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Abstract
In the one and two beads Coarse Grained (CG) models for proteins, the two conformational dihedrals
ϕ and ψ that describe the backbone geometry are no longer present as explicit internal coordinates,
thus the information contained in the Ramachandran plot cannot be used directly. We derive an
analytical mapping between these dihedrals and the internal variable describing the backbone
conformation in the one(two) beads CG models, namely the pseudo-bond angle and pseudo-dihedral
between subsequent Cαs. This is used to derive a new density plot that contains the same information
as the Ramachandran plot and can be used with the one(two) beads CG models. The use of this
mapping is then illustrated with a new one bead polypeptide model that accounts for transitions
between α-helices and β-sheets.

1 Introduction
Coarse Grained (CG) models for proteins have become more and more popular in the last two
decades, due to the necessity of simulating systems on the size scale of hundreds of nanometers
and on the time scale of microseconds[1,2]. The seminal concept can be traced back to the
seventies[3,4]: these simplified models for proteins are based on united-atom representations
using one to six interacting centers (beads) for each amino acid. Four-to-six beads models
represent explicitly the backbone atoms (Cα, N(H) and C(O)) with additional “beads” for the
side chain and for the backbone carbonylic oxygen and the backbone hydrogen[5,6,7], and use
the ϕ and ψ dihedrals formed by the backbone atoms C-N-Cα-C and N-Cα-C-N respectively
as internal variables. Conversely, in one(two) bead(s) models only the Cα (and additional beads
for the side chain) is (are) explicitly present (see fig. 1).

The two-dimensional density plot of ϕ and ψ referring to a given Cα is called the Ramachandran
map. This map is more dense in specific regions of the ϕ, ψ plane, each pertaining to a particular
secondary structure. Other regions are “forbidden” due to the steric hindrance of the backbone
atoms. Thus, the Ramachandran plot is a simple and immediate tool to check the reliability of
a model protein. But, while this check can be directly done in four(-six) bead models, this is
no longer possible in the one(two) beads models. In fact, in these models, the ϕ and ψ are no
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longer explicit internal variables and the description of the backbone geometry relies on
different internal variables, i.e. the Cα-Cα-Cα angle θ and the Cα-Cα-Cα-Cα dihedral α (see
fig. 1). So far, the problem of how to transfer the information contained in the Ramachandran
plot to these simplified models has not been given any consideration. This is quite surprising,
given the fact that one and two beads models have recently undergone rapid developments
becoming more accurate and sophisticated [8,9,10,11,12,13,14,15].

In this paper we derive an analytical correspondence of the all-atom internal back-bone
coordinates (ϕ,ψ) to the CG internal backbone coordinates (α, θ) that allows one to explicitly
map the Ramachandran plot onto a new θ, α conformational density plot. The Force Field (FF)
of the recent one and two beads CG models, are reconsidered on the basis of the θ, α map. As
an illustration of these concepts, a new one-bead model for polypeptides is presented that
accounts for helix to sheet secondary structure transitions.

2 Coarse Graining and mapping of the internal backbone coordinates
The procedure leading from an all-atom model to a one(two)bead CG model is schematically
described in fig. 1. The bond length and the backbone bond-angle NH-Cα-CO display only
small variation from the average values (τ = 111deg), and the peptide bond geometry is planar
(ω = 180)1, implying that the dihedral angles ϕ and ψ are basically the only free internal
variables. In the CG description, the backbone conformation is determined by the bond angle
between three subsequent Cαs and the dihedral between four subsequent Cαs. The bond angle
with vertex Cαi, (θi) depends only on the two adjacent dihedrals ϕi and ψ i, whereas the dihedral
between Cαi−1 and Cαi+2, namely αi,i+1, depends on the four dihedrals ϕi,ψi,ϕi+1,ψi+1. Both θ
and α depend parametrically on τ and on the two angles between the bonds Cα-Cα and Cα-CO
or Cα-NH, which for trans conformation assume the almost constant values of γ1 = 20.7deg
and γ1 = 14:7deg respectively (see fig. 1 for the definition of angles and dihedrals). The angle
θ as a function of ϕ, ψ is given by the following formula2

(1)

For (ϕ,ψ) = (180, 180), (0; 0), (180, 0) and (0, 180) one has θ = τ + (γ1 +γ2), θ = τ −(γ1+γ2),
θ = τ +(γ1−γ2) and θ = τ −(γ1−γ2) respectively. The first corresponds to the completely
extended conformation, the others are planar but sterically forbidden or weakly allowed
conformations (see below). The exact formula giving α explicitly as a function of the ϕ,ψ
dihedrals is very complex, however a precision of a few percent can already be obtained at the
linear order in γ1 and γ 2 (see the Supporting Information)

(2)

This formula (with γ1 = γ2) was previously reported by Levitt[3].

