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Abstract

Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that
instruction as a measure of learning potential. The purpose of this study was to explore the utility of
a DA of algebraic learning in predicting 3™ graders’ development of mathematics problem solving.
In the fall, 122 3"-grade students were assessed on language, nonverbal reasoning, attentive
behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students
received 16 weeks of validated instruction on word problems or received 16 weeks of conventional
instruction on word problems. Then, students were assessed on word-problem measures proximal
and distal to instruction. Structural equation measurement models showed that DA measured a
distinct dimension of pretreatment ability and that proximal and distal word-problem measures were
needed to account for outcome. Structural equation modeling showed that instruction (conventional
vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by
contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-
problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-
intervention models for preventing and identifying learning disabilities.

A major purpose of educational assessment is to forecast academic achievement. The goal is
early identification of students who are at risk for poor learning outcomes so that intervention
can be initiated before the development of severe academic deficits, which can be intractable
and can create life-long difficulty in and out of school (e.g., Rivera-Batiz, 1992). The
predominant approach for forecasting academic achievement is traditional testing with a
general measure of intelligence (e.g., Raven Progressive Matrices [Raven, 1960]) or a test of
specific ability or skill presumed to underlie future academic performance (e.g., phonological
processing for development of word-reading performance or calculations skill for development
of mathematics word-problem performance). In these conventional testing situations,
examinees respond without examiner assistance, and a body of work demonstrates that
assessments of intelligence or precursor abilities/skills capture varying amounts of variance in
forecasting academic development. For example, a measure of quantity discrimination, when
used as a screener near the beginning of first grade, accounts for 25% to 63% of the variance
in end-of-year math outcomes depending on the study (e.g., Chard et al. 2005; Clarke & Shinn,
2004; Lembke & Foegen, 2006).

Because these conventional assessments are imperfect predictors of academic learning (e.g.,
Sternberg, 1996), they have long been the target of scrutiny and criticism (e.g., Tzuriel &
Haywood, 1992). A major concern is that these “static” estimates of performance reveal only
two states: unaided success or failure. By contrast, as Vygotsky (e.g., 1934/1962) proposed,
children may function somewhere between these states: unable to perform a task independently
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but able to succeed with assistance. This has implications for discriminating students at the
lower end of the distribution. For example, when two children earn the same low score on a
calculations test, they may not have the same potential to develop word-problem skill. One
may succeed in solving word problems given only minimal assistance. This would suggest that
the initially low performance on the static assessment stems from inadequate learning
opportunity in the child’s present environment, but indicating good learning potential with
competent instruction in the future. The other child may struggle to learn word problems even
when provided highly explicit instruction (revealing the need for special intervention).

So the question arises: If the goal is to forecast learning potential, why not assess the student’s
capacity to learn, rather than assessing what the student presently knows? This alternative form
of assessment, whereby students’ learning potential is measured, is known as dynamic
assessment (DA). DA has been the focus of discussions and research for more than 75 years
(e.g., Kern, 1930; Penrose, 1934; Rey, 1934, as cited in Grigorenko & Sternberg, 1998). In the
present study, we considered the contribution of a DA in forecasting students’ development of
word-problem competence across third grade. In this introduction, we present a framework for
considering prior DA work related to the present study. Then we clarify how the present study
builds on and extends this literature.

Prior Work on DA as A Predictor of Academic Development

DA involves structuring a learning task; providing feedback or instruction to help the student
learn the task; and indexing responsiveness to the assisted learning phase as a measure of
learning potential. Research on DA varies as a function of the structure and design of the DA
and in terms of the methodological features of the studies.

In terms of structure and design, DAs vary along three dimensions (see Campione, 1989):
index, style of interaction, and the nature of the skills assessed. Index refers to the way in which
DAs quantify responsiveness to the assisted phase of learning. This is the measure of learning
potential. The first strategy for indexing performance is to characterize the amount of change
from an unassisted pretest to an unassisted posttest (with the assisted learning phase intervening
between the pre- and posttest) or by scoring students’ unaided performance following the
assisted phase of assessment (e.g., Ferrara, Brown, & Campione, 1986). The second approach
for indexing performance is to quantify the amount of scaffolding required during the assisted
phase of assessment to reach criterion performance (e.g., Murray et al., 2000; Spector, 1992).
These alternative methods for indexing DA performance serve the same purpose: to predict
whether students require extra attention in order to learn adequately. Researchers who use
change from unassisted pre- to posttest or use unaided performance following the assisted phase
of assessment typically contrast normal learners against special populations of learners (e.g.,
students with mental retardation) to examine whether the assisted learning experience produces
differential learning outcomes as a function of having a diagnosis associated with inadequate
learning (e.g., mental retardation). This suggests that low DA scores (improvement as a
function of assisted learning or unaided performance score following assisted learning) serve
to predict poor outcomes in other learning situations, indicating that extra instructional support
is required to produce adequate learning. In a related way, when research shows that amount
of scaffolding predicts learning outcomes outside of DA, this provides evidence that low DA
scores (amount of scaffolding needed to reach criterion performance during the assisted
learning phase) serve to predict poor outcomes in other learning situations, indicating that extra
instructional support is required to produce adequate learning.

The second dimension along which DA varies is the style of interaction. Some DAs (e.g.,
Ferrara et al., 1986) are standardized, where the tester administers a fixed series of prompts;
success with early prompts reflects the need for minimal adult intervention to perform/learn
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the task, whereas success on later prompts reflects the need for more extensive adult help to
perform/learn the task. By contrast, other DAs (e.g., Tzuriel & Feuerstein, 1992) are
individualized, where the tester addresses the student’s specific obstacles as revealed by that
student’s responses.

The third dimension along which DA varies is the nature of the skills assessed. Early work
(e.g., Budoff, 1967; Feuerstein, 1979) tended to focus on domain-general skills associated with
cognitive ability. In more recent work, tasks tend to be more academically grounded (e.g.,
Bransford et al., 1987; Campione, 1989; Campione & Brown, 1987; Spector, 1992).

In terms of research questions and methodological features, some DA studies focus on the
amount of learning that accrues on the DA task as a function of student characteristics or the
structure of DA (e.g., Tzuriel & Feuerstein, 1992). This approach dominated DA research in
the 1970s, 1980s, and 1990s. Alternatively, studies consider DA’s contribution in explaining
academic performance outside the DA. This second class of studies can be categorized further
in terms of two major methodological features. The first is whether studies account for
competing predictors of outcome (including static assessments) while considering DA’s
contribution in predicting academic performance. The second methodological feature is
whether academic performance (the outcome) is assessed concurrently with DA (the predictor)
or at a later time.

Compared to studies that do not control for competing predictors of outcome, studies that exert
such control impose a more stringent falsifiability criterion for considering the value of DA.
In terms of the timing of the academic outcome, studies that measure academic performance
at a later time enhance external validity, given that the purpose of DA is to forecast future
academic achievement. After all, if we were interested in present academic performance, the
parsimonious approach would be to measure present achievement directly, not via DA.
However, it is also possible that forecasting later academic performance creates variance for
DA to capture because the relation between learning potential as indexed via DA and upcoming
learning in response to instruction may be stronger than the relation between static assessments
(which may be determined by culture, socioeconomics, and previous learning opportunity) and
upcoming learning. This empirical issue is, of course, central to questions about DA’s utility
as a measure of learning potential. For these reasons, in the present study, we examined the
contribution of DA in explaining academic performance while accounting for competing
predictors of outcome.

