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Abstract
Semantic memory refers to our knowledge of facts and relationships between concepts. A successful
semantic memory depends on inferring relationships between items that are not explicitly taught.
Recent mathematical modeling of episodic memory argues that episodic recall relies on retrieval of
a gradually-changing representation of temporal context. We show that retrieved context enables the
development of a global memory space that reflects relationships between all items that have been
previously learned. When newly-learned information is integrated into this structure, it is placed in
some relationship to all other items, even if that relationship has not been explicitly learned. We
demonstrate this effect for global semantic structures shaped topologically as a ring, and as a two-
dimensional sheet. We also examined the utility of this learning algorithm for learning a more realistic
semantic space by training it on a large pool of synonym pairs. Retrieved context enabled the model
to “infer” relationships between synonym pairs that had not yet been presented.

1 Introduction
Semantic memory refers to our ability to learn and retrieve facts and relationships about
concepts without reference to a specific learning episode. For example, when answering a
question such as “what is the capital of France?” it is not necessary to remember details about
the event when this fact was first learned in order to correctly retrieve this information. An
appropriate semantic memory for a set of stimuli as complex as, say, words in the English
language, requires learning the relationships between tens of thousands of stimuli. Moreover,
the relationships between these items may describe a network of non-trivial topology [16].
Given that we can only simultaneously perceive a very small number of these stimuli, in order
to be able to place all stimuli in the proper relation to each other the combinatorics of the
problem require us to be able to generalize beyond explicit instruction. Put another way,
semantic memory needs to not only be able to retrieve information in the absence of a memory
for the details of the learning event, but also retrieve information for which there is no learning
event at all.

Computational models for automatic extraction of semantic content from naturally-occurring
text, such as latent semantic analysis [12], and probabilistic topic models [1,7], exploit the
temporal co-occurrence structure of naturally-occurring text to estimate a semantic
representation of words. Their success relies to some degree on their ability to not only learn
relationships between words that occur in the same context, but also to infer relationships
between words that occur in similar contexts. However, these models operate on an entire
corpus of text, such that they do not describe the process of learning per se.

Here we show that the temporal context model (TCM), developed as a quantitative model of
human performance in episodic memory tasks, can provide an on-line learning algorithm that
learns appropriate semantic relationships from incomplete information. The capacity for this
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model of episodic memory to also construct semantic knowledge spaces of multiple distinct
topologies, suggests a relatively subtle relationship between episodic and semantic memory.

2 The temporal context model
Episodic memory is defined as the vivid conscious recollection of information from a specific
instance from one’s life [18]. Many authors describe episodic memory as the result of the
recovery of some type of a contextual representation that is distinct from the items themselves.
If a cue item can recover this “pointer” to an episode, this enables recovery of other items that
were bound to the contextual representation without committing to lasting interitem
connections between items whose occurrence may not be reliably correlated [17].

Laboratory episodic memory tasks can provide an important clue to the nature of the contextual
representation that could underlie episodic memory. For instance, in the free recall task,
subjects are presented with a series of words to be remembered and then instructed to recall
all the words they can remember in any order they come to mind. If episodic recall of an item
is a consequence of recovering a state of context, then the transitions between recalls may tell
us something about the ability of a particular state of context to cue recall of other items.
Episodic memory tasks show a contiguity effect—a tendency to make transitions to items
presented close together in time, but not simultaneously, with the just-recalled word. The
contiguity effect shows an apparently universal form across multiple episodic recall tasks, with
a characteristic asymmetry favoring forward recall transitions [11] (see Figure 1a).

