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Abstract
Overexpression of ATP-binding cassette (ABC) drug transporters that actively efflux a variety of
amphipathic compounds can cause multidrug resistance (MDR) in cancer cells, which is a major
obstacle in the success of cancer chemotherapy. The development of synthetic small molecule
compounds or the identification of natural products that block ABC transporter-mediated efflux has
been the conventional approach used to combat MDR. The strategy of using chemosensitizers,
however, has not been successful in clinical cancer chemotherapy. Therefore, alternative approaches
to identify or to synthesize compounds that can induce selective toxicity in cancer cells
overexpressing one or more ABC transporters have been undertaken. This review summarizes the
recent advances in identifying strategies to restore sensitivity to chemotherapeutics in multidrug
resistant cancer cells.
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THE FUNCTION AND SIGNIFICANCE OF ATP-BINDING CASSETTE
TRANSPORTERS IN THE DEVELOPMENT OF MULTIDRUG RESISTANCE IN
CANCER CELLS

Multidrug resistance (MDR) in cancer is a phenomenon that occurs when cancer cells become
simultaneously resistant to structurally unrelated chemotherapeutic agents. MDR in cancer
patients will eventually lead to the failure of cancer treatment. Several cellular mechanisms
can be responsible for MDR, such as reduced apoptosis, advanced DNA damage repair
mechanisms or altered drug metabolism. However, the most common mechanism of resistance
is the active efflux of drugs by ATP-binding cassette (ABC) transporters. These transporters
have important physiological roles in mammalian cells, which have been extensively reviewed
[1–4].

ABC drug transporters
ABC transporters are membrane proteins consisting of both transmembrane domains (TMDs)
and distinctive nucleotide-binding domains (NBDs), which generate energy from ATP
hydrolysis to actively transport a variety of compounds across the membrane [4]. These
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transporters belong to the ABC protein superfamily which is subdivided into seven distinct
subfamilies (ABCA-ABCG) based on sequence homology and domain organization. Among
others, three members of the ABC transporter family, ABCB1 (P-glycoprotein or Pgp), ABCC1
(MRP1) and ABCG2 (MXR, BCRP), appear to play an important role in the development of
MDR in cancer cells. Several members of this family are capable of actively transporting a
wide range of substrates including ions, sugars, amino acids, lipids, toxins and anticancer drugs.
Essentially, when these ABC drug transporters are overexpressed in cancer cells, they can
confer cross-resistance to multiple drugs of differing chemical classes by actively effluxing
cytotoxic drugs, thus reducing the accumulated amount of drug below the effective
chemotherapeutic level and resulting in MDR [5–7]. In addition, at least 15 genetic disease
conditions are associated with defects in 20 members of the ABC superfamily, such as Cystic
fibrosis (ABCC7), Tangier Disease (ABCA1), Dubin-Johnson syndrome (ABCC2) and
Pseudoxanthoma elasticum (ABCC6) [1].

P-glycoprotein (ABCB1)—ABCB1 was the first human ABC drug transporter identified
and has been studied extensively [8]. It transports a broad variety of compounds, including
some of the most popular anticancer drugs such as taxanes, anthracyclines and Vinca alkaloids
[8]. Since all attempts to obtain crystals of human ABCB1 suitable for X-ray crystallography
have failed thus far, the structure of ABCB1 (and other human ABC drug transporters) is
predicted based on biochemical studies, mutational analysis and structural information from
bacterial homologs such as Sav1866 [9]. Although a low resolution structure based on electron
microscopy has been described [10,11], the predicted structure of human ABCB1 is believed
to consist of 2 halves, each with one transmembrane domain (TMD) containing six
transmembrane helices and 1 NBD, with helices 4, 5 and 6 in the N-terminal half and helices
10, 11 and 12 in the C-terminal half to form the transport substrate site(s) [12–14].