To contextualize the present study, we therefore restricted attention in our overview of prior
work to the subset of investigations that also explored DA’s contribution in predicting academic
performance while controlling for competing predictors. We did, however, consider studies
that predicted concurrent as well as future academic performance. We also included DAs of
varying structure and design. That is, if a study predicted academic outcome while accounting
for competing predictors of outcome, we included it regardless of whether the outcome was
measured concurrently or in the future, regardless of the way in which DA performance was
quantified, regardless of the style of the DA interaction, and regardless of nature of the DA
skills assessed. (For a comprehensive DA review, inclusive of all structures and designs as
well as all research questions and methodological features, see Grigorenko & Sternberg,
1998).
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Using our inclusion criteria, we identified three relevant studies.! In the first study, Speece et
al. (1990) measured first-grade students’ learning potential with a DA task involving a domain-
general skill associated with overall cognitive ability: solving matrices that were borrowed
from intelligence tests. Using a standardized style of interaction, the researchers indexed
learning potential via the number of prompts required during the assisted phase of assessment.
Speece et al. assessed the contribution of DA over verbal 1Q, pre-DA matrices performance,
and language ability for indicating performance on concurrently administered tests of reading
and math achievement. Although statistically significant, DA accounted for less than 2% of
the variance in concurrent math performance.

Also predicting concurrent academic performance and using a standardized form of DA,
Swanson and Howard (2005) extended the work of Speece et al. (1990) by centering DA on
cognitive abilities presumed to underlie reading and math performance: phonological working
memory (i.e., rhyming tasks that required recall of acoustically similar words) and semantic
working memory (i.e., digit/sentence tasks that required recall of numerical information
embedded in short sentences). Four standardized hints were available to DA testers, who
selected hints that corresponded to students’ errors, choosing the least obvious, relevant hint.
Three DA scores were generated: gain score (highest score obtained with assistance);
maintenance score (stability of the highest level obtained with assistance probing after
assistance was removed); and probe score (number of hints to achieve highest level). The
sample comprised students classified as poor readers, skilled readers, reading disabled, or math
and reading disabled, with the age of participants averaging 10 to 12 years. To predict
concurrent performance on the Wide Range Achievement Test-Reading and Arithmetic
subtests, the DA scores for phonological working memory were combined into a factor score;
the same was done for DA semantic working memory. The competing predictors were verbal
IQ and pre-DA working memaory, which were entered first into multiple regression analyses.
In predicting reading, pre-DA semantic working memory, verbal 1Q and semantic DA provided
unique variance; the unique contribution of the semantic DA factor was 6%. In predicting
arithmetic, pre-DA phonological working memory, verbal 1Q, and semantic DA provided
unique variance; the unique contribution of the semantic DA factor was 25%.

So whereas Speece et al. (1990) found more limited support for DA’s added value as related
to math performance when DA addressed a domain-general task associated with cognitive
ability, Swanson and Howard’s (2005) work, which centered DA on cognitive abilities
presumed to underlie reading and math performance, was more encouraging. Neither study,
however, assessed students’ academic performance at a later time. Given that DA’s purpose
is to forecast future academic achievement, delaying outcome assessment seems important for
external validity. In addition, delaying outcome assessment may create variance for DA to
capture, as already discussed.

We identified only one study that centered DA on cognitive abilities presumed to underlie
reading and math performance (as done by Swanson & Howard, 2005) and, in contrast to
Speece et al. (1990) and Swanson and Howard, delayed the assessment of academic
achievement to later in the school year. Spector (1997) administered a standardized DA of
phonemic awareness, indexing number of prompts to achieve criterion performance, in
November of kindergarten, and then assessed word-level reading skill in May of kindergarten.
DA substantially enhanced predictive validity beyond initial verbal ability and beyond initial,
static phonological awareness performance in predicting end-of-kindergarten word-reading
skill, explaining an additional 21% variance. In fact, November DA was the only significant

1we excluded Byrne’s work (e.g., Byrne, Fielding-Barnsley, & Ashley, 2000) because it conceptualizes DA as the student’s rate of
acquisition in response to schooling; it is not an assessment conducted to predict responsiveness to schooling. Therefore, as an assessment
paradigm, Byrne’s work is more similar to responsiveness-to-intevention than to DA.
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predictor of May word-reading skill. These results provide promising evidence that DA may
enhance the prediction of student learning.

We also considered one additional investigation, even though it did not meet our inclusion
criteria (in that it considered DA’s relation to post-DA performance on items that mirrored the
DA tasks). This study nonetheless helped inform the present study because of its statistical
methods. With 84 preschool children, Day et al. (1997) created DAs that focused on domain-
general skills associated with cognitive abilities: similarities and block design tasks. The style
of interaction was individualized (i.e., the tester addressed the specific obstacles revealed by
the student’s responses), and learning potential was indexed by trials to criterion performance.
For block design, for example, children were taught a 4-step strategy, which the experimenter
initially modeled using a 4-block problem. If the child failed to solve another 4-block problem
correctly, more guidance was provided on a 3-block problem. Assistance was provided
whenever a child failed to solve a problem correctly until he/she solved three consecutive 4-
block problems without assistance. A transfer task that varied the block design was also
presented, with analogous support to learn, and the researchers assessed pre-DA and post-DA
similarities and block design performance. Pre-DA performance was considered a competing
predictor; post-DA performance was the outcome.

We were interested in Day et al.’s (1997) use of structural equation modeling to test competing
measurement and structural models. The measurement model that retained DA as a construct
separate from pre-DA and post-DA provided better fit of the data. Thus, DA appeared to tap
a construct separate from pre-DA performance, even on analogous tasks. In predicting post-
DA scores, Day et al. contrasted four structural models and thereby showed that DA was a
viable and necessary predictor of post-DA performance. Of course, academic (or pre-academic)
performance or learning, which is the relevant outcome to consider when assessing DA’s value
in predicting achievement, was not considered. Accordingly, Day et al. concluded, “We do not
know how dynamic measures related to everyday or school learning or how schooling might
affect the relationships among the same measures in children older than those who participated
in the present study.... Finally, the primary advantage of dynamic measures may lie in how
well they predict the ease with which children acquire new information (i.e., training
responsiveness) rather than in how well they predict post-training independent

performance” (p. 367).

Purpose of the Present Study

As reflected in Day et al.’s (1997) concluding comments, additional work on DA is necessary,
especially in light of Spector’s (1997) promising findings. In the present study, the academic
outcome was third-grade skill with word problems. Our DA extended the framework for
considering type of DA task by employing actual math content that was not a precursor or
foundational skill for solving word problems: three basic algebra skills. The question was
whether a student’s potential to learn algebra at the beginning of third grade forecasted their
development of word-problem competence over the course of third grade. We note that
although linguistic content is absent from the algebra skills assessed on the DA, algebra does
require understanding of the relations among quantities, as is the case for solving word
problems. Hence, a potentially important connection does exist between algebraic learning, as
assessed on the DA task, and word-problem learning, as addressed in the 16-week treatment
conditions (validated vs. conventional word-problems instruction).

