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    Introduction 
 The plasma membrane of fungal cells is laterally compart-

mented. Various membrane proteins fused to GFP are organized 

in specifi c surface patterns, whereas others are distributed 

homogeneously.  Bagnat and Simons (2002)  observed that 

Fus1-GFP, Gas1-derived GFP-glycosylphosphatidylinositol, and 

ergosterol are clustered at the tip of the shmoo, the mating pro-

jection of  Saccharomyces   cerevisiae . Proteins destined to the tip 

of the shmoo partition into this compartment and are thus re-

tained and segregated from the rest of the membrane.  Wachtler 

et al. (2003)  reported that sterols are localized in distinct regions 

of the plasma membrane of  Schizosaccharomyces   pombe  in a 

cell cycle – dependent manner. Membrane sterols are detected at 

the septum, the site of cell division, and at the growing tips. The 

phenomenon of sterol-rich domains in yeast plasma membrane 

was reviewed in  Alvarez et al. (2007) . Our earlier studies 

( Mal í nsk á  et al., 2003 ,  2004 ;  Grossmann et al., 2007 ) show that 

the plasma membrane proteins in  S. cerevisiae  are distributed in 

at least three different modes: either they are concentrated in 

discrete patches, each patch being  � 300 nm in diameter, they 

occupy a mesh-shaped compartment, which spreads between 

the patches, or they are homogenously dispersed throughout 

these two areas. The patchy compartment called membrane 

compartment of Can1 (MCC) contains, in addition to the argi-

nine transporter Can1, two other proton symporters, Fur4 and 

Tat2, and three tetraspan proteins of unknown function, Sur7, 

Fmp45, and Ynl194c ( Young et al., 2002 ;  Mal í nsk á  et al., 2003 , 

 2004 ;  Grossmann et al., 2007 ). In the mesh-shaped membrane 

compartment of Pma1, only the most abundant plasma mem-

brane protein, the H + -ATPase, has been localized so far ( Mal í nsk á  

et al., 2003 ). Finally, Hxt1 and Gap1 represent proteins that 

are homogenously distributed within the plasma membrane 

( Mal í nsk á  et al., 2003 ;  Lauwers et al., 2007 ). 

 In close vicinity to the plasma membrane and congruent 

with the MCC domain, the eisosome, a novel organelle postulated 

to be involved in endocytosis, has recently been described ( Walther 

et al., 2006 ). The two cytosolic proteins and major constituents of 

the eisosome, Pil1 and Lsp1, were colocalized with the MCC 

marker Sur7 ( Walther et al., 2006 ). In this study, to obtain a better 

understanding of the composition of the MCC, we identifi ed sev-

eral other proteins associated with this compartment. A collection 

I
n this study, we investigate whether the stable segrega-

tion of proteins and lipids within the yeast plasma mem-

brane serves a particular biological function. We show 

that 21 proteins cluster within or associate with the ergos-

terol-rich membrane compartment of Can1 (MCC). How-

ever, proteins of the endocytic machinery are excluded 

from MCC. In a screen, we identifi ed 28 genes affecting 

MCC appearance and found that genes involved in lipid 

biosynthesis and vesicle transport are signifi cantly over-

represented. Deletion of Pil1, a component of eisosomes, 

or of Nce102, an integral membrane protein of MCC, re-

sults in the dissipation of all MCC markers. These deletion 

mutants also show accelerated endocytosis of MCC-

resident permeases Can1 and Fur4. Our data suggest 

that release from MCC makes these proteins accessible to 

the endocytic machinery. Addition of arginine to wild-type 

cells leads to a similar redistribution and increased turn-

over of Can1. Thus, MCC represents a protective area 

within the plasma membrane to control turnover of trans-

port proteins.

 Plasma membrane microdomains regulate turnover 
of transport proteins in yeast 

  Guido   Grossmann ,  1    Jan   Malinsky ,  2    Wiebke   Stahlschmidt ,  1    Martin   Loibl ,  1    Ina   Weig-Meckl ,  1    Wolf B.   Frommer ,  4   

 Miroslava   Opekarov á  ,  3   and  Widmar   Tanner   1   

  1 Institute of Cell Biology and Plant Physiology, University of Regensburg, 93053 Regensburg, Germany 
  2 Institute of Experimental Medicine and  3 Institute of Microbiology, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic 
  4 Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305    

© 2008 Grossmann et al. This article is distributed under the terms of an Attribution–
Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months after the publica-
tion date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a 
Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, 
as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).



JCB • VOLUME 183 • NUMBER 6 • 2008 1076

involved in actin cytoskeleton formation, several fl avodoxin-like 

proteins (Pst2, Rfs1, and Ycp4), and four proteins with an un-

known function. A BLAST (basic local alignment search tool) 

analysis did not identify conserved domains in the 21 proteins 

that would indicate the existence of a specifi c targeting sequence 

motif. Because of the incomplete localization database, even 

further MCC-associated proteins can be expected. 

 Involvement of nonessential genes in MCC 
formation 
 To identify proteins involved in the plasma membrane compart-

mentation, we performed a visual genome-wide screen for dele-

tion mutants that shows an alteration in or a complete loss of 

MCC compartmentation. The hexose/H +  symporter HUP1 of 

the unicellular alga  Chlorella kessleri  was selected for the 

genome-wide screen. When expressed in  S. cerevisiae , HUP1 

accumulates in MCC patches and serves as the most sensitive 

marker of MCC integrity. Moreover, when expressed in yeast 

under the control of alcohol dehydrogenase promoter, HUP1 is 

stably expressed under all growth conditions ( Grossmann et al., 

2006 ,  2007 ). The yeast strain collection of nonessential gene 

knockouts was transformed with the HUP1-GFP fusion (see 

Materials and methods). The transformation was successful in 

91.3% (4,413/4,836) of mutants from the collection. The screen 

was performed by taking confocal images of the surface and a 

cross section of at least 30 cells each plus a differential interfer-

ence contrast image. For 4,365 strains (98.9%), an analyzable 

GFP signal was obtained. An altered distribution of HUP1-GFP 

was detected in 28 strains ( Table II ). These strains were subse-

quently checked for the distributions of Can1-GFP, Sur7-GFP, 

and of the plasma membrane sterols by staining with fi lipin 

( Fig. 2  and Fig. S1 A, available at http://www.jcb.org/cgi/

content/full/jcb.200806035/DC1). A complete image dataset of 

the mutant phenotypes is available in the supplemental material. 

