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Abstract
Co-occurrence of alcohol and nicotine addiction in humans is well documented and there is good
evidence that common genes may contribute to both disorders. Although genetic factors contributing
to tobacco and alcohol problem use have been well established through adoption, twin and family
studies, specific genes remain to be identified and their mode of action elucidated. Recent work from
human genetics studies has provided evidence that neuronal nicotinic acetylcholine receptors
(nAChR) genes may have a role in mediating early behaviors that are risk factors for alcohol and
nicotine dependence, such as age of initiation and early subjective responses to the drugs. Converging
evidence suggests that the dopaminergic system is likely to be important in mediating the pleasurable
feelings of reward when activated by nicotine and/or alcohol consumption. The nAChRs are
important components of the dopaminergic reward system because some of the receptors have been
shown to activate the release of dopamine, and mice lacking genes for specific nAChR gene subunits
show altered behavioral responses to nicotine and alcohol. Furthermore, complex interactions
between other neurotransmitter circuits including GABA, glutamate and serotonin may be modulated
by nAChRs, leading researchers to study genes involved in neurobiology shared by different drugs.
Future studies aimed at understanding the variation among these genes, and their corresponding
functional implications, will help elucidate how natural variants in nicotinic receptor genes contribute
to these common co-morbid disorders.
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INTRODUCTION
Nicotine and alcohol are two of the most widely used addictive drugs and both have hazardous
health consequences resulting from their chronic use. Numerous studies have shown that
alcohol use and smoking frequently co-occur and that both environmental and genetic factors
contribute to the overlap between these two behaviors. A variety of studies using model systems
have demonstrated that the neuronal nicotinic receptors (nAChRs) are a common site of action
of nicotine and alcohol, in the sense that alcohol may modulate the pharmacological binding
properties of nicotine at nAChRs [1–11]. Furthermore, the presence of several nAChR subtypes
on dopaminergic nerve terminals implicates their potential involvement in the mesolimbic
reward pathway, which may be a common component of many different types of addiction.
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Here we present a brief overview of the genetic underpinnings of alcohol and tobacco disorders,
focusing on several human genetic associations between specific nAChR subunit genes and
various alcohol and nicotine-related behaviors. Next, we present a comprehensive discussion
of the biological role of nAChRs in mediating alcohol and nicotine responses. We conclude
with our thoughts about the challenges still facing genetic studies of substance abuse research,
and how those challenges may be overcome in the future.

COMMON GENES CONTRIBUTE TO ALCOHOL AND NICOTINE CO-
ADDICTION

Numerous reports have provided evidence for high co-morbidity between smoking tobacco
and alcohol use, whereby alcohol dependent individuals are more likely to be dependent on
nicotine and vice versa [12–16]. There are several lines of evidence demonstrating that genetic
factors are important for predicting long-term tobacco use and that significant genetic effects
contribute to smoking, typically accounting for approximately 50% (28–84%) of the total
variance [17–19]. Similarly, a variety of twin, adoption, and family studies have shown that
genetic components play a role in the development of alcohol dependence [20–27]. More recent
studies have provided data to support the theory that common genetic factors may contribute
to the concurrent use of these two substances [19,28–33]. Thus, there is a wealth of information
suggesting that as much as half of the risk for nicotine and alcohol disorders may be mediated
by genetic factors. Furthermore, the development of new analytical modeling techniques is
beginning to help elucidate more detail about the environmental and etiological contributions
to these two specific disorders and their co-occurrence.

HUMAN GENETIC STUDIES OF nAChR GENES
Recently, human genetic studies have provided evidence for a role of the nAChRs in the
etiology of alcohol and tobacco co-addiction. Among the twelve subunit genes for neuronal
nicotinic receptor subunits, those encoding the α4 and β2 nAChR subunits (CHRNA4 and
CHRNB2), have been the most widely studied in human populations, since the α4β2 receptors
are those most prevalent in the brain. The first line of evidence that natural variations in nAChR
genes contributed to phenotypic variation in human disorders, came from a missense mutation
in the CHRNA4 gene, that was associated with autosomal dominant nocturnal frontal lobe
epilepsy in Australian families [34–38]. Similarly, a missense mutation (Val287Met) in the
CHRNB2 gene was found to be associated with autosomal dominant nocturnal frontal lobe
epilepsy in a Scottish family [39]. Because of the association between tobacco use and attention
problems, the CHRNA4 gene has also been examined for possible association with attention
deficit hyperactivity disorder, where one study did not find evidence for association [40], while
a later study did find suggestive evidence [41].