In order to make general considerations, we restrict ourselves to the case γ1 = γ2. Furthermore,
we assume that the geometrical properties are uniform along the chain (or, equivalently, we
consider cases of well defined secondary structure), so that we can put ϕi = ϕi+1 and ψi =
ψi+1 and drop the dependence on the index i+1 in eqn (2). In these conditions, the map (ϕ,ψ)
→ (α, θ) is symmetric under the exchange ϕ ↔ ψ Thus the upper triangle in the (ϕ,ψ) plane is
superimposed upon folding along the main diagonal (in magenta) over the lower triangle and

1In this paper we neglect the (rare) possibility of a cis conformation of the peptide bond (ω = 0).
2Valid for the trans conformation.
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mapped onto the same region in the α, θ plane. The periodicity and the additional symmetry
θ (ϕ,ψ) = θ (− ϕ, −ψ) = θ (ϕ+180, ψ +180) determine the peculiar “butteryfly” shape of the
image of the ϕ, ψ plane in the α, θ plane reported in fig. 2. In the general case when γ1 ≠γ2 the
ϕ ↔ ψ symmetry is slightly broken and one has two slightly different “butterfly” images
superimposed. It is to be noted that as the whole α axis is spanned, the θ angle can assume only
values ranging between τ −γ1 −γ2 and τ + γ1 + γ2, corresponding to the planar-contracted
(forbidden) configuration (ϕ = ψ = 0) and the planar extended configuration (ϕ = ψ = 180). As
the angle α approaches the value 0, the allowed range for θ becomes smaller. Ring structures
correspond to α = 0: the maximum value for θ is τ = 111 + |γ2 − γ1|, obtained for ϕ =
180deg,ψ = 0deg corresponding roughly to a six membered ring, while the minimum value for
θ is ~ 105deg, obtained for ϕ = ψ ≃ ±75deg, corresponding roughly to a five membered ring.

3 Conversion of the Ramachandran plot into the α, θ plot
We use the above relationships to convert the Ramachandran plot into a conformational density
plot in the α, θ plane. The conversion for the generic Ramachandran plot, the Ramachandran
plot of Glycine, Proline and pre-proline residues are reported in fig. 3. We observe that the
symmetry-induced folding of the ϕ,ψ plane along the diagonal produces some peculiarities of
the α,θ conformational maps. For instance, the forbidden region around ϕ = ψ = 0 (simplified
as a circle in fig. 3) is folded onto itself and mapped onto a flat region around α = ±180deg, θ
= τ − γ1 − γ2 =≃ 75deg. Conversely, the forbidden region around ϕ = 0,ψ = ±180deg is folded
on a weakly allowed region (ϕ = ±180, ψ = 0), implying that the corresponding region in the
α, θ plane (represented as a small circle around α = 0, θ ≃ τ) is not strictly forbidden. The effect
of the folding along the ϕ, ψ diagonal can be also seen on the core regions of the right handed
(green) and left handed (red) regions, that are cut by the folding line. These assume peculiar
folded and stretched shapes squeezed against the limits of the “butterfly” image. The same
happens to the sheet region (blue) in the glycine plot. However, despite the folding and
deformation of the Ramachandran plot, the core regions of the different secondary structures
remain separate in the α, θ plane. This is important, since it implies that passing from the ϕ,
ψ to the α, θ system of internal coordinates still allows an unambiguous description of the
backbone conformation in each secondary structure. This was previously assumed in one and
two beads CG models but never directly investigated.

In Table 1 the typical ϕ, ψ values for the main secondary structures are reported, as well as the
corresponding α, θ values. We observe that right and left handed helices have the same value
of θ and opposite values of α. Conversely, the θ variable is more effcient in separating the
helices from the sheet structures, expecially in the glycine where both structures span almost
the same α interval.