We selected basic algebra skills as our DA content for the following reasons. First, we could
safely assume that these skills were unfamiliar to third graders, i.e., the skills had not been
introduced in school to students by the beginning of third grade and was not familiar from
everyday life experiences. Second, the algebra skills were of sufficient difficulty that most
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third graders would not be able to solve the problems without assistance but could learn the
skills with varying amounts of teaching. Third and relatedly, at the beginning of third grade,
students should have mastered the simple calculation skills that we incorporated within the
three algebra items. Fourth, we could delineate rules underlying the algebra skills, rules that
could be used to construct clear explanations within a graduated sequence of prompts. Fifth,
the graduated sequences of prompts for the three skills could be constructed in an analogous
hierarchy, thereby promoting equal interval scaling of the DA scoring system. Sixth, the three
skills were increasingly difficult (as established in pilot work) and later skills appeared to build
on earlier skills; therefore, we hoped that transfer across the three algebra skills might facilitate
better DA scores. Seventh, as noted, although linguistic content is absent from the algebra
skills, algebra does require understanding of the relations among quantities, as is the case for
solving word problems.

In the present study, we controlled for other variables that might be important in predicting
outcome. First, we controlled for pretreatment performance on salient cognitive predictors of
word-problem skill (language ability, attentive behavior, and nonverbal reasoning). Second,
we controlled for students’ pretreatment skill with calculations and word problems. Third, we
extended prior work by also controlling for the nature of classroom instruction. Toward that
end, on the basis of random assignment, students received conventional mathematical problem-
solving instruction or research-validated schema-broadening instruction (e.g., Fuchs et al., in
press), and we treated treatment condition as a competing predictor variable (see Method
section for a description of these treatment conditions). Two other features of the present study
are noteworthy. We examined word-problem outcome as a function of whether the word-
problem measures could be considered near versus far transfer from instruction (i.e., the
flexibility required to apply the content of the math word-problems curriculum). Also, we relied
on structural equation modeling, as did Day et al. (1997), to assess DA’s added value. In the
remaining section of this introduction, we briefly explain the basis for selecting language
ability, attentive behavior, and nonverbal reasoning as the cognitive predictors of word-
problem skill.

Prior work examining cognitive processes that underlie skill with word problems has
recurrently identified three important dimensions: attentive behavior, nonverbal reasoning, and
language ability. In studies involving attentive behavior, most work has focused on the
inhibition of irrelevant stimuli, with mixed results. Passolunghi and colleagues ran a series of
studies suggesting the importance of inhibition. For example, comparing good and poor
problem solvers, Passolunghi, Cornoldi, and De Liberto (1999) found comparable storage
capacity, with inefficiencies of inhibition (i.e., poor problem solvers remembered less relevant
but more irrelevant information in math problems). In addition, Fuchs et al. (2005) and Fuchs
et al. (2006) studied the role of attention more broadly and, in separate studies, found that a
teacher rating scale of attentive behavior predicted the development of skill with word problems
at first and third grades.

Nonverbal problem solving, or the ability to complete patterns presented visually, has also been
identified as a unique predictor in the development of skill with word problems across first
grade (Fuchs et al., 2005), a finding corroborated by Agness and McLone (1987). This is not
surprising because word problems, where the problem narrative poses a question entailing
relationships between numbers, appear to require conceptual representations, and the finding
has been replicated as a unique predictor of concurrent word-problem skill at third grade (Fuchs
et al., 2006).

Language ability also is important to consider given the obvious need to process linguistic

information when building a problem representation of a word problem. Jordan, Levine, and
Huttenlocher (1995) documented the importance of language ability when they showed that
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kindergarten and first-grade language-impaired children performed significantly lower than
nonimpaired peers on word problems. Fuchs, Fuchs, Stuebing, Fletcher, Hamlett, and Lambert
(in press) examined concurrent performance on nine cognitive dimensions with multiple
measures of calculations skill and word-problem skill on a sample of 917 third graders
representatively sampled from 89 classes. Students were classified as having difficulty with
calculations, word problems, both domains, or neither domain. Multivariate profile analysis
on the nine cognitive dimensions showed that specific calculations difficulty was associated
with strength in language whereas difficulty with word problems was associated with deficient
language. We also note that language ability and nonverbal reasoning comprise two major
dimensions in some prominent assessments of intelligence.

Because these cognitive dimensions are established predictors of word-problem skill, they
represent worthy competitors against DA for capturing variance in word-problem outcomes.
In addition, these cognitive dimensions, while differing from DA in their demands, connect in
transparent ways to word-problem skill or to learning in the general education context.
Language, while not reflected in our algebra DA, is clearly involved in word problems, which
are communicated via narratives. Nonverbal problem solving asks students to complete
matrices presented visually, involving classification and analogy. Although this has no direct
connection to our algebra DA, it is linked to word-problem skill, which requires students to
connect novel problems with the word-problem types for which they know solutions. Evidence
suggests this occurs via classification and analogy (e.g., Cooper & Sweller, 1987). Attentive
behavior asks teachers to judge students” ability to attend to detail, sustain attention, listen,
follow directions, organize tasks, keep track of things, ignore extraneous stimuli, and remember
daily activities. These ratings, which teachers formulate on the basis of observations of students
in their classrooms, seem better connected to learning word problems in general education
settings than in one-to-one testing situations like DA, where the tester can redirect and control
inattentive behavior more effectively. Finally, we note that language and nonverbal reasoning
are two major dimensions of general intelligence, which traditionally has been used to predict
academic achievement (in fact, in the present study, the VVocabulary and Matrix Reasoning
measures used to index language ability and nonverbal problem solving, respectively,
constitute the 2-subtest Wechsler Abbreviated Scale of Intelligence). For this additional reason,
these constructs represent worthy competitors with DA in forecasting responsiveness to
classroom word-problem instruction.

With the exception of the DA, the data described in this paper were collected as part of a
prospective 4-year study assessing the effects of mathematical problem-solving instruction and
examining the developmental course and cognitive predictors of mathematical problem
solving. The data in the present article were collected with a subset of students in the fourth-
year cohort of the larger study at the first and second assessment waves (at fall and spring of
third grade). We sampled students from the 30 participating classrooms in nine schools (five
Title 1 and three non-Title 1). Classrooms had been randomly assigned to treatment conditions
(conventional vs. validated schema-broadening instruction) within schools. There were two to
six students per class.?

2Concerning classroom as a potential source of dependency in the data, we explained the following in the revision. We calculated intra-
class correlations (ICCs) for classrooms on the outcomes measures, which is where important context effects might be revealed. We
found minimal I1CCs for the far-transfer measures (.003 to .03). By contrast, the ICCs for the near-transfer measures were sizeable (.5
t0.7). However, the ICCs for the near-transfer measures dropped to levels comparable to the far-transfer measures when the effects of
treatment were controlled, as in the SEM models. So in the SEM models, variance in the outcomes is essentially at the individual not the
classroom level, making it unnecessary to account for classroom in the SEM models.
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We sampled students for the present study from the cohort’s 510 students with parental consent.
The sampling process was designed to yield a representative sample. That is, from these 510
students, we randomly sampled 150 for participation, blocking within instructional condition
(conventional math problem-solving instruction vs. schema-broadening math problem-solving
instruction), within classroom, and within three strata: (a) 25% of students with scores 1 SD
below the mean of the entire distribution on the Test of Computational Fluency see Measures;
(b) 50% of students with scores within 1 SD of the mean of the entire distribution on the Test
of Computational Fluency; and (c) 25% of students with scores 1 SD above the mean of the
entire distribution on the Test of Computational Fluency). Of these 150 students, we have
complete data for the variables reported in the present study on 122 children. The 122 included
students were comparable to the remaining students on the study variables, with varying sample
sizes depending on where missing data occurred. See Table 1 for descriptive information on
performance variables for the sample of 122 children. Of these students, 67 (54.9%) were male,
and 80 (67.0%) received subsidized lunch. Ethnicity was distributed as: 57 (47.5%) African
American, 53 (43.4%) European American, 10 (8.3%) Hispanic, and 3 (2.5%) other. Two
students (1.7%) were English language learners.