Until recently, variations in genes encoding the neuronal nicotinic receptors have not been well
studied for potential effects related to nicotine and alcohol abuse and dependence in humans.
A partial summary of recent studies examining nicotine and alcohol behavioral association
with nAChR human genes is presented in Table 1. Feng et al. [42] used the Fagerstrom Test
for Nicotine Dependence (FTND)[43] and the Revised Tolerance Questionnaire (RTQ) [44]
and examined six single nucleotide polymorphisms (SNPs) in CHRNA4 and four SNPs in
CHRNB2. They reported an association between a haplotype in the CHRNA4 gene and nicotine
dependence in Chinese men but no association between these phenotypes and CHRNB2.
Similarly, Li et al. [45] detected an association between a different SNP in CHRNA4 and the
heaviness of smoking index (HSI) from the Fagerstrom test for nicotine dependence (FTND),
but no evidence for association with CHRNB2. In fact, most studies of CHRNB2 variations
have not found evidence for association with nicotine or alcohol addictions. [42,45–47].
Silverman et al. [47] screened for polymorphisms by sequencing pooled DNA samples, and
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identified five novel SNPs. Four of these, and their estimated haplotypes, were tested for
association with smoking initiation and progression to nicotine dependence but no association
was found [47]. Six other SNPs in the CHRNB2 gene showed no evidence for association in
a separate study of individuals evaluated for smoking history and lifelong nicotine dependence
[46]. However, two more recent reports have shown a possible role for this gene in age of
initiation of smoking in women [48], and in early subjective response to smoking and alcohol
[49].

The CHRNA6 and CHRNB3 genes are located next to each other on human chromosome 8
and code for the α6 and β3 nAChR subunits, respectively, which form part of nAChRs abundant
in the body of dopamine producing cells. The CHRNB3 gene was found recently to be a top
candidate for nicotine dependence (as measured by FTND) in two studies from the
Collaborative Genetic Study of Nicotine Dependence (COGEND). Using a whole genome
association approach which examined over 2.4 millions SNPs, the SNP rs13277254 emerged
as one of the most significant findings [50]. Using a candidate gene approach, whereby 3713
SNPs were genotyped in over 300 candidate genes, a strong association with nicotine
dependence was seen with a different SNP in CHRNB3 (rs6474414) [51]. Additional evidence
for an important role of variations in CHRNB3 and addiction phenotypes continues to grow.
In a recent Colorado-based study using a clinical-based sample from the Center for Antisocial
Drug Dependence (CADD), preliminary evidence for association between two SNPs (rs4950
and rs13280604) and early subjective response to nicotine was detected. Moreover, this finding
was replicated with these specific SNPs in the separately ascertained National Longitudinal
Study of Adolescent Health (Add Health), a community-based sample [52]. In this study, there
was also evidence for an association between a SNP in CHRNA6 (rs2304297) and early
subjective response to nicotine in both the selected CADD and community-based Add Health
samples, suggesting that this genomic region containing CHRNA6 and CHRNB3 may be
important in mediating early subjective response to nicotine.

On chromosome 15, a cluster of three phylogenetically conserved nAChR subunit genes
includes CHRNA5, CHRNA3, and CHRNB4, which code for the α5, α3 and α4 nAChR
subunits respectively. In the candidate gene study of Saccone et al. [51], mentioned above, a
non-synonomous SNP in CHRNA5 (rs16969968) was highly significant for association with
nicotine dependence. Additionally, nominal significance between a SNP in CHRNA5 and
nicotine dependence has also been reported in young Israeli women [48]. More recently, two
linked SNPs (rs8023462 and rs1948) of the CHRNA5/A3/B4 gene cluster significantly
predicted early age of initiation for tobacco in a clinically-based sample. These findings were
then replicated in a separate population-representative sample, showing the same two SNPs to
be associated with age of initiation for both tobacco and alcohol use [53]. Furthermore,
Berrettini et al. [54] recently reported a significant association between natural variations in
the CHRNA5/CHRNA3 genes and number of cigarettes per day in three independent samples
of European origin. Thus, variations in CHRNA5/A3/B4 genes may influence behaviors that
promote early age of experimentation with drugs and/or nicotine dependence.