 27 out of 28 strains affected in HUP1 distribution also 

showed an altered Can1 pattern. The Sur7 pattern was affected 

in 14 strains, and seven deletions affected sterol distribution 

( Table II ). Thus, although HUP1 is a heterologous protein, its 

association with the MCC is controlled by the same factors as 

Can1. The accumulation of Sur7 and sterols in MCC patches is 

less sensitive, defi ning at least three levels of MCC formation: a 

core of six proteins (level I), a second level of eight (important 

for effi cient SUR7 association with the patches; level II), and a 

third level of 14 that is required only for the association of the 

two transporters (level III). The core includes ergosterol biosyn-

thetic genes, the eisosome marker Pil1, the Nce102 protein, and 

the Golgi protein Och1. A homogenous distribution of all the 

plasma membrane markers was observed in  pil1  �  cells. Only a 

few enlarged patches are formed in the plasma membrane of 

this mutant. Similarly, dissipation of Lsp1 and Sur7 patches in 

 pil1  �  cells was reported by  Walther et al. (2006) . In the  nce102  �  

strain, HUP1 and Can1 were homogenously distributed, and the 

Sur7 patches were more diffuse ( Fig. 2 ). Among the nine mem-

brane proteins that are MCC constituents, Nce102 was the only 

one affecting MCC integrity. The  NCE102  deletion also se-

verely affects the number and distribution of eisosomes as 

judged from the Pil1-GFP pattern, whereas in the  PIL1  deletion, 

of yeast strains expressing full-length GFP fusions ( Huh et al., 

2003 ) revealed that several gene products exhibit a punctuate 

pattern. Inspecting this collection, we identifi ed 10 new pro-

teins with patchy localization at the cell cortex. Including inde-

pendently published data, we were thus able to allocate 21 

proteins altogether, the distribution of which fi tted the MCC 

pattern ( Roelants et al., 2002 ;  Young et al., 2002 ;  Fadri et al., 

2005 ;  Walther et al., 2006 ,  2007 ;  Luo et al., 2008 ). Nine of these 

proteins are members of the actual membrane compartment C, 

and 12 are putative cytosolic proteins, which gather in the im-

mediate neighborhood of the MCC patches. 

 The existence of plasma membrane compartments con-

taining distinct sets of proteins leads to questions concerning 

the relevance of this separation and the mechanism of its forma-

tion. Therefore, in the second part of our study, we performed a 

genome-wide visual screen for deletion mutants in which the 

formation of MCC is disturbed. Deviations from the original 

membrane pattern were observed in 28 mutants. 

 The genes affecting the wild-type plasma membrane com-

partmentation belong to two main groups: (1) genes involved in 

lipid biosynthesis and (2) genes involved in vesicle transport. 

The strongest deviations from the MCC pattern were manifested 

in  nce102  �  and  pil1  �  cells, lacking either the integral membrane 

protein Nce102, which itself is located within MCC, or the cyto-

solic Pil1 of eisosomes, respectively. In this study, which is 

focused on the MCC membrane compartmentation, we concen-

trated on Nce102 and its possible role in membrane organization. 

 Although compartmentation of the plasma membrane is a 

widespread phenomenon found in cells from bacteria to humans, 

physiological roles of this segregation are still debated ( Munro, 

2003 ;  Douglass and Vale, 2005 ;  Kenworthy, 2008 ). Our analysis 

of  nce102  �  and  pil1  �  mutants manifests a biological function 

regarding the recycling and/or degradation of plasma membrane 

proteins in  S. cerevisiae . It is shown that Can1 and Fur4 are more 

rapidly internalized and degraded when dissociated from MCC 

patches. In accordance with this proposal, established markers 

of endocytosis locate exclusively outside MCC. 

 Results 
 Protein composition of stable cortical 
patches 
 Visual inspection of the yeast database of proteins fused to GFP 

( Huh et al., 2003 ), covering two thirds of all annotated ORFs, 

revealed potential patch formation of several proteins. These 

proteins were tested for colocalization with Sur7 – monomeric 

red fl uorescent protein (mRFP), an endogenous marker of MCC 

( Mal í nsk á  et al., 2004 ). In addition to the known set of 11 pro-

teins, 10 new proteins that colocalized with the MCC pattern 

were identifi ed ( Fig. 1  and  Table I ). The set includes nine inte-

gral plasma membrane proteins with either 12 or four predicted 

transmembrane domains, three of which are transporters for 

small molecules. The 12 other proteins are soluble, and their 

patchy appearance at the cell cortex indicates their accumulation 

at the cytoplasmic side of the plasma membrane. These proteins 

include the eisosomal components Pil1 and Lsp1, two protein ki-

nases that regulate endocytosis (Pkh1 and Pkh2), Slm1, a protein 
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[27%]; background of 1.5%; p-value of 5.0  ×  10  � 7 ) were signif-

icantly overrepresented among the genes detected in the screen. 

This strongly suggests that lipids and the lipid composition of 

the plasma membrane play a major role in lateral compartmen-

tation. To test whether the immediate lipid milieu of Can1 is 

changed in the mutants exhibiting an altered distribution, 

the Nce102-GFP fusion protein is completely homogeneous 

(Fig. S1 B). 