4 Using the α, θ plot to analyze the Force Fields
The potential of mean force V (qi) is related to the equilibrium probability distribution of the
internal coordinate qi through the relationship P(qi) α exp(−V (qi)/kT). Although it is well
known that V (qi) is only an approximation of the potential energy term U(qi)[21], comparing
an approximate probability distribution p(α, θ) = exp(U(θ, α)/kT) to the α, θ plot can still give
useful indications.

Very sophisticated U(θ, α) are included in the numerical FF derived by Bahar, Jernigan et al.
[11,12] and in the UNRES FF by Sheraga et al. [14,16], which is analytical but involves a very
large number of parameters. Here we analyze the FF with simpler analytical terms. Usually
these include a quite accurate dihedral energy term U α, with terms in sin(nα) and cos(nα) with
n up to 6 [3,10], although it was shown that the terms in cos(α) and cos(3α) are the most relevant
[8,9,13]. In fact, these were included also in the most recent versions of the Gō models[17].
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Conversely, the bond angle term U(θ) is usually treated as harmonic. In order to include the
dependence of the equilibrium θ on the secondary structure, different strategies have been
adopted. An explicit correlation θ(α) was assumed by Levitt [3], that reduced the
dimensionality of the α, θ plot to a line. More realistic α, θ plots can be obtained with an
approach like that of Head-Gordon[8], that uses an accurate dihedral term depending on the
aminoacid type, reproducing the pattern typical of the helices, sheets or turns depending on the
aminoacid type (whose helix-sheet-turn propensity must be known a priori), while an harmonic
bond angle term is used with an equilibrium θ0 = 105deg that is an average of the typical helix
and sheet value (see fig. 4, left). Alternatively, angle and dihedral energy terms typical for the
β sheet were used, and additional terms depending on the second and third neighbour distance
along the chain were used to tune the α-helix propensity, like in Mukherjee et al[13] (see fig.
4, right). As can be seen from the plots, these FFs may give a quite accurate pattern of the
density plot (at least for the dihedral angle) for given secondary structures, but they are not
very appropriate in describing situations when the propensity for a given secondary structure
is not very well defined. For instance, they are inadequate to describe the α θ plot for glycine.

5 A new Force Field with an accurate bond angle interaction
We recently proposed a different approach[15] including an accurate bond angle term Uθ. We
use a quartic double well potential for the bond angle potential

where θα ≃ 90deg corresponds to the first minimum (typical of the alpha helix). The other
parameters are related to the position of the second minimum θβ, to the relative stability

 and to the (left and right) barriers  via the following relations:

The dihedral term was taken as a harmonic (or harmonic cosine) with equilibrium value
depending on the a priori known secondary structure. The (amino acid-dependent) parameters
were derived through a statistical analysis of crystallographic structures, using the Boltzmann
inversion[15]. The α, θ plots for helix-propense (green), sheet-propense (blue) and glycine-
like amino acids are reported in fig. 5 (left). The accuracy of these maps is especially evident
in the glycine-like pattern, where our force field reproduces the small separation between the
helix-like and sheet-like regions, and in the sheet pattern (blue) where the peculiar shape with
a small protuberance towards the θ = 90deg present in the “Generic” map of fig. 3 is reproduced.
This FF has proven successful in reproducing the flap opening dynamics in the HIV-1 protease,
which depends on a very peculiar motion of the glycine rich apt tips, and its dependence on
the mutations in this region[15,22].

Here we propose a further improvement of the potential. We combine our double-well Uθ with
a cosine-sum Uα similar to the potential of Head-Gordon et al[8]
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whose terms have the following meaning. The first has a minimum at α = 180deg corresponding
roughly to the sheet or extended structures. The second has additional minima at α = ±60deg,
corresponding to helical structures. The third has a single minimum at α = 135deg and
introduces an asymmetry that favors the right handed helices with respect to the left handed.
The fourth has minima at α = ±90deg and can enforce the helix propensity. By giving different
weights to the helix-like or sheet-like terms in Uα and Uθ and tuning the asymmetry term, one
can reproduce quite realistic density plots. In fig. 5, center, density plots for helix-like (green)
and for sheet-like (blue) structures are reported. In fig. 5, right, we report the density plot for
glycine (cyan), obtained using approximately the same weight for the helix and sheet terms
and no asymmetry. Finally, in red we report an hypothetical “generic” potential as simple as
possible, including only the first and second terms in Uα. This does not resemble closely any
of the “experimental” density plots, but contains all the secondary structures with
approximately the same weight, including also the very uncommon polyproline helix (located
at ~ 100, ~ 120) and its right handed counterpart.