The temporal contiguity effect observed in episodic recall can be simply reconciled with the
hypothesis that episodic recall is the result of recovery of a contextual representation if one
assumes that the contextual representation changes gradually over time. The temporal context
model (TCM) describes a set of rules for a gradually-changing representation of temporal
context and how items can be bound to and recover states of temporal context. TCM has been
applied to a number of problems in episodic recall [9]. Here we describe the model,
incorporating several changes that enable TCM to describe the learning of stable semantic
relationships (detailed in Section 3).1

TCM builds on distributed memory models which have been developed to provide detailed
descriptions of performance in human memory tasks [14]. In TCM, a gradually-changing state
of temporal context mediates associations between items and is responsible for recency effects
and contiguity effects. The state of the temporal context vector at time step i is denoted as ti
and changes from moment-to-moment according to

(1)

where β is a free parameter,  is the input caused by the item presented at time step i, assumed
to be of unit length, and ρi is chosen to ensure that ti is of unit length. Items, represented as
unchanging orthonormal vectors f, are encoded in their study contexts by means of a simple
outer-product matrix connecting the t layer to the f layer, MTF, which is updated according to:

(2)

where the prime denotes the transpose and the subscripts here reflect time steps. Items are
probed for recall by multiplying MTF from the right with the current state of t as a cue. This

1Previous published treatments of TCM have focused on episodic tasks in which items were presented only once. Although the model
described here differs from previously published versions in notation and its behavior over multiple item repetitions, it is identical to
previously-published results described for single presentations of items.
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means that when tj is presented as a cue, each item is activated to the extent that the probe
context overlaps with its encoding contexts.

The space over which t evolves is obviously determined by the tINs. We will decompose tIN

into cIN, a component that does not change over the course of study of this paper, and hIN, a
component that changes rapidly to retrieve the contexts in which an item was presented.
Denoting the time steps at which a particular item A was presented as Ai, we have

(3)

where the proportionality reflects the fact that tIN is always normalized before being used to
update ti as in Eq. 1 and the hat on the hIN term refers to the normalization of hIN. We assume
that the cINs corresponding to the items presented in any particular experiment start and remain
orthonormal to each other. In contrast, hIN starts as zero for each item and then changes
according to:

(4)

It has been hypothesized that ti reflects the pattern of activity at extra-hippocampal medial
temporal lobe (MTL) regions, in particular the entorhinal cortex [8]. The notation cIN and
hIN reflects the hypothesis that the consistent and rapidly-changing parts of tIN reflect inputs
to the entorhinal cortex from cortical and hippocampal sources, respectively (Figure 1b).

According to TCM, associations between items are not formed directly, but rather are mediated
by the effect that items have on the state of context which is then used to probe for recall of
other items. When an item is repeated as a probe, this induces a correlation between the tIN of
the probe context and the study context of items that were neighbors of the probe item when
it was initially presented. The consistent part of tIN is an effective cue for items that followed
the initial presentation of the probe item (open symbols, Figure 1c). In contrast, recovery of
the state of context that was present before the probe item was initially presented is a symmetric
cue (filled symbols, Figure 1). Combining these two components in the proper proportions
provides an excellent description of contiguity effects in episodic memory [8].

3 Constructing global semantic information from local events
In each of the following simulations, we specify a to-be-learned semantic structure by
imagining items as the nodes of a graph with some topology. We generated training sequences
by randomly sampling edges from the graph.2 Each edge only contains a limited amount of
information about the global structure. For the model is to learn the global structure of the
graph, it must somehow integrate the learning events into a coherent whole.

After training we evaluated the ability of the model to capture the topology of the graph by
examining the cue strength between each item. The cue strength from item A to B is defined
as . This reflects the overlap between the cIN and hIN components of A and the contexts
in which B was presented.3

2The pairs are chosen randomly, so that any across-pair learning would be uninformative with respect to the overall structure of the
graph. To further ensure that learning across pairs from simple contiguity could not contribute to our results, we set β in Eq. 1 to one
when the first member of each pair was presented. This means that the temporal context when the second item is presented is effectively
isolated from the previous pair.
3In this implementation of TCM,  is identical to . This need not be the case in general, as one could alter the learning rate,
or even the structure of Eqs. 2 and/or 4 without changing the basic idea of the model.
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Because  is caused by presentation of item i, we can think of the tINs as a representation of
the set of items. Learning can be thought of as a mixing of the tINs according to the temporal
structure of experience. Because the cINs are fixed, changes in the representation are solely
due to changes in the hINs. Suppose that two items, A and B are presented in sequence. If context
is retrieved, then after presentation of the pair A–B  includes the  that obtained when
A was presented. This includes the current state of  as well as the fixed state . If at some
later time B is now presented as part of the sequence B–C, then because  is similar to ,
item C is learned in a context that resembles , despite the fact that A and C were not actually
presented close together in time. After learning A–B and B–C,  and  will resemble each
other. This ability to rate as similar items that were not presented together in the same context,
but that were presented in similar contexts, is a key property of latent models of semantic
learning [12].