 Gene ontology term analysis revealed that proteins in-

volved in vesicle-mediated transport (9/28 strains showing 

altered compartmentation [32%]; background frequency of 

4.9%; p-value of 4.7  ×  10  � 4 ) and lipid biosynthesis (8/28 

 Figure 1.    10 new proteins sharing the MCC localization.  Cortical distributions of 10 proteins (left; green in merge) were colocalized with the MCC pat-
tern marked with Sur7-mRFP (middle; red in merge). Tangential confocal sections are presented showing the cell surface and fl uorescence intensity profi les 
(diagrams) measured along the arrows. Mean fi lter was applied on the plotted curves to reduce the noise present in the raw data. Red and green curves 
were normalized to the same maximum value. Bar, 5  μ m.   
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strain expressing Can1-GFP was transformed with a vector con-

taining  NCE102  under a galactose-inducible promoter ( pGal1 ). 

The  nce102  �  phenotype persisted when the cells were grown in 

medium containing 2% raffi nose or 2% glucose. When 2% ga-

lactose was used as a carbon source, the Nce102 protein was 

fully expressed in  < 2 h, and under these conditions the normal 

distribution of Can1 was restored ( Fig. 4 ). This demonstrates 

that Nce102 is required for the de novo formation and probably 

also for the maintenance of the MCC compartment. However, 

the association of Can1 with MCC is delayed as compared with 

the appearance of Nce102-mRFP. After a 2-h induction, the mu-

tant phenotype is rescued in buds and younger cells. 

 Organization of MCC patches in relation to 
cell growth 
 As shown in  Fig. 1 , Nce102 clearly localizes to the MCC of 

mother cells. However, in young buds, Nce102-GFP appears to be 

distributed homogenously ( Fig. 5 A ). Only after the bud diameter 

reaches about one third of the mother ( Fig. 5 A , state III) do 

discernible patches become apparent. In contrast, Sur7-GFP and 

Pil1 are organized in patches in the buds from the time of their 

we checked whether Can1 is more accessible to increasing 

concentrations of Triton X-100. As shown in  Fig. 3 , Can1-

GFP solubilized with lower concentrations of detergent in the 

mutants as compared with the wild type. This agrees with the 

behavior of Can1 after treating the cells with uncouplers; the 

protein disperses ( Grossmann et al., 2007 ), and, at the same 

time, it is more effi ciently extractable by Triton X-100 ( Fig. 3 ). 

Thus, the transporters appear to be recruited to a preexisting 

core MCC compartment with a specifi c lipid composition. 

As a control, we tested the Triton X-100 extractability of Gap1, 

a protein that is homogeneously distributed in wild-type cells 

( Lauwers et al., 2007 ). The data show that there is no differ-

ence in the extractability between the wild-type and the Nce102 

and Pil1 deletion mutants ( Fig. 3 ). 

 Nce102 is necessary for the formation of 
MCC patches 
 To demonstrate directly the specifi c role of Nce102 in pattern 

formation, we tested whether the homogeneous distribution of 

Can1-GFP observed in  nce102  �  can be restored to wild-type 

levels by regulated expression of the  NCE102  gene. The  nce102  �  

 Table I.    Members of MCC and associated cytosolic proteins  

 Name  ORF  Molecular function  Biological process  TMDs  Localization references 

 Integral MCC 
      components 

Can1 YEL063C H + -driven arginine permease Basic amino acid transport 12  Mal í nsk á  et al., 2003 

Fur4 YBR021W H + -driven uracil permease Uracil transport 12  Mal í nsk á  et al., 2004 

Tat2 YOL020W H + -driven tryptophan and  
 tyrosine permease

Aromatic amino acid transport 12  Grossmann et al., 2007 

Nce102 YPR149W Unknown Nonclassical protein secretion 4 This study

Fmp45 YDL222C Unknown Ascospore formation 4  Young et al., 2002 

Sur7 YML052W Unknown Ascospore formation 4  Mal í nsk á  et al., 2003 ;  
  Young et al., 2002 

Ygr131w YGR131W Unknown Unknown 4 This study

Ylr414c YLR414C Unknown Unknown 4 This study

Ynl194c YNL194C Unknown Ascospore formation 4  Young et al., 2002 

 MCC-associated  
     cytosolic proteins 

Lsp1 YPL004C Protein kinase inhibitor  
 activity

Endocytosis (eisosome) 0  Walther et al., 2006 

Mdg1 YNL173C Unknown Pheromone signaling 0 This study

Pil1 YGR086C Protein kinase inhibitor  
 activity

Endocytosis (eisosome) 0  Walther et al., 2006 

Pkh1 YDR490C Ser/Thr protein kinase Endocytosis 0  Roelants et al., 2002 ;  
  Walther et al., 2007 ;  
  Luo et al., 2008 

Pkh2 YOL100W Ser/Thr protein kinase Endocytosis 0  Roelants et al., 2002 ;  
  Walther et al., 2007 ;  
  Luo et al., 2008 

Pst2 YDR032C Unknown Unknown 0 This study

Rfs1 YBR052C Unknown Unknown 0 This study

Slm1 YIL105C Phosphoinositide binding Actin cytoskeleton organization 0 This study;  
  Fadri et al., 2005 

Slm2 YNL047C Phosphoinositide binding Actin cytoskeleton organization 0  Fadri et al., 2005 

Ycp4 YCR004C Unknown Unknown 0 This study

Ygr130c YGR130C Unknown Unknown 0 This study

Ymr031c YMR031C Unknown Unknown 0 This study

TMD, transmembrane domain. Putative transmembrane domains are given as predicted by TmPred and transmembrane hidden Markov model (TMHMM).
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cyanide  p -trifl uoromethoxyphenylhydrazone), a potent protono-

phore ( Grossmann et al., 2007 ). The addition of FCCP to cells ex-

pressing Can1-GFP and Nce102-mRFP causes dissipation of the 

Can1 patches only, whereas Nce102 remains in the MCC ( Fig. 6 ). 

This indicates that the interaction between Nce102 and Can1 is 

mainly stabilized by electrostatic forces. Thus, Nce102 behaves 

similarly to Sur7, which has previously been shown to not respond 

to uncouplers either ( Grossmann et al., 2007 ). 