On the basis of random assignment, 61 students received conventional math problem-solving
(as determined by their core math program and teachers) and 61 received schema-broadening
math problem-solving instruction that has been validated (i.e., five large-scale randomized
control trials, published in peer-reviewed journals, have documented the efficacy of the
intervention at third grade with similar populations of students; Fuchs et al., 2003a; 2003b;
20044, 2004b; in press). In Table 1, we show performance variables by instructional condition.
Of the 61 students in conventional math problem-solving instruction, 32 (52.5%) were male,
and 39 (63.9%) received subsidized lunch. Ethnicity was distributed as: 32 (52.5%) African
American, 25 (41.0%) European American, and 5 (8.2%) Hispanic. Two students (3.2%) were
English language learners. Of the 61 students in validated, schema-broadening math problem-
solving instruction, 35 (57.4%) were male, and 41 (67.2%) received subsidized lunch. Ethnicity
was distributed as: 25 (41.1%) African American, 28 (45.9%) European American, 5 (8.2%)
Hispanic, and 3 (4.9%) other. None was an English language learner.

We describe the subset of measures relevant to this research report. In October, the DA was
administered individually in one 30-45 min session. In September and October, we
administered measures of language and nonverbal reasoning (Woodcock Diagnostic Reading
Battery [WDRB] - Listening Comprehension, Test of Language Development — Primary
[TOLD] Grammatic Closure, Wechsler Abbreviated Scale of Intelligence [WASI] Vocabulary,
and WASI Matrix Reasoning) and math performance (Woodcock-Johnson [WJ] 111 Applied
Problems) individually in two 45-min sessions. In October, we administered the Test of
Algorithmic Word Problems in one 30-min large-group session, and we administered three
tests of calculations skill (Addition Fact Fluency, Subtraction Fact Fluency, and Test of Mixed
Algorithms) in one 60-min large-group session. We also obtained scores on the previous
spring’s state assessment (Tennessee Comprehensive Assessment Program; CTB/McGraw-
Hill, 2003) from teachers.

In March, five tests of word-problem skill were administered (Algorithmic Word Problems,
Complex Word Problems, Real-World Problem Solving, and WJ 111 Applied Problems). The
first four were administered in two sessions in large groups. WJ 111 Applied Problems was
administered individually in one session. We categorized the word-problem measures in terms
of transfer distance (i.e., the distance from the types of word problems addressed during
instruction and the degree of flexibility required in applying the word problems taught during
instruction). Algorithmic Word Problems and Complex Word Problems were deemed near
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transfer. Real-World Problem Solving, WJ I11 Applied Problems, and the lowa Test of Basic
Skills: Problem Solving and Data Interpretation were considered far transfer. (We elaborate
on transfer distance for each measure in the measures section.)

Group and individual testing was conducted by trained university examiners, each of whom
had demonstrated 100% accuracy during mock administrations. All individual sessions were
audiotaped, and 19.9% of tapes, distributed equally across testers, were selected randomly for
accuracy checks by an independent scorer. Agreement was between 98.7 and 99.9%. In
October, classroom teachers completed the SWAN Rating Scale, the measure of attentive
behavior, on each student.

Measures of Cognitive, DA, and Calculations Pretreatment Performance

Language—We used three measures of language skill to create a latent variable representing
language. TOLD Grammatic Closure (Newcomer & Hammill, 1988) measures the ability to
recognize, understand, and use English morphological forms. The examiner reads 30 sentences,
one at a time; each sentence has a missing word. As per the test developers, for 8 year olds,
reliability is .88; the correlation with Illinois Test of Psycholinguistic Ability Grammatic
Closure is .88. Coefficient alpha on the representative sample was .76. The WDRB Listening
Comprehension (Woodcock, 1997) measures the ability to understand sentences or passages.
Students supply words missing from the end of each sentence or passage. The test begins with
simple verbal analogies and associations and progresses to comprehension involving the ability
to discern implications. Testing is discontinued after six consecutive errors. The score is the
number of correct responses. As per the test developers, reliability is .80 at ages 5-18; the
correlation with WJ-R is .73. Coefficient alpha on the representative sample was .81. WASI
Vocabulary (Wechsler, 1999) measures expressive vocabulary, verbal knowledge, and
foundation of information. The first four items present pictures; the student identifies the object
in the picture. For remaining items, the tester says a word that the student defines. Testing is
discontinued after five consecutive errors. As reported by Zhu (1999), split-half reliability is .
86-.87 at ages 6—7; the correlation with WISC-111 Full Scale 1Q is .72. Coefficient alpha on
the representative sample was .78.

Nonverbal problem reasoning—WASI Matrix Reasoning (Wechsler, 1999) measures
nonverbal reasoning, with pattern completion, classification, analogy, and serial reasoning.
Examinees look at a matrix from which a section is missing and complete it. Testing is
discontinued after 4 errors on 5 consecutive items or 4 consecutive errors. As per the test
developer, reliability is .94 for 8 year olds; the correlation with WISC-111 Full Scale 1Q is .66.
Coefficient alpha on the representative sample was .76.

Attentive behavior—The SWAN inattentive subscale is a 9-item teacher rating scale. Items
from the Diagnostic and Statistical Manual of Mental Disorders-1V (APA, 1994) criteria for
Attention-Deficit/Hyperactivity Disorder are included. Items are rated on a 1 to 7 scale. We
grouped items into triads (1-3, 4-6, 7-9) to form three observed attentive behavior variables
for use in the structural equation modeling. The SWAN has been shown to correlate well with
other dimensional assessments of behavior related to inattention (www.adhd.net). Coefficient
alpha in this study was .92 for items 1-3, .94 for items 4-6, and .94 for items 7-9.

DA—The DA addresses three algebra skills assumed to be novel because they have not been
taught in school and because they do not routinely occur in children’s extra-school experiences.
The three algebra skills are: (a) finding the missing variable in the first or second position in
addition equations (e.g., x+5=11 or 6+x=10); (b) finding x in multiplication equations (e.g.,

3x=9); and (c) finding the missing variable in equations with two missing variables, but with
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one variable then defined (e.g., x+2=y—1; y=9). We refer to these three skills, respectively, as
DA Skill A, DA Skill B, and DA Skill C.

Mastery of each DA skill is assessed before instructional scaffolding occurs, and mastery
testing recurs after each level of instructional scaffolding is completed. The mastery test
comprises six items representing the skill targeted for mastery, with mastery defined as at least
5 items correct. The items on the test are never used for instruction but parallel instructional
items; each time the 6-item test is readministered for a given skill, a different form is used,
although some items recur across forms. If, after 5 sec, the student has not written anything
and does not appear to be working, the tester asks, “Can you try this?”; if after another 15 sec,
the student still has not written anything and does not appear to be working, the tester asks,
“Are you still working or are you stuck?” If the student responds that he/she is stuck, the tester
initiates the first (or next) level of instructional scaffolding. If the students responds that he/
she is still working but another 30 sec pass without the student writing anything or working,
the tester then initiates the first (or next) level of instructional scaffolding. If the student masters
the skill (i.e., at least 5 items are answered correctly), the tester administers a generalization
problem (i.e., for Skill A: 3+6+x=11; for Skill B: 14=7x; for Skill C: 3+x=y+y; y=2) and moves
to the next DA Skill. If the student does not master the skill (i.e., fewer than 5 items are answered
correctly), the tester provides the first (or next) level of instructional scaffolding, or support,
which is followed by the 6-item test. The levels of instructional scaffolding gradually increase
instructional explicitness and concreteness. If a student fails to answer at least five correctly
after the tester provides all five scaffolding levels for a given skill, the DA is terminated.