ABCC1 and ABCG2—ABCC1 was the first member of the MRP family that was found to
be linked with MDR by Cole et al. [15]. Structurally, ABCC1 is predicted to have three TMDs
containing17 transmembrane helices. Unlike ABCB1, it has one additional TMD with five
transmembrane helices within its N-terminal region [16,17]. In addition to transporting its
physiological substrate such as oxidized glutathione (GSSG) [18] or LTC4 [19,20], ABCC1 is
capable of transporting anticancer drugs such as anthracyclines and mitoxantrone, as well as
drugs conjugated to glutathione- (GSH), sulfate- or glucuronate [21]. A more recently
identified drug transporter is ABCG2, also known as ABCP [22], breast cancer resistance
protein [23] or mitoxantrone resistance protein [24], which is a half-transporter with one NBD
and one TMD consisting of 6 transmembrane helices. Unlike ABCB1 and ABCC1, ABCG2
must dimerize to function, and it is believed to function as a homodimer or oligomer. [25].
Similar to ABCB1 and ABCC1, ABCG2 transports a variety of drugs, including
anthracyclines, mitoxantrone, topotecan, etoposide, prazosin and flavopiridol [26–30] as well
as other compounds such as riboflavin [31] and sterols [32,33]. ABCG2 is expressed on stem
cells of both normal and cancer lineages [34].

Clinical significance
Cancer treatment often involves the use of chemotherapeutic agents; yet these drugs are not
always effective. This loss of efficacy is predominantly correlated with the overexpression of
ABC drug transporters [5], which was first described in the early 1970’s [35]. Various tumors
such as renal cell, adrenocortical, colon and hepatocellular cancers express ABCB1 and are
principally chemoresistant [36]. In contrast, exposure to chemotherapeutics causes an
upregulation of ABC transporters on relapse of disease in cancers with low baseline expression
of these transporters. Expression of ABC transporters is well documented in patients with
leukemia; in acute myelocytic leukemia (AML) 30% of patients express ABCB1 while over
50% express ABCB1 at relapse. Plasschaert and colleagues showed that ABCG2 has higher
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expression and is functionally more active in acute lymphoblastic leukemia (ALL) B-lineage
than in T-lineage samples [37]. In their report, the wild type ABCG2 gene was found in the
samples which transported Rhodamine 123. Although the expression of ABCB1 plays an
important role in MDR for leukemia, there are discrepancies in studies performed to evaluate
the importance of ABCG2 in this cancer (reviewed in [7]). Expression of ABCG2 has been
reported in a variety of other cancers and is most prominent in colon, stomach and esophageal
cancer [38].

In addition to causing multidrug resistance, ABC transporters have a great impact on the
pharmacokinetics of chemotherapeutic agents. Both ABCB1 and ABCG2 are expressed at the
blood-brain barrier and in the gastrointestinal tract. Expression of ABC transporters in these
biological barriers limits the absorption of various compounds in these tissues. The oral
bioavailability of a number of anticancer agents is altered by ABC transporter expression.
[39–42]. ABCG2 has also been identified in the apical membrane of alveolar epithelial cells
in lactating mammary glands of mice, cows and humans [43] and there serves to transfer drugs
and xenotoxins into breast milk. Although ABCG2 plays a protective role in the mammary
glands, paradoxically, carcinogens and toxins are concentrated and passed on to the infant by
ABCG2. In contrast, ABCG2 localized to the placenta effluxes compounds away from the fetus
and plays a role in the maternal-fetal barrier [44]. Investigators have reported a variety of
compounds such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-
methylimidazo[4,5-f]quinoline (IQ) and riboflavin which have been secreted by ABCG2 into
breast milk [31,43,45,46]. There have been many recent reviews which focus on the clinical
significance of ABC transporters in the pharmacokinetics of drugs [6,47,48]. In the following
sections, we summarize the strategies employed by researchers to combat MDR in cancer.

RE-SENSITIZING MDR CANCER CELLS TO ANTICANCER DRUGS BY
DEVELOPING INHIBITORS TO ABC DRUG TRANSPORTERS

Ideally, the most direct and easiest way to restore drug sensitivity in MDR cancer cells caused
by ABC drug transporters is to block transporter-mediated drug efflux. Since 1980, researchers
have been searching for both broad-spectrum and specific modulators that can reverse MDR
in cancer cells. Tremendous efforts have been made to discover and synthesize such inhibitors/
modulators. Several examples of ABC drug transporter inhibitors which have been discovered
or synthesized are listed in Table 1. In addition, alternative strategies such as regulating
expression of drug transporters or using drugs that specifically target drug transporters are also
discussed later.