 MCC transporters are more prone to 
degradation in  pil1 �   and  nce102 �   cells 
 We checked whether the compartmentation has any effect 

on protein stability and/or its turnover.  Walther et al. (2006)  

emergence ( Fig. 5 A ). One of the main differences between young 

bud and mother cell membranes is the rate of growth, which is de-

termined by the arrival of secretory cargo. A similar situation ex-

ists in growing shmoos, the mating projections induced by mating 

factors. In agreement with this similarity between shmoos and 

buds, we observed a homogeneous distribution of Nce102-GFP 

and patches of Sur7-GFP and Pil1-GFP in shmoos ( Fig. 5 B ). In-

terestingly, Can1-GFP, which is hard to visualize in young buds, 

can be seen in shmoos, and its distribution correlates with that of 

Nce102-GFP. These data implicate an interdependence of Can1 

and Nce102. However, these two proteins can be separated from 

each other by membrane depolarization. As reported previously, 

Can1 patches can be dissipated by the addition of FCCP (carbonyl 

 Table II.    List of mutants revealed by a genome-wide screen that are affected in MCC formation  

Name ORF Main biological  
 process

Cellular  
 compartment

Strength of phenotype

 HUP1  Can1  Sur7  Filipin 

 Level I 
 ERG2 YMR202W Ergosterol biosynthesis ER  c  +++ +++ ++ ++

 ERG24 YNL280C Ergosterol biosynthesis ER  a  +++ +++ + ++

 ERG6 YML008C Ergosterol biosynthesis ER  a  +++ ++ + ++

 NCE102 YPR149W Nonclassical protein secretion Plasma membrane  d  +++ +++ ++ +

 OCH1 YGL038C  N -glycosylation Golgi  a  +++ +++ + +

 PIL1 YGR086C Endocytosis (eisosome) Cytoplasm – plasma  
 membrane associated  b  

+++ +++ ++ ++

 Level II 
 COG1 YGL223C Intra-Golgi vesicle-mediated transport Golgi  a  ++ +++ +  � 

 GOS1 YHL031C Intra-Golgi vesicle-mediated transport Golgi  b  ++ + +  � 

 OPI3 YJR073C Phosphatidylcholine biosynthesis ER  a  ++ +++ +  � 

 RVS161 YCR009C Polarization of the actin cytoskeleton,  
 endocytosis, and cell polarity

Cytoplasm – plasma  
 membrane associated  b  

++ ++ +  � 

 SUR4 YLR372W Sphingolipid biosynthesis ER  a  +++ +++ +  � 

 TAF14 YPL129W RNA polymerase II transcription  
 initiation and chromatin modifi cation

Nucleus  a  + + +  � 

 VPS52 YDR484W Retrograde transport and  
 endosome to Golgi

Golgi  a  +++ ++ +  � 

 VPS54 YDR027C Retrograde transport and  
 endosome to Golgi

Golgi  a  +++ +++ +  � 

 Level III 
 CAX4 YGR036C  N -glycosylation ER  a  +++ ++  �  � 

 ELP6 YMR312W Regulation of transcription Nucleus  c  + +  �  � 

 ERG5 YMR015C Ergosterol biosynthesis ER  a  +++ +++  �  � 

 FYV6 YNL133C Unknown Nucleus  a  +++ +  �  � 

 HNT3 YOR154W Unknown Cytoplasm  a  +++ +++  �  � 

 MNN10 YDR245W  N -glycosylation Golgi  a  ++  �  �  � 

 MNN11 YER001W  N -glycosylation Golgi  a  + +  �  � 

 NOT3 YIL038C Regulation of transcription Cytoplasm  a  + +  �  � 

 PEP12 YOR036W Golgi to vacuole transport Golgi  b  +++ +++  �  � 

 PEP7 YDR323C Golgi to vacuole transport Endosome  a  +++ ++  �  � 

 PER1 YCR044C GPI anchor biosynthesis ER  a  ++ ++  �  � 

 RPL13B YMR142C Translation Cytoplasm  a  ++ ++  �  � 

 SLM1 YIL105C Actin cytoskeleton organization Cytoplasm – plasma  
 membrane associated  d  

++ +  �  � 

 SWA2 YDR320C Vesicular transport ER  b  ++ +  �  � 

GPI, glycosylphosphatidylinositol. The phenotypes are categorized as follows: wild type – like,  � ; weak, +; medium, ++; strong, +++. Examples are given in  Fig. 2 .

 a GFP localization database; University of California, San Fransisco.

 b Inferred from direct assays.

 c Inferred from site of activity.

 d This study.
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Can1 turnover is severely inhibited in the  sla2 / end4  mutant at 

the nonpermissive temperature (unpublished data). Can1-GFP 

turnover was monitored in wild-type,  nce102  � , and  pil1  �  cells 

in the presence of cycloheximide. The basal turnover of Can1-

GFP was faster in the two mutants ( Fig. 7 A ); i.e., when it was 

not localized in the patches of the MCC compartment. This re-

sult has also been obtained with another proton symporter accu-

mulated in MCC, the uracil permease Fur4 ( Fig. 7 B ;  Dupre and 

Haguenauer-Tsapis, 2003 ;  Bultynck et al., 2006 ). Like Can1, 

Fur4 is also homogenously distributed in the plasma membrane 

of  nce102  �  and  pil1  �  mutants (Fig. S2, available at http://www

.jcb.org/cgi/content/full/jcb.200806035/DC1). 