6 Applications: α-helix to β-sheet transition in a minimal polypeptide model
We now illustrate the above concepts with a simple polypeptide model. We do not aim here
to describe any specific poly-aminoacid type, an accurate amino acid type dependent
parameterization will be the matter of a further paper. However this model could apply to a
sheet-former, like poly-valine. In addition to the Uα and Uθ we used a Morse non-bonded
interaction potential

where σ = 6:1 Å is the bead diameter, α = 0:7 is the well width parameter and ∈ is taken as an
energy unit. Since the helices, sheets and random coils are characterised by a different number
of non-bonded contacts, the relative stability of the different secondary structures depends on
a delicate balance between ∈ and ΔUα;θ = ΔUα + ΔUθ. We chose the parameters in such a way
that ΔUα;θ = − 5∈ favours the sheet conformation. The energy barriers separating the helix
from the sheet were set at  and a slight asymmetry towards the right
handed helix was added to the dihedral potential (see fig. 6 for the values of the parameters).
The Cα-Cα bonds were constrained at the value 3:79 Å. We performed two simulated annealing
runs on a 20-mer, starting from the αhelical and from the extended configuration, respectively.
The DL_POLY code was used[23] for the simulation. The results are reported in fig. 6–fig. 8.

Fig. 7 reports the representative angles and dihedrals along the simulation. In the simulation
starting from the α-helix (red) the transition to a globular random coil structure occurs after
about 100 nsec at the temperature kT = 0:6∈, after passing through a metastable “broken helix”
conformation (see fig6). As the temperature is raised up to kT =~ ∈, the system explores
globular structures and finally, upon cooling down, it stabilizes in a three-fold β-sheet, i.e. a
β-sheet with two β-turns located approximately at the 8th and 14th residue along the chain (see
fig6). In the simulation starting from the extended structure (blue), the system tends to contract
to a globule after about 100 nsec, then again stabilizes to a three-fold beta sheet. As the
temperature is raised up to kT ≃ 2∈ (between 500 and 1000 nsec), the system melts into a
globular state. During cooling down, it explores for long time intervals also the β-hairpin
structures (β-sheets with one β-turn approximately in the middle of the chain), before definitely
stabilizing in the three-fold β-sheet. Remarkably, the structures we find as (meta)stable states
were also observed in simulations performed with more sophisticated models[24,25].

This dynamical behavior can be explained on the basis of the energy landscape of the system,
reported in fig. 6. The energy terms combine in such a way that the helical structures are less
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stable while the sheet structures (both β-hairpin and three-fold β sheet) have a very similar
energy and are slightly more stable than the extended one. The definitive choice for the three-
fold β sheet may be due to the entropic factor.

The α, θ density plot for the two simulations is shown in fig. 8. The violet map is evaluated on
the trajectory of the simulation starting from the extended conformation. Only the area
corresponding to the βsheet and extended structures is populated, with a small population of
the globular region located at α ≃ 180, θ ≃ 90. The map in red corresponds to the simulation
starting from the αhelix. The transition to the βsheet passes through the molten globule region,
however as can be seen from the maps obtained with lower levels of populations (magenta and
pink), other region are also (slightly) populated. The pink map resembles the “generic” map
(in red in fig. 5) although the effect of the asymmetry term that biases the system towards the
“right handed” structures is evident.

7 Conclusions
In this paper we have reported two kinds of result. First we have derived analytical relationships
to convert the internal backbone coordinates of the all-atoms representation of the polypeptide
chain to the internal coordinates of the one(two) beads CG representation, namely the bond
angles and dihedrals θ and α. This result has a general applicability to all cases where the
geometry of the backbone must be described and only the coordinates of the Cαs are available,
for instance with low resolution or CG models. We have used these relationships to convert
the Ramachandran plot into new two-dimensional density plots in terms of the backbone
variables θ, α. These α, θ density plots can be used as the Ramachandran plot, i.e. to test the
reliability of proteins models, in low resolution or CG models, when the original Ramachandran
plot cannot be used.