Designing or finding potent chemosensitizers that are selective, low in intrinsic toxicity and
highly effective has been more difficult than expected. However, how to tackle drug resistance
using available pharmacological and structural information to select or design new inhibitors
(reviewed in [3,49,50]) is now much clearer. It is agreed in principle that an inhibitor/
chemosensitizer must be able to increase intracellular anticancer drug levels, restore drug
sensitivity and/or interfere with photoaffinity labeling of a particular drug transporter [49]. The
first ABCB1 chemosensitizer was identified in 1981 by Tsuruo et al. when the calcium channel
blocker verapamil was found to re-sensitize vincristine-resistant P388 leukemia cells to
vincristine and vinblastine [51]. A subsequent study presented direct evidence that verapamil
restored Vinca-alkaloid toxicity by increasing its accumulation in resistant cells [52]. However,
verapamil at its highest tolerable concentration failed to enhance vinblastine efficacy in a phase
I clinical trial carried out in 1985 [53]. Several years later, the immunosuppressant cyclosporine
A (CsA) was shown to completely re-sensitize a resistant variant of human T-cell acute
lymphatic leukemia cell line to vincristine and daunorubicin. Furthermore, CsA was also
effective against doxorubicin resistance in solid tumors [54]. It was thereafter used as a
benchmark for ABCB1 inhibitors for in vitro studies due to its high potency and low intrinsic
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toxicity [55,56]. Unfortunately, similarly to verapamil in clinical trials, CsA failed to achieve
clinical inhibition of ABCB1 at the concentrations tested [57–59]. More recently, CsA was
also shown to block ABCG2-mediated efflux and restore drug sensitivity in ABCG2
overexpressing cells [60,61]. It is important to note that both verapamil and CsA are transported
by ABCB1 and thus, they modulate the efflux function by competing for the substrate binding
site(s).

After the failure of these 1st generation ABCB1 inhibitors, the quantitative structural activity
relationship approach was used to generate the 2nd generation of ABCB1 inhibitors such as
SDZ PSC833 (Valspodar) and S9788. SDZ PSC833 is a non-immunosuppressive CsA
derivative developed in 1991, and S9788 is a triazine that was designed based on the chemical
structure of verapamil [62,63]. Disappointingly, despite being much more potent than CsA in
in vitro testing [64], serious complications arose in clinical trials when SDZ PSC833 was used
in combination with anticancer drugs [65,66]. It emerged that SDZ PSC833 partially impairs
drug metabolism and elimination, significantly reduces the systemic clearance of anticancer
drugs and consequently elevates toxicity [65,66]. More recently, SDZ PSC833 was tested on
patients with recurring or refractory multiple myeloma, but again failed to improve the
treatment [67].

GF120918 (Elacridar), OC144-093 (Ontogen), XR9576 (Tariquidar) and LY335979
(Zosuquidar) are 3rd generation ABCB1 inhibitors (see Table 1). They were synthesized in an
attempt to improve on the 2nd generation inhibitors [68–71] and are reported to be more
selective and work in the nanomolar concentration range [72–74]. LY335979 very potently
and specifically inhibit ABCB1 function [75]. It was able to reduce tumor mass and prolong
survival in mice engrafted with drug resistant human tumors [75]. On the other hand, GF120918
[68,76] and the anthranilamide derivative XR9576 [72,73,77] inhibit not only ABCB1, but
also ABCG2-mediated transport. GF120918 sensitized human MDR sarcoma MES-Dx5 cells
and improved topotecan bioavailability in mice [28,39]. Phase I and II clinical trials have been
and are being performed on some of these 3rd generation inhibitors [78–81], and results are
very promising [82–84].

ABCC1 [15] and ABCG2 [23] are more recently identified ABC drug transporters. Therefore,
data on them are not as extensive as that for ABCB1. In 1995, a leukotriene LTD4 receptor
antagonist MK-571 was discovered by Gekeler et al. to inhibit ABCC1-mediated transport
without any effects on ABCB1 [85]. Being low in intrinsic toxicity, relatively potent and
specific, MK-571 is thus still the benchmark inhibitor to block ABCC1-mediated drug
transport. Soon after the discovery of ABCG2, a fungal toxin Fumitremorgin C (FTC), was
shown to inhibit ABCG2-mediated transport [86]. FTC is both highly potent and specific, but
with undesirable neurotoxic effects in vivo. Subsequent studies resulted in the development of
Ko143, a new tetracyclic analog of FTC that is even more potent and specific yet non-toxic,
which is ideal for future clinical studies [87].