Clearly, evidence is accumulating for an important role of nAChR genes in mediating behaviors
involved in tobacco and/or alcohol abuse and dependence. Although a variety of
pharmacological and animal studies have provided support for involvement of these receptors
in nicotine/alcohol action (next section below), few human studies have explored nicotine and/
or alcohol phenotypes with the nAChR subunit genes. With greater appreciation of nAChRs
diversity on one side and the sophistication of new genetic statistical analysis tools at the other,
the elucidation of the molecular genetics of drug addictions is gaining momentum. Despite
these advances, however, there remain inconsistent findings in human genetic reports, likely
due to differences in study samples, phenotypic measures, and genetic heterogeneity, whereby
different genes may be important in different populations.
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ROLE OF nAChRs IN ALCOHOL AND TOBACCO EFFECTS
Multiple neurotransmitters appear to orchestrate the reward profile of nicotine and alcohol
addiction and co- addiction. Several lines of evidence from model systems using Xenopus
oocytes [1,2], rat electrophysiology [3–7], and mouse behavioral models [8–11] suggest that
alcohol may modulate the pharmacological properties of nicotine binding at nAChRs, usually
by enhancing receptor function. Since these receptors have been shown to activate release of
dopamine, they are likely to be important for mediating the rewarding properties of the
mesolimbic dopamine system [55,56].

Here we first review the role of neuronal nicotinic acetylcholine receptors (nAChRs) and the
mesolimbic dopamine system in the mediation of the behavioral and neurochemical effects of
ethanol and/or nicotine in ex vivo and in vivo model systems. Subsequently, we highlight some
of the main neurotransmitter systems that are modulated by nAChRs in the brain.

Neuronal nicotinic acetylcholine receptors (nAChRs) belong to the large superfamily of ligand-
gated ion channels that bind the endogenous neurotransmitter acetylcholine and the alkaloid
nicotine, found in tobacco. A broad description of the nAChRs has been published in recent
reviews [55,57–59]. Briefly, nAChRs are formed by the pentameric association of α and β
subunits, of which 12 nAChRs subunits (α2-10, β2-4) have been identified in the brain.

Different combinations of subunits generate subtypes of nAChRs with diverse functional and
pharmacological properties, which in vivo may have selective roles in specific brain pathways.
The main nAChR subtypes found in mammalian brain have been shown to be those containing
the α4 and β2 subunits, which bind nicotine with high affinity, and the α-bungarotoxin-sensitive
α7 subunits, which form homomeric receptors [55]. The nAChRs found in the autonomic
nervous system segregate and assemble into two distinct classes: α7-containing receptors and
heteromeric α3 subunit-containing receptors, co-assembling with β2 and β4 with or without
α5 subunits [60]. The structure and localization of the nAChRs subtypes have been elucidated
using molecular techniques such as in situ hybridization, immunohistochemistry and imaging
techniques including positron emission tomography (PET) and single photon emission
computed tomography (SPECT) [61]. Despite these complementary techniques, the lack of
antibodies specific to the different subtypes of nAChRs and the possibility of false positives
due to the use of PCR approaches, limit the verification and/or classification of the nAChRs
subtypes. In the future, the development of new technology and methodological approaches
may facilitate better characterization and localization of specific subtypes.

The α4β2 receptor subunits are encoded by the CHRNA4 and CHRNB2 genes (respectively)
and expressed throughout the brain and spinal cord. They are principally located on presynaptic
nerve terminals where they modulate the release of neurotransmitters including dopamine
[56] and γ-aminobutyric acid (GABA) [62] (Figure 1). These α4β2 receptor subtypes, together
with the α7 homomeric receptor, are the most prevalent in the brain and the majority of work
in the alcohol-nicotine field has focused on them. In fact, results from studies with Xenopus
oocytes, mice and cerebral cortex cells grown in culture have confirmed that alcohol is able to
stimulate the function of the naturally expressed α4β2* receptors (where * indicates another
subunit, often α6 and/or β3) and inhibit the action of the α7 nAChRs [63].