Scores range from 0-21, where 0 is the worst score (i.e., student never masters any of the three
skills) and 21 is the best score (i.e., student masters each of the three skills on the pretest and
gets every bonus problem correct). So, for each skill, there is a maximum of seven points,
awarded as follows: student masters skill on pretest = 6 points; student masters skill after
Scaffolding Level 1 =5 points; student masters skill after Scaffolding Level 2 = 4 points;
student masters skill after Scaffolding Level 3 = 3 points; student masters skill after Scaffolding
Level 4 = 2 points; student masters skill after Scaffolding Level 5 = 1 point; student never
shows mastery = 0 points. In addition, if the student gets the generalization problem correct,
one point is added, for the maximum score of 7 points for that DA Skill.

To promote equal interval scaling, scaffolding levels for each of the three skills are structured
in analogously. Scaffolding levels, which range from incidental to explicit, are provided in
Appendix | for DA Skill A. For this information on DA Skills B and C, contact the first author.
Correlations with the previous year’s math composite score on the state assessment (CTB/
McGraw-Hill, 2003) were .57 for DA Skill A, .60 for DA Skill B, and .41 for DA Skill C.

Calculations—Three measures were used to create a latent variable representing calculation
skill. Addition Fact Fluency (Fuchs, Hamlett, & Powell, 2003) comprises 25 addition fact
problems with answers from 0 to 12 and with addends from 0 to 9. Problems are presented
horizontally on one page. Students have 1 min to write answers. Percentage of agreement, on
20% of protocols by two independent scorers, was 99.9. Coefficient alpha for this sample was .
92; criterion validity with the previous spring’s TerraNova (CTB/McGraw-Hill, 2003) Total
Math score was .53 for the 1139 students on whom we had TerraNova scores. Subtraction Fact
Fluency (Fuchs et al., 2003) comprises 25 subtraction fact problems with answers from 0 to
12 and with minuends/subtrahends from 0-18. Problems are presented horizontally on one
page. Students have 1 min to write answers. Percentage of agreement, on 20% of protocols by
two independent scorers, was 98.7. Coefficient alpha for this sample was .93, and criterion
validity with the previous spring’s TerraNova (CTB/McGraw-Hill) Total Math score was .51
(n = 1139). The Test of Mixed Algorithms (Fuchs, Hamlett, & Fuchs, 1990) is a 1-page test
with 25 items that sample the typical second-grade computation curriculum, including adding
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and subtracting number combinations and procedural computation. Students have 3 min to
complete as many answers as possible. Staff entered responses into a computerized scoring
program on an item-by-item basis, with 15% of tests re-entered by an independent scorer. Data-
entry agreement was 99.7. Coefficient alpha for this sample was .94, and criterion validity with
the previous spring’s TerraNova (CTB/McGraw-Hill) Total Math score was .60 (n = 1139).

Measures of Word-Problem Skill

We measured pretreatment word-problem skill using Algorithmic Word Problems. We
measured posttreatment word-problem outcomes using Algorithmic Word Problems, Complex
Word Problems, Real-Word Problem Solving, WJ-111 Applied Problems, and lowa Test of
Basic Skills: Problem Solving and Data Interpretation.

Four independent judges classified the five word-problem outcome measures in terms of
transfer distance from the instruction provided in schema-broadening math problem-solving
instruction (i.e., the flexibility required to apply the content of the math word-problems
curriculum) into two classes: near transfer versus far transfer. Agreement was 100%. We
describe the word-problem outcomes in terms of near-transfer measures (all novel problems
but structured similarly to problems used for instruction) versus far-transfer measures (all novel
problems, not structured similarly to problems used for instruction). Schema-broadening
instruction (SBI) focused on four word-problem types, chosen from the district curriculum to
ensure that conventional math problem-solving instruction students had instruction relevant to
the study. The four problem types were “shopping list” problems (e.g., Joe needs supplies for
the science project. He needs 2 batteries, 3 wires, and 1 board. Batteries cost $4 each, wires
cost $2 each, and boards cost $6 each. How much money does he need to buy supplies?), “half”
problems (e.g., Marcy will buy 14 baseball cards. She’ll give her brother half the cards. How
many cards will Marcy have?), step-up function or “buying bags” problems (e.g., Jose needs
32 party hats for his party. Party Hats come in bags of 4. How many bags of party hats does
Jose need?), and 2-step “pictograph” problems (e.g., Mary keeps track of the number of chores
she does on this chart [pictograph is shown with label: each picture stands for 3 chores]. She
also took her grandmother to the market 3 times last week. How many chores has Mary done?).
In addition, SBI was designed to broaden schemas, with each problem varying the cover story
and one of the four transfer features, which change a problem without altering its type or
solution: a problem with unfamiliar vocabulary, posing an additional question, incorporating
irrelevant information, or combining problem types.

Near-transfer word problems—Algorithmic Word Problems (Fuchs et al., 2003)
comprises 10 word problems each of which requires 1 to 4 steps. The measure samples the
four problem types the correspond to SBI and that are incorporated within conventional
classroom instruction: shopping list, half, buying bags, and pictograph problems. The tester
reads each item aloud while students follow along on their own copies of the problems; the
tester progresses to the next problem when all but 1-2 students have their pencils down,
indicating they are finished. Students can ask for re-reading(s) as needed. The maximum score
is 44. We used two alternate forms; the problems in both forms required the same operations,
incorporated the same numbers, and presented text with the same number/length of words. In
half the classes in each treatment condition, we used Form A at pretest and Form B at posttest;
in the other half, forms were reversed. For the representative sample, Cronbach’s alpha was .
85, and criterion validity with the previous spring’s TerraNova (CTB/McGraw-Hill, 1997)
Total Math score was .58 for the 844 students on whom we had TerraNova scores. Interscorer
agreement, computed on 20% of protocols by two independent scorers, was .984.

Complex Word Problems (Fuchs et al., 2003) comprises nine problems representing the same
four problem types within more complex contexts, which incorporate the four transfer features

J Educ Psychol. Author manuscript; available in PMC 2009 November 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Fuchs et al.

Page 12

explicitly taught within SBI: (a) adding multiple quantities of items with different prices, with
information presented in bulleted format and with a selection response format; (b) adding
multiple quantities of items with different prices, also asking for money left at the end; (c) a
step-up function problem with irrelevant information; (d) a step-up function that requires
students to compare the prices of two packaging options; (e) a half problem using the words
share equally instead of half; (f) a pictograph/adding problem asking for money left at the end,;
(9) a pictograph/adding problem comparing two quantities; (h) a problem with irrelevant
information that combined multiple quantities with different prices and pictograph/adding; and
(i) a problem with irrelevant information that combined multiple quantities with different prices
and a step-up function. The tester reads each item aloud while students follow along on their
own copies of the problems; the tester progresses to the next item when all but 1-2 students
have their pencils down, indicating they are finished. Students can ask for re-reading(s) as
needed. The maximum score is 79. For the representative sample, Cronbach’s alpha was .88,
and criterion validity with the previous spring’s TerraNova Total Math Score was .55 for the
844 students on whom we had TerraNova scores. Interscorer agreement, computed on 20% of
protocols by two independent, “blind” scorers, was .983.