Furthermore, many natural products have shown promising chemosensitizing effects on ABC
drug transporters. Compounds such as curcumin, ginsenoside, some polyphenols and anti-
malarials are derived from natural sources and show low intrinsic toxicity. Many of them
demonstrate broad-spectrum modulatory effects on more than one ABC drug transporter (Table
1). For example, plant polyphenols [88–90] and curcumin [91–93] have been reported to
modulate all three major ABC drug transporters: ABCB1, ABCC1 and ABCG2. However,
regardless of the source of the inhibitors, unpredictable pharmacokinetic drug interactions,
simultaneous involvement of several drug transporters in tumor tissues, as well as the
variability in drug transporter expression levels among individuals, remain major obstacles to
using modulators to restore drug sensitivity in the clinic.
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ALTERNATIVE APPROACHES TO REVERSING MDR
With the lack of success in inhibiting multidrug resistance using traditional drug inhibitors,
investigators have designed novel compounds to circumvent ABC transporters by a variety of
mechanisms. One popular method is to target mRNA. This can be accomplished by antisense
oligonucleotides, hammerhead ribozymes, and siRNA. In addition, investigators have
developed transcriptional regulators, agents to alter the plasma membrane (see Fig. (1)) as well
as compounds that selectively target MDR cancer cells (Table 2).

Antisense oligonucleotides
Antisense oligonucleotides are an alternative method to inhibit the expression of ABC
transporters. The mechanisms by which these oligonucleotides function are complex and have
not been fully elucidated [94]. Phosphorothioate oligonucleotides are the first-generation of
anti-sense molecules. They are more resistant to nucleases, but may produce pharmacological
effects unrelated to the anti-sense effects. One major concern regarding these molecules is
cellular uptake, and investigators have demonstrated that administration with Lipofectin is
necessary to obtain partial gene silencing of ABCB1 [95]. In addition, uptake enhancing
modifications such as 5′ cholesterol-conjugation produced improved silencing without the need
for cationic lipids. Concentrations in the low micromolar range are necessary to reduce protein
levels by half [96]. Kang et al. report that chimeric hexitol nucleic acid gapmer oligonucleotides
are effective at inhibiting ABCB1 gene expression at nanomolar concentrations [97].

Hammerhead ribozymes
Ribozymes are catalytic RNAs that have intrinsic endoribonucleolytic cleavage activity which
can be used to target a specific mRNA at a specific position containing a NUX motif, where
N is any nucleotide and X is A, C or U. Investigators have designed ribozymes to target ABCB1
[98], ABCG2 [99], and ABCC2 [100]. These three ribozymes were then combined in a
multitarget multiribozyme (MTMR) containing three trans-acting hammerhead ribozymes
directed against ABCB1, ABCG2 and ABCC2, three cis-acting ABCB1 ribozymes, and three
ABCB1 homologous spacer sequences [101]. This self-contained MTMR undergoes
autocatalytic self-cleavage by the cis-acting ribozymes to free the trans-acting ribozymes to
act on the targeted transcripts. This novel approach was able to cleave the ABC transporter-
specific transcripts in drug-resistant cancer cell lines.