reported a defect in endocytosis of the mating factor receptor 

Ste3 in the  pil1  �  mutant, which was taken as an indication of 

the role of Pil1 in endocytosis. Because of the fact that Pil1 is 

located in close vicinity to the patches containing Can1, we also 

tested whether the endocytosis of arginine permease is depen-

dent on the presence of Pil1, which would point to a more gen-

eral role of Pil1 in this process. The expression of  CAN1  is 

highly dependent on the growth phase, and its gene product is 

subjected to continuous turnover. At high extracellular arginine 

concentration, the permease is endocytosed and subsequently 

targeted to the vacuole ( Opekarov á  et al., 1998 ). Its endocytosis 

follows the classical clathrin – actin-mediated pathway because 

 Figure 2.    Distribution of MCC markers in se-
lected knockout strains.  Distributions of HUP1-
GFP, Can1-GFP, Sur7-GFP, and fi lipin-stained 
sterols were monitored in the library of single 
gene deletion strains (see Materials and meth-
ods). Examples of detected phenotypes (clas-
sifi cation of phenotypes: wild type [WT] – like, 
 � ; weak, +; medium, ++; strong, +++) on 
tangential confocal sections (HUP1, Can1, and 
Sur7) or wide-fi eld images (fi lipin; transversal 
sections) are presented. Note the relatively 
high background fl uorescence intensity be-
tween MCC patches in cells expressing HUP1-
GFP (Fig. S1 A, available at http://www.jcb
.org/cgi/content/full/jcb.200806035/DC1; 
 Grossmann et al., 2006 ). For a full dataset 
of all mutant phenotypes listed in  Table II , see 
supplemental material. Bars, 5  μ m.   
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Therefore, we investigated how typical endocytosis proteins are 

located in relation to MCC. 

 The inspection of the localization database revealed a group 

of cortically clustered cytosolic proteins. All of these proteins 

belong to the group of cortical actin-binding proteins that are 

involved in endocytosis ( Toret et al., 2008 ). For example, Rvs161 

is a cytosolic protein, which during endocytosis clusters at the 

endocytic site and remains there for several seconds ( Kaksonen 

et al., 2005 ). We document its movement in Videos 1 and 2 (avail-

able at http://www.jcb.org/cgi/content/full/jcb.200806035/DC1). 

Its patches are transient, but, once formed, they do not move 

parallel to the membrane. 

 We monitored the colocalization of Rvs161-GFP and Sur7-

mRFP for 180 s (36 frames; one frame per 5 s). Being aware of 

the thickness of a confocal section ( � 700 nm), artifactual over-

laps of the fl uorescence signals were avoided by analyzing tan-

gential confocal sections that revealed the cell surface.  Fig. 9 B  

shows a merged image of all time frames for Rvs161-GFP com-

pared with Sur7-mRFP. The overlap with MCC patches is minimal 

( Fig. 9 B  and Fig. S4 A, available at http://www.jcb.org/cgi/

content/full/jcb.200806035/DC1). Similarly, mutually exclusive 

localization of MCC patches and generally accepted early endo-

cytosis markers Ede1 ( Fig. 9 C  and Fig. S4 B) and Sla2 (not de-

picted) were observed. This strongly supports the observation that 

Can1 is more rapidly degraded when it is not confi ned to MCC, 

as is the case in the  pil1  �  and  nce102  �  mutants. This is also 

consistent with the observation that in comparison to basal turn-

over in the presence of cycloheximide, Can1 is internalized and 

degraded considerably faster in response to the addition of 5 mM 

arginine followed by the rapid spreading of permease ( Fig. 8 B ). 

 Similar although more rapid effects were observed when 

the fl uorescence of cells expressing Can1-GFP was followed 

after the addition of 5 mM arginine ( Fig. 8 A  and Fig. S3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200806035/DC1). 

Also, Can1-GFP was internalized faster in the two mutants as 

compared with the wild-type cells. After 90 min of incubation, 

stronger vacuolar staining is apparent in the mutants as com-

pared with the wild type. Furthermore, we observed that in the 

wild-type cells, the Can1-GFP pattern becomes more dispersed 

upon the addition of arginine ( Fig. 8 A , WT surface). In the 

presence of its abundant substrate, the transporter ’ s distribution 

is similar to that observed in the mutants from our screen (i.e., 

Can1 is dissipated from the patches to the surrounding area). 

Accordingly, the Triton X-100 extractability of Can1-GFP from 

membranes of cells treated with 5 mM arginine for 10 min is 

changed ( Fig. 8 B ) and is comparable with that found in the 

membranes from the two mutants ( Fig. 3 ). However, the addi-

tion of cycloheximide does not cause a spreading of Can1-GFP 

(unpublished data). Induced spreading of a transport protein 

was observed previously for HUP1-GFP; patchy accumulation 

of this transporter was more distinct in a low glucose medium 

( Grossmann et al., 2006 ). 

 Classical endocytosis occurs apart from 
MCC 
 The aforementioned results imply that the internalization of Can1 

takes place when the protein has left the MCC microdomain. 

 Figure 3.    Extractability of the transport proteins Can1 and Gap1 by 
Triton X-100.  Membranes were isolated from exponentially growing cells 
as described in Materials and methods. Aliquots corresponding to 50  μ g 
of membrane protein were treated with increasing concentrations of Triton 
X-100. The nonsolubilized proteins were resolved by SDS-PAGE and de-
tected by specifi c antibodies on Western blots. The fi gure is representative 
of three independent experiments. WT, wild type.   

 Figure 4.    Nce102 is required for MCC localization of Can1.  Plasma mem-
brane distribution of Can1-GFP was observed in  nce102  �  cells expressing 
Nce102-mRFP under the control of a galactose-inducible promoter. After 
the induction, gradual restoration of the wild type – like patchy distribution 
of Can1-GFP was followed on tangential confocal sections. On transversal 
sections of the same cells, it is notable that the pattern of bud membrane 
was restored earlier (arrowheads). Bar, 5  μ m.   
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specifi c in lipid composition ( Grossmann et al., 2007 ). By per-

forming several colocalization experiments and incorporating the 

localization studies of others ( Roelants et al., 2002 ;  Young et al., 

2002 ;  Fadri et al., 2005 ;  Walther et al., 2006 ,  2007 ;  Luo et al., 

2008 ), we listed a total of 21 proteins that mimic the distribution 

pattern of MCC ( Table I ). This list makes no claim to be com-

plete, but it already presents a considerable number of proteins, 

which either reside within the membrane or are situated intra-

cellularly, and are closely associated with the membrane com-

partment C. According to membrane topology predictions, only 

nine of these are integral membrane proteins, whereas the other 

12 seem to be cytosolic ( Table I ). The fi rst group contains three 

members of the major facilitator family (Can1, Fur4, and Tat2) 

and six proteins with four predicted transmembrane domains 

but with unknown functions. Among the cytosolic proteins, the 

primary components of eisosomes Pil1 and Lsp1 are listed. 