Although not as well-studied, less abundant nAChRs subtypes [64,65] also appear to modulate
some of the rewarding properties of alcohol and nicotine [66]. The main characteristic of these
receptors is that they are blocked by a small peptide cone-snail toxin named α-Conotoxin MII.
β3 subunits are essential for correct assembly and stability of α6-containing nAChRs in
dopamerigic neurons as shown in recent studies using ligand-binding and immuno-purification
techniques [67]. The nAChRs containing α6 and β3 subunits are mainly expressed in midbrain
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dopamine neurons and in the locus coeruleus, which is a nucleus in the brain stem responsible
for physiological responses to stress and panic.

Additional nAChR subunits including α5, α3 and β4 have limited distribution in the brain (see
below), but can represent a significant population of nAChRs with a critical function. These
three subunits (α5, α3 and β4) are encoded by a phylogenetically conserved cluster of nAChR
subunit genes (CHRNA5/A3/B4), important in fast cholinergic synaptic transmission. The
three subunits are co-expressed in the adrenal medulla, autonomic ganglia and several
structures of the brain including, the medial habenula, the interpeduncular nucleus and the
inferior colliculus [68]. The significance of the subunit coexpression in these brain regions is
not known but previous studies have shown that the habenulo-interpeduncular pathway exerts
a tonic inhibitory influence on mesocortical, mesolimbic and mesostriatal dopaminergic
neurons [69,70]. Additionally, the α5 subunit is found in heteromeric receptors of the substantia
nigra, ventral tegmental area (VTA), striatum, cortex and hyppocampus, and the α3β4 subunits
are found together in hippocampus, medial habenula, pineal gland, cerebellum, locus
coreruleus, substantia nigra and VTA [55,71–73]. Therefore, when multiple α and β subunits
are co-expressed, only some of the many possible combinations of nAChRs have been
observed, for example the α4β2, α6β3 or α3β4 -containing receptors are very common subunit
assemblies. The precise determinants of these restricted assemblies of nAChRs and their
preferential locations in the CNS are still not well understood.

NICOTINIC RECEPTORS AND THE DOPAMINERGIC SYSTEM
Neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to activate the release
of dopamine, making them important components of the dopaminergic reward system [55,
56]. Furthermore, several nAChR subtypes (α4α6β2β3, α6β2β3, α6β2, α4β2, and α4α5β2) have
been shown to be expressed on dopamine nerve terminals [74]. Converging evidence suggests
that the dopaminergic system is likely to be important in mediating the pleasurable feelings of
reward when activated by nicotine and/or alcohol consumption [71,75–77]. Drug addiction is
believed to involve plastic changes in neuronal systems associated with rewarding behaviors.
The mesolimbic dopamine system includes three brain regions: the VTA, the nucleus
accumbens (NAcc) and prefrontal cortex (PFC). The VTA contains dopaminergic neurons and
extensions from these cells lead into the nucleus accumbens and the prefrontal cortex, where
the released dopamine activates other neurons (see Figure 1 for a simplified diagram). The
nAChRs located in the soma (body) of dopaminergic neurons of the VTA are able to excite
these neurons directly leading to transient responses that are terminated by desensitization of
nAChRs. Additionally, the stimulation and consequent desensitization of the gamma-
aminobutyric acid (GABA)-containing neurons of the VTA, further contributes to the
excitatory effect by eliminating the inhibitory effect of GABA. Another type of indirect
modulation of dopamine release by nAChRs, is carried out by activation of α7 homomeric
receptors on glutamatergic (Glut ) terminals. This α7 activation triggers release of glutamine,
which in turn stimulates ionotropic glutamine receptors (NMDA or N-methyl-D-aspartate) on
dopaminergic neurons, leading to the induction of dopamine release [78]. Interestingly,
elevated levels of dopamine have also been shown to modulate nAChRs in an area and subtype-
dependent manner: Mice deficient in the dopamine transporter gene exhibit constitutively
increased dopamine levels that result in significant modifications in nAChRs density and
function [79]. This interaction highlights the inter-related modulatory effects that nAChRs have
on dopaminergic systems and vice versa. In other words, a localized increase in dopamine
levels could account for significant adaptations in the cholinergic/nicotinic neurotransmission
pathways

Recent molecular biology results further underscore the importance of the interaction between
nAChRs and dopaminergic systems in the etiology of nicotine and alcohol addiction. Inoue et
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al. [80] have reported synergistic enhancement of gene expression in co-cultures of VTA and
NAcc neurons by nicotine and alcohol. Their results suggested that a novel cellular mechanism
involving nAChRs, dopamine receptors, adenosine receptors and protein kinase A signaling,
results in increased gene activation in cultured neurons exposed to alcohol and nicotine
simultaneously. Furthermore, a recent report has demonstrated that simultaneous
administration of alcohol and nicotine results in an additive dopamine release in the nucleus
accumbens of rats, providing additional support for the importance of the mesolimbic “reward
pathway” as a convergent response site for these two drugs [81,82]. Thus, nicotine/ethanol
interaction through co-activation of dopamine and adenosine receptors could contribute to the
long term neuro-adaptations (via gene activation) that lead to the development of addiction.