RNA interference (siRNA)
Small interfering RNAs (siRNAs) are used to target ABC transporters at the mRNA level. This
double-stranded RNA, normally between 19–21 nucleotides in length, is designed to enhance
the degradation of the single-stranded RNA sequence of the desired gene. Dicer, the RNAse
III enzyme, processes the double-stranded RNA into siRNA that incorporates into the
multiprotein RNA-induced silencing complex (RISC) which cleaves the targeted mRNA
[102]. siRNA possesses several advantages over antisense oligonucleotides, which include
ease of delivery, lower concentrations needed for gene silencing, and the ability to silence
genes at any stage in development. The transient silencing effects of siRNA are however, one
drawback of this technology. Investigators have shown that both synthetic and vector-based
expression of siRNA can specifically decrease expression of ABCB1 and ABCB4 in paclitaxel-
resistant ovarian cancer cells [103]. siRNA has also been utilized to modulate expression of
ABCC2 and ABCC3 in primary hepatocytes [104], ABCG2 in BeWo cells [105], and ABCB1
using a combination of siRNAs [106]. The half-life of the ABCB1 mRNA (4 hours), and protein
(16 hours) [107], allows for an increase in transcript and protein level to original levels 7 days
after siRNA administration. To extend the silencing effects of siRNA, others have engineered
an H1-RNA gene promoter-driven expression vector encoding anti-ABCB1 [108], anti-
ABCC2 [109] and anti-ABCG2 [110] short hairpin RNA (shRNA), which shows the highest
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efficacy to date in gene-silencing. The efficiency of gene knock-down depends on the delivery
into the cell, and studies report that an adenoviral-based delivery of shRNA is superior to
adenoviral delivery of ribozymes [111]. Others studies show that attenuated Salmonella
typhimurium has potential as an in vivo delivery vector for ABCB1 siRNA in a human tongue
squamous cell cancer mouse model [112]. In addition, a transposon-based Sleeping Beauty
(SB)-based RNAi system produces stable and durable silencing of ABCB1 [113]. This non-
viral siRNA transposon-based SB vector was utilized to show that silencing of ABCB1 causes
increases in imatinib intracellular levels in chronic myeloid leukemia cells [114] and that two
proteasome inhibitors used to treat relapsed or refractory multiple myeloma are substrates for
ABCB1 [115]. Investigators have used a retroviral-mediated shRNAi for ABCB1 in vivo and
provided documentation of the effect in the intact animal using bioluminescence [116]. Stein
et al. have recently reported a complete reversal of the MDR phenotype in vivo using an
intratumoral jet-injection of anti-ABCB1 short hairpin RNA-encoding plasmid DNA [117].

Transcriptional regulation
Investigators have also identified a number of transcriptional regulators of ABC transporters.
For instance, transcriptional decoys have been employed to decrease drug resistance. In one
such study, investigators used phosphorothioate-modified antisense oligonucleotides targeted
at the transcriptional MED-1(Multiple start site Element Downstream) element of the human
ABCB1 gene promoter to modulate multidrug resistance [118]. The human MED-1 cis-element
is unique because it has an inverted sequence compared to the consensus MED-1 sequence in
other TATA-less promoters which allows for targeted silencing of the ABCB1 MED-1.
Investigators have also utilized LANCL2, a gene overexpressed in 20% of all glioblastomas,
which transcriptionally suppresses ABCB1 due to decreased ABCB1 promoter activity [119].
Others have constructed the K2-5F repressor consisting of five Zif DNA-binding domains
directed against the ABCB1 promoter (SP1/EGR1/WT1) and two KRAB-A domains [120];
ponasterone induction of K2-5F caused reduction in cell surface expression, in total protein
and in mRNA of ABCB1 [121]. Scala et. al. showed that 8-CL-c-AMP, a type I cAMP-
dependent protein kinase (PKA) inhibitor, downregulated ABCB1 expression in a dose
dependent manner, indicating a role for PKA in ABCB1 promoter activity [122]. Inhibition of
Protein Kinase C (PKC) can also prevent ABCB1 upregulation by extracellular stimuli [123].
A natural marine product, Et743, is an inhibitor of ABCB1 transcription due to blockade of
promoter activation [124]. Lastly, NF-κB has also been implicated in ABCB1 regulation
[125]. Some researchers believe that ABCC1 is down regulated by p53, possibly by reducing
Sp1 binding [126] while others have reported that the transcription factor complex AP-1
regulates ABCC1 [127].

Plasma membrane alterations
There are also agents that modify the plasma membrane and thus prevent ABCB1
overexpression. Fatty acid-polyethylene glycol fatty acid diesters have been used to block
multidrug resistance in Ara C-treated cells [128]. These diesters work on the cell surface and
were able to prevent both short-term ABCB1 expression and the multidrug resistance
phenotype in cells that survived the initial treatment with chemotherapeutics.