Eisosomes are large structures located internally next to the 

MCC patches; they were postulated to be static initiation sites 

for Ste3 endocytosis ( Walther et al., 2006 ). 

 Approaching the question about the function of MCC, we 

performed a genome-wide screen to identify mutants exhibiting 

 Discussion 
 More and more evidence indicates that the ability of the plasma 

membrane to form subcompartments through the generation of 

lateral microdomains is a widespread feature throughout all or-

ganisms. Membrane microdomains in living cells were fi rst vi-

sualized by light microscopy in the budding yeast  S. cerevisiae  

( Young et al., 2002 ;  Mal í nsk á  et al., 2003 ), and later they were 

also reported in plants ( Sutter et al., 2006 ;  Homann et al., 2007 ) 

and even in bacteria ( Johnson et al., 2004 ;  Matsumoto et al., 

2006 ). Novel high resolution techniques of light microscopy 

can be used to visualize even very small microdomains in mam-

malian cells. Using stimulated emission-depletion microscopy, 

small syntaxin clusters of  � 70 nm in diameter have been re-

solved in vivo in neuroendocrine PC12 cells ( Sieber et al., 

2006 ). In mammalian cells, the clustering of specifi c membrane 

proteins is mainly discussed in relation to signaling ( Tian et al., 

2007 ; for review see  Simons and Ikonen, 1997 ). 

 In this study, we focused on 300-nm patches of MCC, 

large plasma membrane domains observed in  S. cerevisiae  

( Young et al., 2002 ;  Mal í nsk á  et al., 2003 ) and shown to be 

 Figure 5.    Nce102 is homogenously distributed 
in membranes of buds and shmoos.  (A) Develop-
ment of the membrane distribution of Nce102-GFP, 
Sur7-GFP, and Pil1-GFP in mother cells and buds of 
increasing size (I – IV). (B) Localization of the pro-
teins examined in A and Can1-GFP in cells (genetic 
background: BY4741  MAT a; OD 600  = 0.25) treated 
with 30  μ g/ml  �  factor for 2 h. 3D reconstructions 
of confocal z stacks are presented. Bars, 2  μ m.   
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for Can1 targeting ( Opekarov á  et al., 2005 ). In a genome-wide 

visual screen for a role of sphingolipids and ergosterol in the 

cell surface delivery,  Proszynski et al. (2005)  demonstrated that 

they are indispensable for the plasma membrane delivery of a 

Fus-Mid-GFP marker protein ( Proszynski et al., 2005 ). The 

specifi c lipid surrounding of membrane proteins is maintained 

even in the plasma membrane in the form of lateral membrane 

microdomains. For example, Tat2 remains associated with 

ergosterol that is enriched within the MCC patches ( Grossmann 

et al., 2007 ). 

 The fi rst notion of lipid-determined plasma membrane 

compartmentation is related to the observation of lipid rafts in 

mammalian cells (for reviews see  Simons and Ikonen, 1997 ; 

 Edidin, 2003 ;  Jacobson et al., 2007 ). The raft fraction has oper-

ationally been defi ned as mild detergent-resistant membranes 

( Brown and Rose, 1992 ). However, all of the plasma membrane 

proteins of yeast analyzed so far, independent of their mode of 

localization, were associated with detergent-resistant mem-

branes ( Lauwers and Andr é , 2006 ;  Lauwers et al., 2007 ). Ap-

parently, the observed MCC patches represent an organization 

of a specifi c type of rafts. 

 Our screen revealed only six proteins, the absence of 

which led to a clear effect on the distribution of all four markers 

(HUP1, Can1, Sur7, and ergosterol). In addition to the three 

members involved in the ergosterol biosynthesis (Erg24, Erg6, 

and Erg2), these are Och1, Nce102, and Pil1. Interestingly, the 

latter two colocalize with MCC; Nce102 is an integral part of 

MCC, and Pil1 is an eisosome component, which is in some 

way associated with the plasma membrane. Thus, Nce102 is the 

only protein component of MCC that controls the association of 

several transporters with this compartment. Pil1 is a primary 

component of eisosomes and was postulated to be involved in 

endocytosis of Ste3 ( Walther et al., 2006 ). It is regulated by the 

protein kinases Pkh1 and Pkh2 ( Walther et al., 2007 ;  Luo et al., 

2008 ), which are activated by sphingoid long-chain bases ( Friant 

a defect in the plasma membrane compartmentation. Their clas-

sifi cation and further analysis could reveal a mechanism for 

MCC formation as well as physiological consequences result-

ing from the loss of the protein arrangements in the patches. 

 We reported previously that the stable patchy distribution 

of Can1- and HUP1-GFP is affected in the ergosterol biosynthe-

sis mutants  erg6  �  and  erg24  � . The traffi cking of the proteins is 

disturbed in these mutants; however, the fraction of the protein 

reaching the plasma membrane lost the patchy distribution 

( Mal í nsk á  et al., 2003 ;  Grossmann et al., 2006 ). In this study, 

we searched for further mutants exhibiting a similar defect in 

MCC sorting. An additional 26 mutants with a defect in the pat-

terning of HUP1-GFP and/or Can1-GFP were identifi ed. Less 

than half of these mutants also exhibited signifi cant changes in 

the Sur7-GFP pattern, and even fewer were affected in the dis-

tribution of sterols. It goes without saying that such a screen is 

necessarily incomplete because only nonessential genes were 

analyzed, and important proteins might have been missed be-

cause of genetic redundancy. 