ANIMAL STUDIES OF nAChRs
Animal studies with genetically modified rodents have focused on mimicking specific aspects
of human addictions (self-administration, reward, withdrawal, locomotion activation) that can
be easily measured in animals. In particular, genetically modified mouse models have been
very important for the understanding of complex behaviors, related to addiction, relapse and
reinstatement of drug dependence [83–85]. Here we present an overview of some of the results
from animal models developed for studying co-addiction of alcohol and tobacco. Highlighting
the importance of the dopaminergic reward pathway in mediating these behaviors, we focus
on research using mice lacking individual nAChR genes to illustrate how these genes have
become a key focus of nicotine and alcohol addiction research.

Drug self-administration or reinforcement is an important component of drug addiction that
has been studied in animals. In fact, a recent publication [85] has shown strong experimental
evidence for the hypothesis that a shared genetic determinant accounts for the nicotine and
alcohol co-morbidity. Le et al.[85] found that naive offspring of alcohol preferring rats self-
administered larger amounts of nicotine intravenously and demonstrated more robust nicotine
seeking behavior and relapse, than the offspring of alcohol non-preferring rats. These results
point to nAChRs and the dopamine reward pathways as potential candidates for the interaction
of alcohol and nicotine in the brain. However, alternative pathways or mechanisms that could
explain how alcohol increases the reinforcing effects of nicotine and vice-versa need to be
proposed and investigated. For example, the vast majority of schizophrenic individuals tend
to be avid smokers, even when their treatment involves high doses of dopamine receptor
blockers [86–89].

Additional research efforts have also focused on the issue of cross-tolerance between drugs.
That is, chronic treatment with one drug results in reduced sensitivity for another. It is known
that smokers appear to be less sensitive to the effects of alcohol than non-smokers [29] but this
cross-tolerance is difficult to mimic in animal models, mainly due to the differences in
pharmacokinetics of both drugs (absorption, distribution, metabolism, etc). Some evidence of
changes in α4β2 receptor binding has been observed after chronic ethanol treatment in rats
[90] and mice [91], suggesting that nicotinic receptors are involved in mediating cross-
tolerance of alcohol and nicotine.

Quantitative trait locus (QTL) mapping analyses using recombinant inbred strains of mice with
high (Inbred Long Sleep; ILS) and low (Inbred Short Sleep; ISS) sensitivity to ethanol have
been used to identify common regions of the genome contributing to alcohol and nicotine
sensitivity [92]. In order to search for candidate genes common to nicotine and alcohol
sensitivity, researchers conducted a QTL analysis using the acoustic startle phenotype in these
strains. The results led the researchers to a genomic region containing the α4 subunit gene
(Chrna4) where a polymorphism within the coding region of the α4 nicotinic receptor subunit
gene was identified. This polymorphism encodes for an amino acid substitution at position 529

Schlaepfer et al. Page 6

Curr Drug Abuse Rev. Author manuscript; available in PMC 2009 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(threonine in LS mice and alanine in SS mice) [93]. Further testing of a panel of recombinant
inbred strains derived from the long sleep and short sleep lines of mice showed an association
between this amino acid substitution and the effects of both alcohol and nicotine on the acoustic
startle response [94]. Therefore, there is strong evidence from this animal model that the α4
nAChR subunit is likely to be important in modulating response to both substances, and a good
candidate for pleiotropic effects contributing to the co-morbidity of alcohol and nicotine
behaviors.