Encapsulation of drugs
Enhancements in drug delivery systems have also been used to circumvent ABC transporters.
One such advance is the use of encapsulation to deliver drugs in a tumor site-directed manner.
For instance, investigators have developed poly(ethylene oxide)-modified poly(epsilon-
caprolactone) nanoparticles to co-administer paclitaxel and ceramide, an apoptosis modulator
[129]. Nanoparticles with paclitaxel and ceramide were able to sensitize multidrug resistant
cells to the same concentrations of paclitaxel to which the drug-sensitive cells were susceptible.
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Liposomal formulations of doxorubicin have also been successfully developed to bypass ABC
transporters [130].

Antibodies
Antibodies have been used to combat multidrug resistance. Palmitoylated synthetic peptides
of the extracellular loops of ABCB1 were reconstituted in liposomes with or without Lipid A,
then resuspended in alum [131]. Interestingly, the mice did not show auto-immune symptoms;
nevertheless, immunization increased survival half-time by 77% and efficacy of chemotherapy
against P388 R cells. In vitro studies of such cells administered the sera of immunized mice
showed similar cytotoxic results.

Drugs that are not substrates for the major ABC drug transporters
Presently, the pharmaceutical industry and the Food and Drug Administration (FDA) are aware
of the alterations that ABC transporters can cause in the pharmacokinetics as well as in the
efficacy of drugs. Thus, potential drug compounds are commonly tested to determine if they
are substrates for ABC transporters. Consequently, medicinal chemists have been synthesizing
analogues of drugs to circumvent multidrug resistance mediated by ABC transporters. For
instance, camptothecin analogs were designed and tested for ABCG2 substrate specificity
[132]. Compounds with low polarity were not found to be substrates for either ABCG2 or
ABCB1. In addition, drugs designed to be substrates for solute carriers, a superfamily of
membrane transport proteins (SLCs) recently shown to be important in the pharmacokinetics
of drugs [133], may facilitate the uptake of chemotherapeutics and avoid MDR. The role of
solute carriers in cancer chemotherapy has recently been reviewed elsewhere [133]. However,
there are no conclusive experimental data available yet on overexpression of solute carriers in
drug resistant tumor tissue.

COMPOUNDS SPECIFICALLY TARGETING MDR CANCER CELLS
Despite tremendous efforts to develop inhibitors (both specific and broad-spectrum) and to
discover natural products modulators of ABC drug transporters, there are still no inhibitors
currently used in clinical treatment. Verapamil, one of the first ABCB1 modulators found to
effectively reverse MDR mediated by ABCB1, was also one of the first compounds to show
high collateral toxicity towards ABCB1-overexpressing Chinese hamster ovary cells. This
“hypersensitivity” or “collateral sensitivity” provides researchers with an alternative approach
that can be used to combat MDR caused by the overexpression of ABC drug transporters.
Numerous research groups are searching for compounds with substantial collateral toxicity
towards MDR cell lines which can induce apoptosis more specifically in MDR cell lines. These
compounds show potential for use in the clinic, either alone or in combination with already
existing cancer chemotherapeutics. Examples of compounds exhibiting collateral sensitivity
are listed in Table 2.

In 1987, Cano-Gauci and Riordan discovered that ABCB1-overexpressing Chinese hamster
ovary (CHO) cells were hypersensitive to calcium channel blockers such as verapamil,
nifedipine and the calmodulin inhibitor trifluoperazine [134]. This hypersensitivity is both
calcium-independent and independent of intracellular verapamil accumulation [134].
Subsequent studies by Warr et al. in 1988 demonstrated that in addition to calcium channel
blockers, vincristine-resistant CHO cells are also hypersensitive to the membrane active agent
quinidine sulfate, suggesting that calcium channels are not the primary target of this
hypersensitivity or collateral toxicity [135]. More recently, Karwatsky et al. focused on the
mechanistic aspect of the observed hypersensitivity of MDR CHO cells to verapamil [136]. It
was concluded that apoptosis was caused by elevating the production of reactive oxygen
species (ROS) in MDR cells. Moreover, this collateral toxicity was correlated with high
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ATPase activity, independent of p53 activity, and could be inhibited by the overexpression of
Bcl-2 [136].