To isolate the importance of retrieved context for the ability to extract global structure, we will
compare a version of the model with γ= 0 to one with γ> 0.4 With γ= 0, the model functions
as a simple co-occurrence detector in that the cue strength between A and B is non-zero only
if  was part of the study contexts of B. In the absence of contextual retrieval, this requires
that B was preceded by A during study.

Ultimately, the tis and s can be expressed as a combination of the cIN vectors. We therefore
treated these as orthonormal basis vectors in the simulations that follow. MTF and the hINs
were initialized as a matrix and vectors of zeros, respectively. The parameter β for the second
member of a pair was fixed at 0.6.

3.1 1-D: Rings
For this simulation we sampled edges chosen from a ring of ten items (Fig. 2a). We treated the
ring as an undirected graph, in that we sampled an edge A–B equally often as B–A. We
presented the model with 300 pairs chosen randomly from the ring. For example, the training
pairs might include the sub-sequence C–D, A–B, F–E, B–C.

Figure 2b shows the cue strength between each pair of items as a grey-scale image after training
the model without contextual retrieval (γ= 0). The diagonal is shaded reflecting the fact that
an item’s cue strength to itself is high. In addition, one row on either side of the diagonal is
shaded. This reflects the non-zero cue strength between items that were presented as part of
the same training pair. That is, the model without contextual retrieval has correctly learned the
relationships described by the edges of the graph. However, without contextual retrieval the
model has learned nothing about the relationships between the items that were not presented
as part of the same pair (e.g. the cue strength between A and C is zero). Figure 2c shows the
cue strength between each pair of items for the model with contextual retrieval γ> 0. The effect
of contextual retrieval is that pairs that were not presented together have non-zero cue strength
and this cue strength falls off with the number of edges separating the items in the graph. This
happens because contextual retrieval enables similarity to “spread” across the edges of the
graph, reaching an equilibrium that reflects the global structure. Figure 2d shows a two-
dimensional MDS (multi-dimensional scaling) solution conducted on the log of the cue
strengths of the model with contextual retrieval. The model appears to have successfully
captured the topology of the graph that generated the pairs. More precisely, with contextual

4In the simulations reported below, this value is set to 0.6. The precise value does not affect the qualitative results we report as long as
it is not too close to one.
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retrieval, TCM can place the items in a space that captures the topology of the graph used to
generate the training pairs.

On the one hand, the relationships that result from contextual retrieval in this simulation seem
intuitive and satisfying. Viewed from another perspective, however, this could be seen as
undesirable behavior. Suppose that the training pairs accurately sample the entire set of
relationships that are actually relevant. Moreover, suppose that one’s task were simply to
remember the pairs, or alternatively, to predict the next item that would be presented after
presenting the first member of a pair. Under these circumstances, the co-occurrence model
performs better than the model equipped with contextual retrieval.

It should be noted that people form associations across pairs (e.g. A–C) after learning lists of
paired associates with a linked temporal structure like the rings shown in Figure 2a [15]. In
addition, rats can also generalize across pairs, but this ability depends on an intact hippocampus
[2]. These finding suggest that the mechanism of contextual retrieval capture an important
property of how we learn in similar circumstance.

3.2 2-D: Spatial navigation
The ring illustrated in Figure 2 demonstrates the basic idea behind contextual retrieval’s ability
to extract semantic spaces, but it is hard to imagine an application where such a simple space
would need to be extracted. In this simulation will illustrate the ability of retrieved context to
discover relationships between stimuli arranged in a two-dimensional sheet. The use of a two-
dimensional sheet has an analog in spatial navigation.

It has long been argued that the medial temporal lobe has a special role in our ability to store
and retrieve information from a spatial map. Eichenbaum [5] has argued that the MTL’s role
in spatial navigation is merely a special case of more general role in organizing disjointed
experiences into integrated representations. The present model can be seen as a computational
mechanism that could implement this idea.