Further understanding of the role of the α4β2 nAChRs was obtained using transgenic mice
where either the gene coding for the α4 or the β2 subunit of the receptor has been deleted
(“knocked-out”) from the genome and is no longer able to produce a protein. Mice with a β2
deletion do not produce any nAChRs containing the β2 subunit. That is, β2 deficient mice do
not produce α4β2 receptors. Owens and colleagues [94] found that the mice deficient for the
β2 subunit exhibited less sensitivity to the alcohol-induced reduction of the acoustic startle
response. Additional studies also indicated that the α4β2 nAChRs are indeed involved in
modulation of the effects of alcohol [8,9].

Studies with α7 knock-out mice (the other nAChR most abundant in brain) have shown that
deficiency of α7 homomeric nAChRs results in mice that, when exposed to alcohol, have less
anxiety, increased alcohol-induced hypothermic response and longer duration of the alcohol-
induced unconsciousness [95]. Interestingly, other measures of the mouse response to alcohol,
such as acoustic startle, were not different between the mice lacking the α7 receptors and the
control littermates, indicating that different nAChRs may be responsible for different
behavioral responses to alcohol effects.

Regarding the α6 and β3 receptor subunits, the α-Conotoxin MII snail toxin can be used to
block α6β3-containing receptors and observe behavioral effects. For example, administration
of α-Conotoxin MII to the rodent VTA brain region produced a diminished alcohol-induced
release of dopamine and reduced stimulation of locomotor activity was observed [66]. More
recently, β3 knock-out mice have been developed and studies have shown that this subunit is
critical for the correct assembly, trafficking and stability of α6-containing nAChRs in
dopaminergic neurons. Further studies by Booker et al. [73] using β3-deficient mice, strongly
suggested that the β3-containg nAChRs influence levels of anxiety and may be critical players
in the continuation of smoking behaviors. Thus, α6β3-containing receptors emerge as a
plausible common site for the interaction between nicotine and alcohol and could represent
neurochemical targets for the development of drugs to treat alcoholism.

Animal models indicate that the β4 subunit is important in the behavioral and physiological
expression of anxiety in mice [96] and in the resistance to nicotine-induced seizures [97]. In
particular, the role of the β4-containing nAChRs in mediating the signs of nicotine withdrawal
has been addressed with the use of β4-knock out mice. Results from these studies have shown
that the β4-deficient mice show decreased signs of nicotine withdrawal symptoms [97]. These
data are of significant importance since β4-containing receptors appear to play a dominant role
in the mediation of the negative reinforcement properties of nicotine.

In addition, the β4 subunit is almost always co-expressed with the α3 subunit and both are
necessary for normal autonomic function [98] but behavioral and physiological studies related
to the α3 subunit have been difficult because mice deficient for this subunit rarely survive the
weaning stages of life. However, mice that are heterozygous for the α3 deletion (+/− mice) are
partially resistant to nicotine-induced seizures, similarly to the β4 deficient mice [97]. The
behavioral effects of ethanol on these subunits has not been addressed, however, some evidence
for the modulation of α3β4 -containing nAChRs exists. Studies with rat nAChRs expressed in
Xenopus oocytes performed a decade ago [99] concluded that the α3β4 subunit combination
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may be especially sensitive to modulation by low ethanol concentrations. Furthermore, studies
with adrenal PC12 cell lines also have shown that agonist responses in α3β4 -containing
nAChRs are sensitive to the effects of low concentrations of ethanol [5]. Thus, the α3β4 -
containing receptors could be contributors to the process of mutual reinforcement of alcohol
and nicotine co-addiction.

Regarding the α5 subunit, experiments with α5-deficient mice have shown that the presence
of the α5 subunit is essential for the development of nicotine-induced seizures and
hypolocomotion [96]. In fact, α5-deficient mice show phenotypes very similar to the ones
observed in β4 -deficient mice. However, the rate of response to high doses of nicotine appears
to be mediated by the α5 subunit, not the β4 subunit [100]. The similar behavioral effects
observed for these three subunits perhaps are not surprising since the genes for α5, α3 and β4
subunits are clustered together in the genome and are likely to share regulatory elements
[68].

INTERACTIONS OF NICOTINIC RECEPTORS WITH OTHER NEURONAL
SYSTEMS

Alcohol and nicotine, at the pharmacological level, do not appear to share many characteristics:
Nicotine is pro-convulsant, induces arousal and binds to specific cellular receptors. On the
other hand, alcohol is anti-convulsant, induces relaxation and appears to affect multiple
receptors [101]. However, as mentioned earlier, the amount of tobacco smoked is positively
correlated with the amount of alcohol consumed and the severity of alcohol dependence [30].
In animal models, chronic treatment with either ethanol or nicotine produces cross-tolerance
to the other drug [102,103]. Furthermore, a recent study examining the effects of nicotine and
alcohol on fear conditioned learning has shown that these two drugs can each serve to
ameliorate the negative effects of the other, which may be a mechanism contributing to their
co-addiction [104].