Far-transfer word problems—Real-World Problem Solving simultaneously assesses
transfer of all four problem types and all four transfer features addressed in SBI. Also, to
decrease association between the task and classroom or tutoring SBI, far transfer was formatted
to look like a commercial test (printed with a formal cover, on green paper, with photographs
and graphics interspersed throughout the test booklet). Two assessments were constructed as
alternate forms: Although the context of the problem situations differed, the structure of the
problem situation and the questions were identical, and the problem solutions and reading
demands were equivalent.

Performance was scored according to a rubric with four dimensions: conceptual underpinnings,
computational applications, problem-solving strategies, and communicative value. The
original rubric (Kansas Board of Education, 1991) scored responses on a 6-point scale. To
enhance reliability, we awarded points on a finer basis (e.g., the problem-solving strategies
score included points for finding relevant information, accumulating to a total, showing all
computation, working the answer in distinct multiple parts, labeling at least half of the multiple
parts, and labeling work with monetary and operation signs). Across the four questions and
four scoring dimensions, the maximum score is 72. On this sample, Cronbach’s alpha was .91
at pretest; .94 at posttest; concurrent validity with WJ-111 Applied Problems (Woodcock et al.,
2001) was .47 at pretest; .61 at posttest. Interscorer agreement, computed on 20% of protocols
by two independent “blind” scorers, was .987 at pretest; .949 at posttest. Given the deleterious
effects of student unfamiliarity with performance assessments (Fuchs, Fuchs, Karns, Hamlett,
Dutka, & Katzaroff, 2000), research assistants delivered a 45-min “test-wiseness” lesson before
pre- and posttesting in all conditions. (The mean score across immediate, near, and far transfer
correlated .62 with WJ-111 Applied Problems (Woodcock et al., 2001) at pretest; .57 at posttest.)

WJ-111 Applied Problems (Woodcock et al., 2001) measures skill in analyzing and solving
practical math problems with 60 items. The tester orally presents items involving counting,
telling time or temperature, and problem solving. The word problems addressed a range of
problem types, none of which was directly addressed within SBI. Testing is discontinued after
six consecutive errors. The score is the number of correct items. As reported by McGrew and
Woodcock (2001), 1-year test-retest reliability is .85; the ratio of true score variance to observed
variance is .88-.91. Coefficient alpha on this sample was .85.

lowa Test of Basic Skills: Problem Solving and Data Interpretation—With lowa

Test of Basic Skills: Problem Solving and Data Interpretation (Hoover, Dunbar, & Frisbie,
2001), students solve 24 word problems and use data presented in tables and graphs to solve
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word problems. The problems on this test were related only marginally to the content of SBI.
Five problems included pictographs embedded within problem types not addressed in SBI.
One problem incorporated irrelevant information, again embedded in a problem type not
addressed in SBI. For grades 1-5, KR20 is .83-.87. In this study, coefficient alpha was .86.

On the basis of random assignment, students received conventional math problem-solving or
validated SBI. We describe these conditions briefly. For additional information, see Fuchs et
al. (in press). The problem types were already described under Measures.

Conventional instruction—To guide instruction relevant to the four problem types,
conventional instruction relied primarily on Houghton Mifflin Math (Greenes et al., 2007).
Instruction addressed one problem type at a time (as did SBI) and focused on the concepts
underlying the problem type. In addition, a prescribed set of problem-solution rules was taught,
with explicit steps for arriving at solutions to the problems presented in the narrative. There
was no attempt to broaden students’ schemas for these problem types to address transfer.
However, in comparison to the classroom SBI, classroom control group instruction provided
more practice in applying problem-solution rules and provided greater emphasis on
computational requirements. Conventional instruction was explicit and relied on worked
examples, guided group practice, independent work with checking, and homework. In addition,
conventional instruction (as well as SBI) incorporated a 3-week researcher-designed and
delivered general problem-solving strategies unit.

General problem-solving strategies instruction (conventional instruction and
SBI)—Conventional instruction and SBI students received a researcher-designed 3-week (2
lessons per week) instructional unit on general math problem-solving strategies, which was
conceptually unrelated to SBI. It addressed making sure answers make sense; lining up numbers
from text to perform math operations; checking computation; and labeling work with words,
monetary signs, and mathematical symbols. These six lessons, each lasting 30-40 min, relied
on worked examples with explicit instruction, dyadic practice, independent work with
checking, and homework, for a total of 210 min. For a manual with general problem-solving
strategies, contact the first author.

SBI—For an SBI manual, contact the first author. SBI students received the 3-week general
math problem-solving unit as well as four researcher-designed 3-week SBI units. Each SBI
unit comprised six sessions. Also, two cumulative review sessions were delivered the week
after winter break. In each unit, Sessions 1 and 5 lasted about 40 min; the others lasted about
30 min. This totaled 200 min per unit and 856 min across the units (including the two cumulative
review sessions). Each 3-week unit addressed one of the four problem types: shopping list,
buying bag, half, and pictograph.

Within each unit, the sequence of lessons was as follows. In Sessions 1-4, problem-solution
instruction was delivered, using problems that varied only cover stories. A poster listing the
steps of the solution method was displayed in the classroom. In Session 1, teachers addressed
the underlying concepts and structural features for the problem type, presented a worked
example and, as they referred to the poster, explained how each step of the solution method
had been applied in the example. Students responded frequently to questions. After reviewing
the concepts and presenting several worked examples in this way, teachers shared partially
worked examples while students applied the solution steps. Students then completed 1-4
problems in dyads, where stronger students helped weaker students solve problems and check
work with answer keys. Sessions 2—4 were structured similarly, with a greater proportion of
time spent on partially worked examples and dyadic practice. Also, at the end of Sessions 2—
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4, students completed one problem independently; the teacher checked work against an answer
key; and students graphed scores.

Sessions 5-6 were designed to broaden schemas, with each problem varying the cover story
and one of the four transfer features addressed in SBI. Teachers first taught the meaning of the
word transfer. Then, they taught the four transfer features, which change a problem without
altering its type or solution: A familiar problem type, for which a solution is known, can use
unfamiliar vocabulary, can pose an additional question, can incorporate irrelevant information,
can combine problem types. A poster, “Transfer: Ways Problems Change,” was displayed. In
Session 5, teachers explained the poster, illustrating each transfer feature with a worked
example. They gradually moved to partially worked examples. Then, students worked in pairs
to apply the solution method to problems that varied transfer features. In Session 6, teachers
reviewed the four transfer features using similar procedures, except students spent more time
working in dyads and then completed a problem independently, scored work against a key, and
graphed scores.

Delivery—Each research assistant, all full-time research employees or graduate students in
the College of Education, had responsibility for students in both conditions. All sessions were
scripted to ensure consistency of information; however, to permit natural teaching styles,
scripts were studied, not read. To ensure comparable mathematics instructional time across
conditions, SBI sessions occurred within the confines of the mathematics instructional block.
At the end of the study, classroom teachers reported the number of minutes per week they spent
on math, including time on SBI, and the amount of instructional time for conventional versus
SBI students was comparable and similar.