In our typical experience, spatial information is highly correlated with temporal information.
Because of our tendency to move in continuous paths through our environment, locations that
are close together in space also tend to be experienced close together in time. However, insofar
as we travel in more-or-less straight paths, the combinatorics of the problem place a premium
on the ability to integrate landmarks experienced on different paths into a coherent whole. At
the outset we should emphasize that our extremely simple simulation here does not capture
many of the aspects of actual spatial navigation—the model is not provided with metric spatial
information, nor gradually changing item inputs, nor do we discuss how the model could select
an appropriate trajectory to reach a goal [3].

We constructed a graph arranged as a 5×5 grid with horizontal and vertical edges (Figure 3a).
We presented the model with 600 edges from the graph in a randomly-selected order. One may
think of the items as landmarks in a city with a rectangular street plan. The “traveler” takes
trips of one block at a time (perhaps teleporting out of the city between journeys).5 The problem
here is not only to integrate pairs into rows and columns as in the 1-dimensional case, but to
place the rows and columns into the correct relationship to each other.

Figure 3b shows the two-dimensional MDS solution calculated on the log of the cue strengths
for the co-occurrence model. Without contextual retrieval the model places the items in a high-
dimensional structure that reflects their co-occurrence. Figure 3c shows the same calculation

5We also observed the same results when we presented the model with complete rows and columns of the sheet as a training set rather
than simply pairs.

Rao and Howard Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2008 December 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for TCM with contextual retrieval. Contextual retrieval enables the model to place the items
on a two-dimensional sheet that preserves the topology of the graph used to generate the pairs.
It is not a map—there is no sense of North nor an accurate metric between the points—but it
is a semantic representation that captures something intuitive about the organization that
generated the pairs. This illustrates the ability of contextual retrieval to organize isolated
experiences, or episodes, into a coherent whole based on the temporal structure of experience.

3.3 More realistic example: Synonyms
The preceding simulations showed that retrieved context enables learning of simple topologies
with a few items. It is possible that the utility of the model in discovering semantic relationships
is limited to these toy examples. Perhaps it does not scale up well to spaces with large numbers
of stimuli, or perhaps it will be fooled by more realistic and complex topologies.

In this subsection we demonstrate that retrieved context can provide benefits in learning
relationships among a large number of items with a more realistic semantic structure. We
assembled a large list of English words (all unique strings in the TASA corpus) and used these
as probes to generate a list of nearly 114,000 synonym pairs using WordNet. We selected 200
of these synonym pairs at random as a test list. The word pairs organize into a large number
of connected graphs of varying sizes. The largest of these contained slightly more than 26,000
words; there were approximately 3,500 clusters with only two words. About 2/3 of the pairs
reflect edges within the five largest clusters of words.

We tested performance by comparing the cue strength of the cue word with its synonym to the
associative strength to three lures that were synonyms of other cue words—if the correct answer
had the highest cue strength, it was counted as correct.6 We averaged performance over ten
shuffles of the training pairs. We preserved the order of the synonym pairs, so that this, unlike
the previous two simulations, described a directed graph.

Figure 4a shows performance on the training list as a function of learning. The lower curve
shows “co-occurrence” TCM without contextual retrieval, γ= 0. The upper curve shows TCM
with contextual retrieval, γ> 0. In the absence of contextual retrieval, the model learns linearly,
performing perfectly on pairs that have been explicitly presented. However, contextual retrieval
enables faster learning of the pairs, presumably due to the fact that it can “infer” relationships
between words that were never presented together. To confirm that this property holds, we
constructed shuffles of the training pairs such that the test synonyms were not presented for an
extended period (see Figure 4b). During this period, the model without contextual retrieval
does not improve its performance on the test pairs because they are not presented. In contrast,
TCM with contextual retrieval shows considerable improvement during that interval.7

4 Discussion
We showed that retrieval of temporal context, an on-line learning method developed for
quantitatively describing episodic recall data, can also integrate distinct learning events into a
coherent and intuitive semantic representation. It would be incorrect to describe this
representation as a semantic space—the cue strength between items is in general asymmetric
(Figure 1c). The model thus has the potential to capture some effects of word order and

6In instances where the cue strength was zero for all the choices, as at the beginning of training, this was counted as 1/4 of a correct
answer.
7To ensure that this property wasn’t simply a consequence of backward associations for the model with retrieved context, we re-ran the
simulations presenting the pairs simultaneously rather than in sequence (so that the co-occurrence model would also learn backward
associations) and obtained the same results.
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asymmetry. However, one can also think of the set of tINs corresponding to the items as a
semantic representation that is also a proper space.