The majority of the nAChRs are expressed on nerve terminals, where they function as
modulators of the release of dopamine, GABA, norepinephrine, acetyl-choline and glutamate
[92]. Nicotine effects at the nAChRs are complex, because following activation, the nAChRs
are quickly inactivated through a mechanism called desensitization. This inactivating
mechanism could be the reason why chronic smokers no longer experience some of the effects
of nicotine or, alternatively, it may generate a sensation that smokers crave. Since alcohol has
been shown to interfere with this inactivation (desensitization) of nAChRs by nicotine [4,5],
this mechanism could contribute to the high prevalence of alcohol and nicotine co-morbidity.

Another mechanism that could explain the high alcohol consumption observed in smokers is
based on the nicotinic modulation of GABAA receptors after an ethanol challenge in rodents
[105]. In these experiments, sub-chronic modulation of nicotinic receptors (pre-treatment with
nicotine) attenuated the decline of dopamine in the nucleus accumbens of rats exposed to
ethanol an hour earlier, thereby attenuating the sedative effects of alcohol and prolonging its
stimulatory effects. Additional evidence of the ethanol potentiation of nAChRs function comes
from recent studies examining the release of GABA and glutamate neurotransmitters from
rodent cortical bipolar neurons exposed to acetylcholine and ethanol [106].

The possible involvement of the glutamate (NMDA or N-methyl-D-aspartate) system in the
behavioral interaction between nicotine and alcohol has also been recently explored in the
rodent cerebellum [107]. In this study, the authors investigated the functional role of cerebellar
NMDA in the ethanol and nicotine interaction using ethanol ataxia as the test response. An
important observation in this study was the ability of intra-cerebellar nicotine administration
to significantly attenuate ethanol ataxia, especially when intra-cerebellar NMDA was
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microinfused simulateously. These results demonstrate the important function of nAChRs and
NMDA receptors in the mediation of nicotine-ethanol motor behavioral interaction.

The relationship between the cholinergic and monoaminergic systems has also been
documented [108]. It is of great interest to elucidate the subtypes of nAChRs responsible for
the anxiety and depression behaviors related to smoking behaviors in humans. Studies with
mutant mice support the role of nAChR subunits in behaviors related to anxiety and depression.
For example, mice deficient in either the α4, β3 or α7 subunits show less anxiety-like behaviors
[57,108]. In fact, tricyclic antidepressants, serotonin-selective re-uptake inhibitors and the drug
bupropion (atypical antidepressant) are all non-competitive antagonists of nAChRs. Moreover,
the expression of nicotine-induced behavioral disinhibition observed in rodents, can be
counteracted by selective serotonin re-uptake inhibitors (citalopram) as well as by serotonin
receptor (5-HT-1A) agonists that are also known to decrease ethanol consumption in rats and
humans [109]. However, despite all the well characterized connections between alcohol,
nicotine depression and antidepressants, the role of nAChR as targets for depression-related
behaviors is far from being understood.

In summary, a considerable amount of knowledge about the biology and function of nAChRs
exists. The understanding of structural and functional subtypes of nAChRs and their specific
distribution and pharmacology is rapidly improving, highlighting their role as mediators of
addictive behaviors. Despite this expansion on studies of nAChRs, very little is known about
human nAChRs at the molecular and pharmacological level.

DISCUSSION AND FUTURE DIRECTIONS
A growing body of research has provided evidence for the important role of genetic components
in mediating the co-morbidity of alcohol and nicotine behaviors. Ultimately, the way humans
cope with addictive drugs is really a combination of many environmental effects, multiple
genes, and a large interaction between these factors. Certain genes may contribute to a greater
likelihood of experimenting with and continuing to use drugs in high risk environments.
Similarly, genetic constitution is likely to influence differential responses to drugs and whether
or not certain individuals go on to continue to use, develop tolerance, and become dependent.
Therefore, future behavioral genetic studies need to be aimed at developing approaches which
can effectively model and understand potential gene-environment interactions contributing to
the developmental stages in the etiology of addiction.