Treatment fidelity—Prior to the first delivery of each session, research assistants agreed on
the essential information in the script and made a checklist of points. Each session was
audiotaped. At the study’s end, two research assistants independently listened to tapes while
completing the checklist to identify the percentage of points addressed. We sampled tapes so
that, within conditions, research assistants and lesson types were sampled equitably. In
conventional instruction, 1-2 tapes were sampled per class (for Unit 1); in SBI, 6—7 tapes were
sampled per class (distributed equally across Units 1-5). Intercoder agreement, calculated on
20% of the sampled tapes, was 97.2%. The mean percentage of points addressed was 98.34
(SD = 3.16) for conventional instruction and 95.82 (SD = 2.46) for SBI.

Data Analysis and Results

Descriptive Data

Data analysis progressed in two stages. First, the measurement models for pretreatment and
posttreatment measures were estimated using confirmatory factor analysis. Second, various
relational models were tested using structural equation modeling. Prior to model estimation,
the data were pre-analyzed to identify outliers and estimate departures from univariate and
multivariate normality. Univariate plots revealed no significant outliers (plus or minus three
standard deviations from the mean of the sample on that variable). PRELIS 8.7 (J6reskog &
Sérbom, 2004) was used to explore univariate and multivariate normality. In the case of
univariate normality, PRELIS provides separate estimates of skew and kurtosis for each
variable with accompanying p-values. Several variables exhibited significant skew (Complex
Word Problems, Subtraction Fact Fluency, and DA Skill A) and kurtosis (Real-Word Problem
Solving and Subtraction Fact Fluency). Mardia’s statistic for multivariate normality revealed
significant multivariate nonnormality for skew (z = 2.361, p = 0.018) but not for kurtosis (z =
0.787, p = 0.431). To examine the extent to which nonnormality affects the chi-square fit
statistic, models were constructed using maximum likelihood versus a scaled chi-square
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estimated with robust standard errors using the method developed by Satorra and Bentler
(1994) as suggested by West, Finch, and Curran (1995). A scaling correction factor was
calculated representing the standard chi-square divided by the scaled chi-square. Scaling
correction factors ranged from 0.97 to 1.05 across models suggesting little difference between
the standard and scaled chi-square values. Thus, we concluded that multivariate nonnormailty
had little effect on the estimated chi-square in this study. For the remainder of the paper, we
report results from models estimated with LISREL 8.7 (JOreskog & Sdrbom, 2004) using a
maximum likelihood estimation on the sample of subjects with complete data. There is growing
evidence to suggest that maximum likelihood-based fit indices outperform other estimation
procedures and perform reasonably well with small sample sizes even when distributions are
less-than optimal (see Hu & Bentler, 1998).

In Table 1, we show means and standard deviations to describe the sample on pretreatment
performance variables and on the math outcome variables. We provide this for the total sample
and by instructional condition. In Table 2, we show correlations among the pretreatment
performance and the math outcome study variables for the total sample. We note that all
observed (manifest) variables were transformed to z-scores prior to structural equation
modeling. Also in Table 2, we also show correlations between treatment condition (validated
SBI vs. conventional) and the math outcome study variables (we do not provide the correlations
between treatment condition and pretreatment performance variables because treatment was
randomized).

Pretreatment Measurement Model: Is DA a Distinct Dimension of Pretreatment Ability?

Our pretreatment measurement model included six dimensions of pretreatment performance.
The first latent variable, language ability, comprised TOLD Grammatic Closure, WDRB
Listening Comprehension, and WASI Vocabulary. The second dimension, attentive behavior,
included three clusters of items from the SWAN (items 1-3, items 4-6, and items 7-9). The
third latent variable, DA, comprised DA Skill A, DA Skill B, and DA Skill C. The fourth latent
variable, calculations skill, incorporated Addition Fact Fluency, Subtraction Fact Fluency, and
Test of Mixed Algorithms. The fifth latent variable, a single manifest variable, WASI Matrix
Reasoning, was used to measure nonverbal reasoning. Within structural equation modeling,
the default is to set the error variance to zero for manifest variables. Instead of using the default,
we accounted for measurement error in nonverbal reasoning using the alpha coefficient for the
present sample (r = .94) to specify the error variance. A reliability of .94 is equivalent to an
error variance of 0.06 times the variance of nonverbal reasoning, which in this case was 1.0
(for details, see MacCallum, 1995). The final latent variable, Algorithmic Word Problems, was
also a single manifest variable. It was used to measure pretreatment word-problem skill. To
account for measurement error in word-problem skill, we used the alpha coefficient for the
present sample (r = .84) to specify the error variance of 0.16.

See Table 3 for correlations among the pretreatment measurement model latent traits. All
observed variables loaded substantially and reliably onto their respective factors (standardized
coefficients: .44 t0 .98, ps <.001). Because this base measurement model included the greatest
number of estimated parameters (compared to the competing measurement models), it provided
the best characterization of the data and served as a basis for comparing the competing, more
parsimonious models. Chi-square goodness-of-fit statistic plus four different fit indices
(representing Type 1-3 fit and absolute-fix indices) are provided. Jaccard and Wan (1996) and
Kline (1998) suggest use of multiple fit indices to reflect diverse criteria. Hu and Bentler
(1998) recommend with maximum likelihood estimation methods that standardized root-mean-
square residual (SRMR, absolute fit) be reported and supplemented with normed fit index (NFI,
Type 1 fit), nonnormed fit index (NNFI, Type 2 fit), and comparative fit index (CFI Type 3
fit). In evaluating a model, adequate fit is indicated by a nonsignificant chi-square test; NFI,
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NNFI, and CFI exceeding .95; and a SRMR of less than .08 (see Hu & Bentler). The base 6-
factor measurement model accounted well for the data structure, X2 (64, N=122) =58.31,p=.
6771; NFI = .965; NNFI = 1.000; CFI = 1.000; and SRMR = 0.0389 (see Pretreatment
Measurement Model 1 in Table 4 and Figure 1).

To assess the distinctiveness of DA as a pretreatment performance dimension, we compared
this base measurement model against five more parsimonious, 5-factor measurement models.
The utility of one model to explain data can be compared statistically against the utility of other
models in which it is nested by using a chi-square difference tests (i.e., AX?). The base model
always yields the best fit because it includes the most estimated parameters and is therefore
the least restrictive model. However, in the interest of parsimony, a more restrictive nested
model that fails to yield a significantly worse fit is accepted as superior.

In each of the five competing 5-factor measurement models, we merged DA with one other
dimension of pretreatment performance. So, for example Pretreatment Measurement Model 2
(see Table 4) included a separate attentive behavior factor, a separate calculations skill factor,
a separate nonverbal reasoning factor, pretreatment word-problem skill, and a factor in which
indices of language and DA loaded together (on a single factor). In Pretreatment Measurement
Models 3, 4, 5, and 6 (see Table 4), DA was combined with one of the other pretreatment
performance dimensions. Finally, we assessed a most parsimonious model, in which all indices
were loaded onto one single factor (see Pretreatment Measurement Model 7 in Table 4). Each
of these modified, more parsimonious measurement models yielded a significantly worse fit
of the data compared to the base measurement model, as reflected in the significant AX2 values
in Table 4. We therefore concluded that DA measured a distinct dimension of pretreatment
ability, and we incorporated all six dimensions of pretreatment ability into our structural model
to predict word-problem outcome.

Posttreatment Measurement Model: Are Near- and Far-Transfer Distinct Dimensions of
Posttreatment Mathematics Word-Problem Skill?