Second, we have illustrated these ideas on a minimal one-bead polypeptide model that accounts
for the transition from αhelices to β sheets. With respect to the models available in the literature,
our model contains a more sophisticated bond angle term, that allows one to reproduce quite
accurately the α, θ plot. Furthermore, in spite of its simplicity, this model is shown to explore
the conformational space as accurately as more sophisticated multiple beads models. It is
arguable that an optimization and fine tuning of the parameters of the model can account for
the helix or sheet propensities of the different amino-acids and reproduce more complex
structures and transitions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic representation of the coarse graining procedure. The internal coordinates (ϕ, ψ ω)
and θ, α and the angles defining the CG geometry (τ, γ1; γ2) are reported.
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Figure 2.
Mapping of the ϕ, ψ plane onto the θ, α plane. Left: lines ϕ−ψ =cost are represented in different
colors. Right: The same lines are mapped onto the α, θ plane. The region that they define is
the image of the whole ϕ, ψ plane onto the α, θ plane through the (ϕ, ψ) → (α, θ) map. Some
relevant points are reported.
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Figure 3.
Mapping of the Ramachandran plot onto the α, θ plane for different aminoacid types. The “core
regions” are in green (right handed helices), red (left handed helices), blue (sheets). The allowed
regions (yellow and cyan) are omitted in the Generic and Glycine α, θ plot for clarity. Forbidden
regions are enclosed in the dotted lines. The contours of the “butterfly” image are reported as
black lines in the α, θ plane. The input data for the Ramachandran plot are taken from the
Protein Data Bank[18].
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Figure 4.
Typical α, θ density maps for two different kinds of FF. Left: Head-Gordon-like FF; right:
Mukherjee-like FF. Green=helix, blue=sheet, cyan=turn.
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Figure 5.
α, θ density maps for the FF in the present work. Left: version with harmonic cosine dihedral
potential; Center and right: version with cosine sum dihedral potential. Different maps are
obtained giving different weights to the terms, in order to reproduce the map for sheet (blue),
helix (green), glycine (cyan) and a generic model (red).
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Figure 6.
Relative stability and energy terms of the conformations explored during the simulations.
Black: total potential energy, red = non bonded energy, green: bond angle energy, blue: dihedral
energy. All energies are expressed in units of ∈. The extended conformation is taken as the
zero-level. Parameters of the dihedral and bond angle terms: A = 2∈, B = 4∈, C = 0:5∈, D =
0, . Representative structures extracted from the simulations are reported:
red=α-helix, pink=“broken-helix”, violet=random coil, cyan=β-hairpin and three-fold β-sheet.
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Figure 7.
“Representative values” of bond angles and dihedrals evaluated during the simulations starting
from the α helix (red) and from the extended structure (blue). The “representative value” is
evaluated as follows. For θ: for each timestep, all the 18 θ angles along the chain are measured,
and two average values are calculated, one for the “extended” and one for the
“helical” (conventionally separated by the value 113 deg). The representative value for θ is
then chosen as the (average) value of the the most populated structure, for each timestep. For
α: same procedure, except that in this case three separate average values are calculated for right
handed (between 0 and 115 deg) or left handed helices (between −115 and 0) and for extended
(otherwhise).
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Figure 8.
α, θ plot evaluated along the trajectories of the two simulations. Violet: simulation starting
from the extended conformation. Pink-magenta-red: simulation starting from the α helix at
increasing density values. The representative structures of the populated regions are reported.
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Table 1
Numerical values of the internal angles and dihedral coordinates in the all-atom and CG representation. Typical values
for secondary structures are reported. Data for ϕ and ψ were taken from textbooks[19,20], the corresponding structures
were built with the biopolymer module of Insight (MSI/Accelrys) and from those structures the θ and α angles were
measured.

structure ϕ ψ θ α

extended 180 180 146 180

βsheet anti-parallel −139 135 131 179

βsheet parallel ideal −120 120 121 178

βsheet parallel −120 113 119 177

fat ribbon −78 59 92 163

α helix −57 −47 92 52

3–10 helix −49 −29 85 81

π helix −57 −70 99 27

6-membered ring ideal 180 0 115 0

5-membered ring ideal −75 −75 105 0

5-membered ring −60 −105 108 0

α helix left handed 57 47 92 −52

collagen triple helix −51 153 117 −77

polypro-polygly left helix −79 150 121 −109
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