Existing models of semantic memory, such as LSA and LDA, differ from TCM in that they
are offline learning algorithms. More specifically, these algorithms form semantic associations
between words by batch-processing large collections of natural text (e.g., the TASA corpus).
While it would be interesting to compare results generated by running TCM on such a corpus
with these models, constraints of syntax and style complicate this task. Unlike the simple
examples employed here, temporal proximity is not a perfect indicator of local similarity in
real world text. The BEAGLE model [10] describes the semantic representation of a word as
a superposition of the words that occurred with it in the same sentence. This enables BEAGLE
to describe semantic relations beyond simple cooccurrence, but precludes the development of
a representation that captures continuously-varying representations (e.g., Fig. 3). It may be
possible to overcome this limitation of a straightforward application of TCM to naturally-
occurring text by generating a predictive representation, as in the syntagmatic-paradigmatic
model [4].

The present results suggest that retrieved temporal context—previously hypothesized to be
essential for episodic memory—could also be important in developing coherent semantic
representations. This could reflect similar computational mechanisms contribute to separate
systems, or it could indicate a deep connection between episodic and semantic memory. A key
finding is that adult-onset amnesics with impaired episodic memory retain the ability to express
previously-learned semantic knowledge but are impaired at learning new semantic knowledge
[19]. Previous connectionist models have argued that the hippocampus contributes to classical
conditioning by learning compressed representations of stimuli, and that these representations
are eventually transferred to entorhinal cortex [6]. This could be implemented in the context
of the current model by allowing slow plasticity to change the cINs over long time scales
[13].
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Figure 1.
Temporal recovery in episodic memory. a. Temporal contiguity effect in episodic recall. Given
that an item from a series has just been recalled, the y-axis gives the probability that the next
item recalled came from each serial position relative the just-recalled item. This figure is
averaged across a dozen separate studies [11]. b. Visualization of the model. Temporal context
vectors ti are hypothesized to reside in extra-hippocampal MTL regions. When an item fi is
presented, it evokes two inputs to t—a slowly-changing direct cortical input  and a more
rapidly varying hippocampal input . When an item is repeated, the hippocampal component
retrieves the context in which the item was presented. c. While the cortical component serves
as a temporally-asymmetric cue when an item is repeated, the hippocampal component
provides a symmetric cue. Combining these in the right proportion enables TCM to describe
temporal contiguity effects.
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Figure 2.
Learning of a one-dimensional structure using contextual retrieval. a. The graph used to
generate the training pairs. b–c. Associative strength between items after training (higher
strength corresponds to darker cells). b. The model without contextual retrieval (γ = 0). c. The
model with contextual retrieval (γ> 0). d. Two dimensional MDS solution for the log of the
data in c. Lines connect points corresponding to nodes connected by an edge.
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Figure 3.
Reconstruction of a 2-dimensional spatial representation. a. The graph used to construct
sequences. b. 2-dimensional MDS solution constructed from the temporal co-occurrence
version of TCM γ= 0 using the log of the associative strength as the metric. Lines connect
stimuli from adjacent edges. c. Same as b, but for TCM with retrieved context. The model
accurately places the items in the correct topology.
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Figure 4.
Retrieved context aids in learning synonyms that have not been presented. a. Performance on
the synonym test. The curve labeled “TCM” denotes the performance of TCM with contextual
retrieval. The curve labeled “Co-occurrence” is the performance of TCM without contextual
retrieval. b. Same as a, except that the training pairs were shuffled to omit any of the test pairs
from the middle region of the training sequence.
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