction pathways.
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With regards to the putative roles that stellate cell contraction may play in the pathophysiology
of the liver, the strongest data pertains to their contribution to the modulation of sinusoidal
blood flow. The concept that stellate cells modulate resistance to hepatic blood flow by
contracting around sinusoids is supported by several observations. First, stellate cells in situ
exhibit a pericyte-like morphology with protrusions encircling the sinusoids [81-83]. Second,
the number and spacing of stellate cells and their characteristic protrusions overlay the entire
sinusoidal network [84]. Third, ex vivo perfusion of the liver with endothelin-1 induced
reductions in sinusoidal caliber colocalized with stellate cells [36,37,85]. Fourth, direct
measurement of contractile force generation by stellate cells within collagen gels suggests that
the magnitude and rate of stellate cell contraction and relaxation are capable of modulating
blood flow via sinusoidal constriction [40]. Taken together these findings obtained from several
complementary methods indicate that stellate cells contribute to the regulation of sinusoidal
blood flow.

What would we like to know about hepatic stellate cell contraction?
What we would really like to know about how the emerging pathobiology of stellate cell
contraction can be used to develop new strategies for the prevention and treatment of hepatic
fibrosis in humans. Despite fifteen years of intensive investigation and a great deal of new
information about the role and regulation of stellate cell contraction, no effective stellate cell
contraction-targeted therapies for hepatic fibrosis have been validated. In fact, no fibrosis
directed treatments of any sort have yet been developed for the treatment of chronic liver
disease [86-89]. As discussed in other chapters of this monograph, the only proven therapies
for fibrosis so far are directed at the prevention or removal of a specific cause of chronic hepatic
injury, such as treatment of hepatitis C or biliary obstruction.

Two logical approaches for developing new treatments for hepatic fibrosis are (1) to destroy
stellate cells or disable their function and (2) to modulate specific molecular targets within key
signal transduction pathways used by stellate cells. There are, however, serious real and
theoretical challenges to these general therapeutic approaches. Stellate cells mediate the
response of the liver to both acute and chronic injury. Hence, they are believed to contribute
to both the normal wound healing process, as well as to the development of hepatic fibrosis
and subsequent cirrhosis. If this is accurate, then destruction or disabling of stellate cells could
impair healthy and essential responses of the liver to injury in addition to the anticipated
prevention or attenuation of fibrosis. One solution to the paradox that the presence of intact
stellate cells may be necessary for both normal wound healing and fibrogenesis might be to
selectively target influential signaling pathways used by stellate cells. The problem with this
therapeutic strategy is that important signaling pathways are generally shared by amongst
different cell types. For example, employment of a mitogen-activated protein kinase antagonist
to inhibit stellate cell proliferation would also be predicted to influence the proliferation of
hepatocytes, and numerous other cell types. Therefore, it would be especially advantageous to
identify and develop treatment strategies precisely and specifically targeted to stellate cell
behaviors that mediate hepatic fibrosis.

The contractile force exerted by stellate cells contributes to the regulation of sinusoidal blood
flow and the development of fibrosis. As discussed, emerging evidence indicates that
generation of contractile force by stellate cells may be differentially regulated by transduction
pathways that signal through rho and rho-associated kinase, rather than Ca2+ and myosin light
chain kinase as it is in vascular smooth muscle. This differential regulation of stellate cell
contraction offers the possibility that novel therapeutic strategies could be developed that
selectively target the generation of contractile force by stellate cells. In fact, commercially
available highly selective small molecule inhibitors of rho-associated kinase attenuate the
increases in intrahepatic vascular resistance and portal hypertension [35,71,90,91] and lessen
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the development of hepatic fibrosis [91-94] in diverse rodent models of liver injury. These
studies provide proof-of-principle that stellate cell contraction can be selectively targeted to
treat hepatic fibrosis, at least in rodent models of chronic liver injury.

A significant concern with targeting rho signal transduction pathways as a strategy for treating
hepatic fibrosis is that this pathway is ubiquitous in playing vital roles in diverse cell types
throughout the body. This concern could be circumvented by delivering inhibitors directly to
the liver or stellate cells. Possible methods for directed delivery include portal or hepatic venous
injection, coupling drugs to carriers (e.g., antibodies, peptides, lectins, or lipids) with affinity
for the liver or stellate cells, and the use of particular viruses to selectively deliver therapeutic
genes or ribonucleic acids [71,95-99] to stellate cells or the liver. By integrating new
technologies for liver-directed delivery with pharmaceutical or genetic agents that selectively
target stellate cell contraction it may be possible to develop effective strategies for the
prevention and treatment of hepatic fibrosis.

Summary
The contractile force generated by stellate cells within the liver may contribute to the
development of hepatic fibrosis by modulating sinusoidal blood flow and participating in
extracellular matrix remodeling. For more than fifteen years, the role and regulation of stellate
cell contraction have been areas of substantial research. Diverse, but complementary,
experimental methods have been employed to elucidate the pathophysiology of stellate cell
contraction. Although each technique for studying the contraction of stellate cells has its own
limitations, taken together the published studies have provided a robust model for the regulation
of stellate cell contractile force generation. In this model, soluble factors associated with liver
injury, including endothelin-1 and nitric oxide, are transduced primarily through rho signaling
pathways that promote the myosin II-powered generation of contractile force by stellate cells.
Moreover, compelling data support a role for stellate cells in the control of hepatic blood flow
by contracting around sinusoids. Our enhanced understanding of the role and differential
regulation of stellate cell contraction may facilitate the discovery of new and targeted strategies
for the prevention and treatment of hepatic fibrosis.
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Fig. 1.
Role of hepatic stellate cell contraction. Stellate cell contractile force generation is thought to
mediate the liver’s response to injury through constricting sinusoids and contracting scar.
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Fig. 2.
Regulation of hepatic stellate cell contraction. Soluble factors associated with liver injury, such
as endothelin-1 and nitric oxide, are transduced primarily through rho signaling pathways that
promote the myosin II-powered generation of contractile force by stellate cells. Dashed arrows
indicate subordinate Ca2+ signaling pathway. ET-1, endothelin-1; GPCR, G protein coupled
receptor; MLCK, myosin light chain kinase; RhoA, rho family GTPase; ROK, rho-associated
kinase; MLCP, myosin light chain phosphatase; NO, nitric oxide; MLC, myosin light chain;
PO4, phosphate.
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