The mesolimbic dopamine system has been studied for many years as a key player in mediating
pleasurable responses to drugs. Ongoing work provides evidence that neuronal nicotinic
receptors are likely to be important components of this system, and may be a common site of
action for nicotine and alcohol. Recent human association studies have provided strong support
for an important role of these genes in nicotine behaviors, but few studies have yet examined
alcohol phenotypes. Furthermore, the potential molecular functional consequences of specific
human variations have not yet been studied, and this will be an important area of research for
understanding potential differences in genetic regulatory mechanisms among individuals. One
of the most significant advances enabling research of nicotinic receptors has been the
development of a collection of mice which are deficient in specific nicotinic subunits and the
ability to test these animals for behavioral responses to nicotine and alcohol. Future studies
should include the development of double knock-out mice, which lack two or more specific
subunits, and the development of mice with specific mutations in certain subunit genes
informed by emerging findings from human genetic association studies. Additional results will
also be expected from the use of conditional knockout mice, where the deletion of a specific
subunit is controlled in a spatiotemporal manner, and the use of antisense oligonucleotide
technologies to target specific neurons or areas of the brain. In addition, high resolution imaging
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techniques are emerging as state-of-the-art methods for studying addiction, and can include
integration of genetic data to determine whether certain gene variants are associated with
specific patterns of response in the brain [110]. Such translational research approaches are
promising in their potential to yield significant insight into the molecular mechanisms of
nAChRs and their role in drug-related behaviors.

Box 1
Key Learning Objectives of Paper

• Family, twin, and adoption studies provide substantial evidence of a common
genetic vulnerability to alcohol and nicotine addictions.

• Candidate gene and whole genome association studies are beginning to identify
and replicate findings for nAChR genes that may underlie co-morbidity of these
two drugs.

• Many pharmacological and animal studies have provided evidence for interactions
of nicotine and alcohol within the central nervous system.

• Neuronal nicotinic acetylcholine receptors (nAChRs) represent a potential
common site of action for nicotine and alcohol.

• The variety of subtypes, distribution, and properties of nAChRs are likely to be
involved in the complex behavioral effects of alcohol and nicotine.

• Nicotine and alcohol also induce changes in many different neuronal pathways
with connections to nAChRs, including the dopaminergic system, serotonergic
pathways, opioid receptors, γ-aminobutyric acid receptors, and others.

Box 2
Future Research Questions

• Future work needs to focus on the developmental nature of these disorders by
recruiting subjects prior to initiation of nicotine and alcohol use and continuing to
follow individuals over their lifetime.

• New statistical approaches for analyzing possible gene-gene and gene-
environment interactions will be essential for interpreting the information

• Continued development of mouse behavioral models of nicotine and alcohol
phenotypes, including translational approaches that target specific human DNA
variations in transgenic mice, will be important in interpreting whether human
gene associations lead to changes in behavior.

• Biological functional studies will be necessary in order to characterize the
underlying molecular mechanisms of specific variations associated with these
behaviors, potentially leading to improved prevention approaches and
pharmacogenomic-based treatment approaches.

• Further development of non-invasive brain imaging techniques will aide in the
elucidation of specific ligands and/or receptors in brain regions known to be
associated with addiction phenotypes.
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Figure 1. Different combinations of nAChRs subunits modulate dopamine release in the mesolimbic
reward pathway
The modulation of dopamine release in the VTA is mediated through presynaptic and
preterminal nAChRs. Binding of nicotine or acetylcholine to the α7 receptors in glutamatergic
terminals induce release of glutamate (Glut), which activates NMDA receptors in
dopaminergic neurons resulting in activation of the release of dopamine. Cholinergic (ACh)
input from mesopontine nuclei (TPP/LDT) also activate the release of dopamine in the VTA.
Furthermore, desentizitasion of nAChRs of GABA releasing interneurons, also reduces the
inhibition of dopamine release due to GABA, resulting in further induction of dopamine release
in the striatum and nucleus accumbens. VTA; ventral tegmental area. PFC; Prefrontal cortex.
TPP; tegmental pedunculopontine nucleus. LDP; laterodorsal tegmental nucleus, NuAc;
Nucleus accumbens. DRD1; Dopamine receptor 1. NMDA; N-methyl-D-aspartate..
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