 Among the mutants found to be affected in MCC forma-

tion and design, two groups are overrepresented: mutants in-

volved in vesicular transport and those involved in lipid 

metabolism. In fact, these two categories are functionally inter-

connected. Because of their hydrophobicity, the membrane pro-

teins are traffi cked in a complex with specifi c lipids within the 

vesicle membrane ( Opekarov á , 2004 ). An interaction of mem-

brane proteins with specifi c lipids is essential for their correct 

targeting and activity. In  S. cerevisiae , Pma1 targeting and stabi-

lization require sphingolipids, especially their very long acyl chain 

component ( Lee et al., 2002 ;  Gaigg et al., 2005 ;  Gaigg et al., 2006 ). 

However, the tryptophan permease Tat2 requires ergosterol spe-

cifi cally for the plasma membrane targeting ( Umebayashi and 

Nakano, 2003 ). Similarly, HUP1 activity is decreased when the 

protein is heterologously expressed in a yeast mutant lacking 

ergosterol ( Grossmann et al., 2006 ). The general amino acid 

permease Gap1 is not stable in the absence of sphingolipids, 

and it is inactive when forced to localize into the plasma mem-

brane in endocytic mutants ( Lauwers et al., 2007 ). A specifi c 

requirement for phosphatidyl ethanolamine was demonstrated 

 Figure 6.    Can1-GFP dissociates from Nce102-mRFP upon membrane de-
polarization.  Surface views of cells expressing Can1-GFP and Nce102-
mRFP before (top) and 2 min after the addition of 50  μ M FCCP to the 
medium (bottom) are shown. Bar, 2  μ m.   

 Figure 7.    Degradation of MCC transporters is accelerated in mutants af-
fected in the domain formation.  (A and B) Exponentially growing cultures 
of wild-type (WT),  nce102  � , and  pil1  �  cells expressing Can1-GFP (A) and 
Fur4-GFP (B) were treated with cycloheximide. At the given time points, 
total membranes were isolated from the culture aliquots (see Materials and 
methods). The membrane proteins were resolved by SDS-PAGE, and Can1-
GFP and Fur4-GFP were detected by anti-GFP antibody on Western blots. 
2.5  μ g of the total protein was loaded into each lane. Black lines indicate 
that intervening lanes have been spliced out.   
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endocytic events over time. We detected no overlap of these 

marker proteins with MCC patches, which must mean that endo-

cytosis occurs outside the MCC. This statement was indepen-

dently strengthened by the observation of a gradual release of 

Can1-GFP from its compartment when endocytosis was induced 

by an excess of arginine. Collectively, the separation of the endo-

cytosis machinery from MCC and the release of Can1-GFP be-

fore endocytosis support the idea of MCC as a protective area 

providing Can1 with higher stability. As soon as the transporter is 

released from the protective surrounding, it is exposed to inter-

nalization by classical mechanisms. This explains why endocyto-

sis of Can1 occurs faster in mutants that are unable to build up the 

MCC patches, which is obviously a shelter for certain membrane 

constituents. The same features have been observed for the Fur4 

transport protein. Our observations do not necessarily contradict 

the fi ndings of  Walther et al. (2006) , who reported a decreased 

rate of Ste3 endocytosis in  pil1  �  cells. Proteins released from the 

MCC patches could be occasional competitors in endocytosis for 

the proteins homogenously distributed in the membrane, like 

Ste3 ( Oestreich et al., 2007 ); the latter would always be exposed 

to internalization forces. This might be the reason why the endo-

cytosis of Ste3 is retarded in mutants devoid of MCC patches 

( pil1  � ). This explanation does not hold for the artifi cial endo-

cytic substrate FM4-64, the use of which has been reported to 

have several side effects. For example, we observed that the ad-

dition of FM4-64 to cells expressing Can1-GFP causes a rapid 

loss of the permease patterning comparable with that after the 

addition of uncoupling agents (unpublished data). Very recently, 

a retardation of Ste2-GFP and FM4-64 internalization was re-

ported in the  sur7  �  strain of  Candida   albicans . However, in this 

case, the eisosomes remained intact ( Alvarez et al., 2008 ). 

et al., 2001 ). Long-chain bases themselves are required for the 

internalization step of endocytosis ( Zanolari et al., 2000 ). How-

ever, Pil1 down-regulates the Pkc1 – mitogen-activated protein 

and Ypk1 pathways also implicated in endocytosis ( Zhang 

et al., 2004 ). 

 The gene product of  NCE102  has been suggested to be 

involved in nonclassical protein secretion ( Cleves et al., 1996 ). 

The gene encodes a protein of  � 19 kD with four predicted 

membrane-spanning domains. As revealed in the screen, 

Nce102 expression is a prerequisite for the segregation of 

Can1 (and other specifi c transporters) into the MCC patches. 

The two proteins Pil1 and Nce102 have common features in 

that they are highly conserved throughout fungi ( Ascomycota ), 

their expression is cell cycle dependent ( Spellman et al., 1998 ), 

and they are induced by stress ( Gasch et al., 2000 ,  2001 ;  

Suzuki et al., 2003 ). 

 As indicated by Triton X-100 extraction, the lipid environ-

ment of Can1 changes when the protein is liberated from the 

MCC patches regardless of the mechanism of its release (mem-

brane depolarization, mutations, or excess of substrate;  Fig. 3 ). 

We addressed the question of whether the protein localization 

could affect its turnover. Indeed, we observed a faster Can1 inter-

nalization in both  pil1  �  and  nce102  �  mutants either upon the ad-

dition of an excess substrate (arginine) or when occuring after 

substrate-independent basal turnover/degradation in the presence 

of cycloheximide ( Fig. 8 A  and  Fig. 7 , respectively). The delayed 

rate of endocytosis in wild-type cells indicates that the proteins 

localized in MCC patches are protected against internalization. 