Recently, Ludwig et al. identified a small molecule thiosemicarbazone, NSC73306, which can
induce cytotoxicity specifically in cancer cells overexpressing functional ABCB1 [137]. The
hypersensitivity is correlated directly with both the increased ABCB1 function and MDR.
Moreover, culturing MDR cells in the presence of NSC73306 resulted in the loss of ABCB1
expression and consequent loss of the MDR phenotype. Despite the correlation of NSC73306
cytotoxicity with the expression and function of ABCB1, there is no evidence to show direct
interaction of NSC73306 with ABCB1. Considering that NSC73306 also possesses divalent
metal chelation properties and that this effect is not limited to Pgp-expressing CHO cells, it is
likely to have a distinct mechanism of collateral sensitivity unlike that of verapamil, even
though the final phenomenon is somewhat similar. Similarly, Heffeter et. al. discovered a new
lanthanum compound, KP772, with anticancer properties in both in vitro and in vivo assays
[138], which also has preferential cytotoxicity towards cancer cells overexpressing either
ABCB1 (Pgp), ABCC1 (MRP1) or ABCG2 [139]. It was suggested that KP772 induces
significantly more apoptosis and cell cycle arrest in cells overexpressing these ABC
transporters, explaining hypersensitivity in MDR cancer cells. These observations are
consistent with those of Nicholson et al., who reported that a phosphatidylinositol-3-kinase
inhibitor (LY294002) induced apoptosis preferentially (6-fold higher) in ABCB1-
overexpressing KB-V1 cells [140] compared to drug-sensitive cells. Interestingly, comparably
to NSC73306, long term exposure to KP772 resulted in the loss of ABCB1 protein expression
in ABCB1-overexpressing cells, and no evidence of direct interaction of KP772 with these
ABC transporters was established. Similarly, Bergman et al. observed increases in sensitivity
to gemcitabine by both ABCB1- and ABCC1-overexpressing cells, which could be abolished
completely by verapamil [141]. It was suggested that this hypersensitivity is due to enhanced
cellular stress caused by the overexpression of ABCB1 or ABCC1, resulting in increased
gemcitabine metabolism and sensitivity in these MDR cells.

In addition to the above-mentioned compounds, several compounds similar to 5-fluorouracil
induce significantly greater apoptosis in MDR carcinoma cells than in drug-sensitive cells after
48 hours of exposure [142]. More recently, celecoxib, a specific inhibitor of COX-2 activity,
was also shown to have the same property. Fantappie et al. demonstrated that in MDR cells
celecoxib reduces expression of ABCB1, Bcl-xL, and Bcl-2. Celecoxib also induces the
translocation of Bax from the cytosol to the mitochondria and cytochrome c into the cytosol,
which in turn activates caspase-3-dependent apoptosis [143].

By using a developed method that correlates the activity of candidate anticancer drugs with
gene expression of ABCB1 in 60 diverse cancer cell lines used by the National Cancer Institute
(NCI-60) [144], it is now possible to identify compounds that are selectively cytotoxic to
ABCB1-overexpressing cancer cells. Though the exact mechanism(s) of these compounds is
still unclear, several very different, but plausible mechanisms have been proposed. These
agents may interfere with the PI3-kinase/PKB pathway, in turn affecting downstream
intracellular signaling pathways and inducing apoptosis in MDR cells [140], or they may induce
apoptosis by enhanced production of ROS in MDR cells [136]. It is feasible that different
compounds have different mechanisms to achieve the same result.

CONCLUSIONS
ABC transporters provide the body vital protection from foreign compounds; however, their
overexpression in cancer cells poses a major obstacle to cancer therapy. This is the main cause
of treatment failure in cancer patients. Due to the clinical impact of MDR, investigators
continue to search for a safe yet effective inhibitor of these transporters. Although some success
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has been seen in vitro, until now, these results have not been translated to the clinic. A new
wave of compounds that have potent collateral toxicity towards MDR cells may serve as the
long sought treatment of MDR in cancer chemotherapy. By advances in understanding the
molecular pharmacology of these compounds, especially their effects on signaling pathways,
successful in vivo inhibition of MDR may soon be realized.
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Fig. 1. Schematic of the various methods used to circumvent MDR mediated by ABC transporters
Gene silencing of ABC transporters can be performed using synthetic siRNA(1), shRNA in a
vector (2), and hammerhead ribozyme (3). Numerous negative modulators/transcriptional
regulators (4) can inhibit transcription of these transporters in the nucleus. MDR can also be
modulated by plasma membrane alterations (5). In addition, monoclonal antibodies (6), non-
substrate drugs (7), and drug encapsulation (8) have also been used to evade MDR in cancer
cells.