 To test mutual localization of sites of endocytosis and the 

MCC patches, we used GFP fusions of Rvs161 and two other en-

docytic markers, Ede1 and Sla2, for visualization of numerous 

 Figure 8.    Can1 is released from MCC patches before endo-
cytosis.  (A) Can1-GFP was localized in the wild-type (WT), 
 nce102  � , and  pil1  �  cells before (top) and 90 min after the 
addition of 5 mM arginine (middle). Arginine-induced loss 
of patchy Can1-GFP pattern on the surface confocal sections 
(left) and the amount of the internalized protein on transversal 
sections could be easily followed. Note the signifi cantly more 
intensive vacuolar staining in the mutants lacking the MCC 
patches as compared with wild type. The whole experiment 
is documented in Fig. S3 (available at http://www.jcb.org/
cgi/content/full/jcb.200806035/DC1). (B) Extractability of 
Can1-GFP in Triton X-100 was detected in the membranes of 
wild-type cells before and 10 min after the addition of 5 mM 
arginine. Anti-GFP antibody was used for the detection of the 
protein on Western blots. Bar, 5  μ m.   
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unprotected area ( Fig. 10 ). This phenomenon can serve as an 

example of a spatially confi ned regulatory mechanism. 

 Materials and methods 
 Strains and growth conditions 
 Plasmid amplifi cation was performed in the  Escherichia   coli  host XL1-blue 
( Bullock et al., 1987 ). The bacterial strains were grown at 37 ° C in 2TY 
medium (1% tryptone, 1.6% yeast extract, and 0.5% NaCl) supplemented 
with 100  μ g/ml ampicillin for a selection of transformants.  S. cerevisiae  
strains used in this study are listed in Table S1 (available at http://www
.jcb.org/cgi/content/full/jcb.200806035/DC1). Yeast cells were cultured 
in a rich medium YPD (1% yeast extract, 2% peptone, and 2% glucose) or 
in a synthetic minimal medium (SD; 0.67% yeast nitrogen base without 
amino acids [Difco; BD] and 2% glucose supplemented with essential 
amino acids). To induce Gap1 expression, cells were grown in medium 
containing 0.1% proline as the sole nitrogen source. Endocytosis of Can1 
was induced by the addition of 5 mM arginine to the exponentially growing 

 So far, we can only speculate on the molecular mecha-

nism of the MCC shelter function. Because Pil1 down-regulates 

the Pkc1 – mitogen-activated protein and Ypk1 pathways also in-

volved in endocytosis ( Zhang et al., 2004 ), it is conceivable that 

endocytosis is inhibited at places of Pil1 accumulation. In other 

words, Pil1 clustering underneath MCC patches directs the en-

docytic activity outside this specialized membrane area. As fol-

lows from our results, Nce102 anchors Can1, Fur4, and others 

within this area and thus protects them from internalization. 

The anchoring interaction seems to be mediated by Coulombic 

forces, as Can1 but not Nce102 ( Fig. 6 ) is released from the 

MCC patches after membrane depolarization. With respect to 

endocytosis, two functionally distinct compartments coexist 

within the plasma membrane: MCC patches with the combined 

protecting potential of Nce102 and Pil1 and a remaining 

 Figure 9.    Sites of classical endocytosis do not colocalize with MCC.  (B and C) The plasma membrane distributions of Rvs161 (B) and Ede1 (C), markers of 
late and early endocytic steps, respectively, were tested for colocalization with the MCC marker Sur7. For comparison, localization of the MCC resident 
Nce102 was analyzed (A). Tangential confocal sections showing the cell surface are presented. Because of a high mobility of Rvs161 patches, a maximum 
intensity projection of 36 frames (5 s per frame) instead of a single frame is shown in B. In this arrangement, a higher number of Rvs161 patches could be 
localized toward the stable Sur7 pattern at the same time. The rate of colocalization was quantifi ed by fl uorescence intensity profi les (top diagrams and 
arrows in merge) and 2D scatter plots of the whole full resolution images (Fig. S4, available at http://www.jcb.org/cgi/content/full/jcb.200806035/DC1). 
For easy orientation in the scatter plots, real pixel colors were used. Note the diagonal orientation of the Nce102-derived scatter plot demonstrating the 
colocalization of red and green fl uorescence signals and a clear separation of red and green pixels in the two other cases. Examples of Sur7 patches 
adjacent to endocytic sites are highlighted (arrowheads). Bar, 5  μ m.   
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1 ml of ice-cold TNE-I buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, and 
5 mM EDTA) supplemented with protease inhibitors (1 mM PMSF, 4  μ M leu-
peptin, and 2  μ M pepstatin). The samples were immediately frozen in liq-
uid nitrogen and stored at  � 80 ° C. To isolate crude membranes, the cells 
were broken with glass beads in a FastPrep instrument (Thermo Fisher Sci-
entifi c). Unbroken cells and larger cell debris were removed by low speed 
centrifugation in a centrifuge (Eppendorf) at 2,300 rpm (1 min/2  ×  5 min). 
Crude membranes were pelleted by centrifugation at 14,000 rpm for 
75 min and resuspended in TNE-I buffer. 

 Determination of detergent resistance 
 Aliquots corresponding to 50  μ g of membrane protein in 100  μ l TNE-I 
were treated with increasing concentrations of Triton X-100 (0 – 0.8%) at 
room temperature for 30 min. The nonsolubilized material was pelleted by 
centrifugation (Eppendorf microfuge; 14,000 rpm at 4 ° C for 30 min) and 
washed by 100  μ l of the corresponding buffers under the same conditions. 
The pellets were resuspended in 40  μ l of sample buffer and dissociated at 
90 ° C for 2 min. Samples of 5  μ l were resolved by SDS-PAGE, and Can1-
GFP was detected by a specifi c anti-GFP antibody on a Western blot. 

 Online supplemental material 
 Table S1 lists all strains used in this study. Fig. S1 A presents confocal cross 
sections of selected deletion strains shown in  Fig. 2 . Fig. S1 B presents further 
analysis of  pil1  �  and  nce102  �  cells. In Fig. S2, the localization of Fur4-GFP 
in these mutants is compared with wild type. Fig. S3 shows the full image 
set of the experiment presented in  Fig. 8 A . Fig. S4, Video 1, and Video 
2 contain whole full resolution data used for the 2D scatter plot analyses 
presented in  Fig. 9 . Supplemental material also shows a full dataset of all 
mutant phenotypes listed in  Table II . Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200806035/DC1. 
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