Wu et al. Page 20

Curr Mol Pharmacol. Author manuscript; available in PMC 2008 December 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wu et al. Page 21

Table 1
Inhibitors of major ABC drug transporters, ABCB1 (Pgp), ABCC1 (MRP1) and ABCG2

Modulator ABC drug transporter(s) affected Reference
Verapamil ABCB1

ABCC1
[51]
[145]

Cyclosporine A ABCB1
ABCC1
ABCG2

[55,56]
[145]

[60,61]
SDZ PSC 833 ABCB1 [63,64]
S9788 ABCB1 [62]
MS-209 ABCB1

ABCC1
[146]

[145,147]
Biricodar/VX-710 ABCB1

ABCC1
ABCG2

[148,149]
[145]
[149]

GF120918/Elacridar ABCB1
ABCG2

[68]
[76]

OC-144-093/ONT-093 ABCB1 [69]
Tariquidar/XR 9576 ABCB1 [70,73]
LY 335979/Zosuquidar ABCB1 [150]
Laniquidar/R101933 ABCB1 [151]
Mitotane ABCB1 [152]
WK-X-34 ABCB1

ABCG2
[153]
[154]

Annamycin ABCB1
ABCC1

[155]
[156]

MK-571 ABCC1 [85]
Fumitremorgin C ABCG2 [86]
Ko143 ABCG2 [87]
PK11195 ABCB1

ABCC1
ABCG2

[157]
[157]
[157]

Disulfiram ABCB1
ABCC1

[158]
[158]

Antimalarials: (Quinine, quinidine, mefloquine, chloroquine, primaquine, pyronaridine) ABCB1
ABCC1

[159–161]
[162,163]

Polyphenols: (Quercetin, silymarin, hesperetin, daidzein; resveratrol, naringenin,
genistein)

ABCB1
ABCC1
ABCG2

[90]
[89,164]
[88,165]

Curcumin ABCB1
ABCC1
ABCG2

[91]
[93]
[92]

Ginsenoside ABCB1
ABCG2

[166]
[167]
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Table 2
Compounds that selectively target cells overexpressing ABC drug transporters

Compound (Reference) Class of compound Cell lines Transporter overexpressed
Verapamil/nifedipine/calmodulin inhibitor
Trifluoperazine [134–136]

Calcium channel blockers CHO MDR cells ABCB1

Verapamil (S-isomer) [168,169] Calcium channel blocker BHK-21 ABCC1
Bisdioxopiperazine dexrazoxane/ICRF-187 [170] Topoisomerase II inhibitor K/VP.5 ABCB1
Tunicamycin [171] N-linked glycosylation inhibitor KB-C-1 ABCB1
Gemcitabine [172] Deoxycytidine analog H69/DAU; NYH/VM ABCB1
Gemcitabine [141] Deoxycytidine analog 2R120; 2R160; SW1573/

S1; SW1573/S1; GLC4/
ADR; 2780AD; KB-8-5;

BROmdr

ABCB1; ABCC1

Cytosine arabinoside [172] Deoxycytidine analog H69/DAU; NYH/VM ABCB1
5-fluorouracil [142] Thymidylate synthase inhibitor KB-C-1; KB-V-1; KB-A-1 ABCB1
LY294002 [140] PI3-kinase inhibitor KB-V-1 ABCB1
NSC73306 [137] Thiosemicarbazone KB-V-1; KB-8-5;

KB-8-5-11; NCI/ADR-
RES

ABCB1

KP772/FFC24 [139] Lanthanum compound GLC4/ADR; HL60/ADR;
KB-C-1; MCF-7/bcrp

ABCB1; ABCC1; ABCG2

Celecoxib [143] COX-2 inhibitor HT-29-dx; PN1A-NIH3T3 ABCB1
NBDHEX [173] Glutathione-S-transferase inhibitor CEM-VBL10; CEM-

VBL100; U-2 OS/DX
ABCB1
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