Our posttreatment measurement model included two dimensions of posttreatment word-
problem skill. The first latent variable, near-transfer word problems, comprised Algorithmic
Word Problems and Complex Word Problems. The second dimension, far-transfer word
problems, included Real-World Word Problems, the lowa, and WJ Applied Problems. See
Table 3 for correlations among the posttrreatment measurement model latent traits. All
observed variables loaded substantially and reliably onto their respective factors (standardized
coefficients: .69 to .89, ps < .001). The 2-factor solution (near-transfer and far-transfer)
accounted well for the data structure, X2 (4, N=122) = 6.57, p = .154; NFI = .981; NNFI = .
983; CFI =.993; and SRMR = 0.0323 (see Posttreatment Measurement Model 1 in Table 4).

We contrasted this base measurement model with an alternative 2-factor model comprising a
simple word-problem latent variable (the lowa and Algorithmic Word Problems) and a
complex word-problem latent variable (comprised of Complex Word Problem, Real-World
Word Problems, and WJ Applied Problems). The same four independent judges who had
classified near versus far transfer re-classified the measures in terms of simple versus complex.
This alternative represented a theoretically different means to represent the factor structure of
the word-problem outcome measures. This model fit substantially worse than the base model,
X2 (4,N=122) = 92.61, p = .0000; NFI =.729; NNFI = .472; CFI =.736; and SRMR = 0.1456.
(A chi-square difference score could not be used because these models are not nested.). The
2-factor near- and far-transfer model included more estimated parameters than the competing
measurement model; therefore, it provided the better characterization of the data and served
as a bhasis for comparing the competing, more parsimonious model.
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We then assessed whether both dimensions (near- vs. far-transfer) of posttreatment word-
problem skill were necessary, by comparing this base measurement model against a more
parsimonious, 1-factor measurement model, which yielded a significantly worse fit of the data
as reflected in the significant AX? value for Posttreatment Measurement Model 2 in Table 4.
We therefore concluded that both dimensions of posttreatment word-problem skill (near- and
far-transfer) were necessary, and we incorporated both dimensions into our structural model.

Structural Model: Assessing the Predictors of Word-Problem Outcome Skill

Because few studies of this type have been conducted, we took an exploratory approach to
model building. We first assessed the least parsimonious structural model. In this base model,
each of the six dimensions of pretreatment performance (measured in September and October)
plus treatment was included as a predictor of near-transfer word-problem skill and of far-
transfer word-problem outcome (measured in March) (see Table 5 and Figure 2, Full Model).
In this model (and in all subsequent nested structural models), we set the correlation between
treatment and the dimensions of pretreatment performance to zero, given random assignment
to treatment. (The other dimensions of pretreatment performance were allowed to correlate
freely.) As shown in Table 5, the model provided a good fit with the data (X2 [143, N=122) =
169.61, p = .0637; NFI = .950; NNFI = .986; CFIl = .989; and SRMR = 0.0758). Treatment
was the only significant predictor of near transfer. DA, pretreatment word-problem skill, and
language were significant predictors of far transfer.

We then contrasted three alternative, more parsimonious structural models. In each of these
models, treatment was retained as a predictor of outcome. In Models 2 and 3, we considered
whether DA was in fact necessary to forecast word-problem outcomes or whether other
dimensions of pretreatment ability function well without the inclusion of DA. Alternatively,
it is possible that DA, in combination with treatment, is sufficient to account for the data
structure in predicting word-problem outcomes, without including pretreatment cognitive
abilities or pretreatment math skills. This was assessed in Model 4.

Specifically, in Model 2, the pretreatment cognitive dimensions and treatment were examined
as the sole pretreatment predictors of outcome (see Cognitive Model in Table 5 and Figure 2).
Given prior work establishing language (Fuchs et al., 2008;Jordan et al., 1995, nonverbal
reasoning Fuchs et al., 2005;2006;Agness & McLone (1987), and attentive behavior (Fuchs et
al., 2005;2006;Passolunghi et al., 1999) as predictors of word-problem skill, we deemed it
possible that the cognitive predictors and treatment alone would suffice in accounting for
outcomes. If this Cognitive Model did not produce a significantly worse fit of the data structure
compared to the base model, then assessing pretreatment foundational math skills and DA
would be unnecessary, thereby providing a more parsimonious procedure for predicting
outcome and undermining the importance of DA.

In Model 3, pretreatment math skills (on calculations and word problems) and treatment were
considered as the sole predictors of near-and far-transfer (see Math Model in Table 5 and Figure
2). Given the transparent nature of the relation of pretreatment calculations skill and
pretreatment word-problem skill to the word-problem outcomes, as well as prior work showing
the pretreatment skill is often the best predictor of learning, we deemed it possible that these
foundational math skills, along with treatment, would be sufficient to account for word-
problem outcomes. Again, if this Math Model did not produce a significantly worse fit of the
data structure compared to the base model, then assessing the pretreatment cognitive abilities
and DA would be unnecessary, consequently providing a more parsimonious approach for
predicting outcome and undermining the importance of DA.

By contrast, in Model 4, we examined whether DA (along with treatment) might be sufficient
to forecast near- and far-transfer word-problem outcome (see DA Model in Table 5 and Figure
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2). As with the previous models, if the DA Model did not produce a significantly worse fit of
the data structure compared to the base model, then assessing pretreatment cognitive abilities
and pretreatment foundational skills would be unnecessary, hence providing a more
parsimonious procedure for predicting outcome. This would demonstrate DA’s power as a
predictor of outcome even further than the base model, in which DA is one of three significant
predictors of far-transfer outcome.

As shown in Table 5, each of these four nested, contrasting models produced a significantly
worse fit of the data, suggesting that the full model is the best representation of the data
structure. Figure 3 shows the full model with all coefficients specified (bolded, asterisked
coefficients are p < .001).

Then, in the interest of reducing the parameter-to-sample-size ratio, we ran a trimmed model,
deleting paths with standardized coefficients of less than .10. This trimmed model also provided
a good fit with the data (see Figure 4 and last line of Table 5). Because there was no appreciable
change in fit when moving from the full to the trimmed model, the simpler model is preferred.
The coefficients in the full and trimmed models were highly similar, except that the path from
calculations skill to near-transfer word problems increased from .14 to a significant .23 in the
trimmed model.

Discussion

We extended prior work on DA in several ways. First, earlier studies formulated DA tasks to
address general cognitive abilities (e.g., Day et al., 1997; Speece et al., 1990) or a cognitive
ability specifically linked to performance in the academic domain (e.g., Spector, 1997,
Swanson & Howard, 2005). In the present study, by contrast, we centered DA on students’
potential to learn algebra, which is neither a general cognitive ability nor a precursor to third-
grade word-problem skill. In fact, skill with algebra is not even considered foundational to
third-grade word-problem skill and instead represents novel academic content within the same
broad academic area (mathematics). The potential advantage of using a DA task with novel
academic content, such as algebra at third grade, is that it increases the probability that students’
DA performance is attributable to their potential to learn new content rather than to existing
ability to perform the DA task. In fact, among the 122 participants, only two students exhibited
mastery on all three DA skills prior to the introduction of scaffolded instruction (another two
exhibited mastery on two of the three skills prior to scaffolded instruction, and another 34
exhibited mastery on one of the three skills prior to scaffolded instruction). The remaining 84
students failed to exhibit mastery on any of the skills prior to scaffolded instruction. At the
same time, it is important that the novel academic content connects in some important ways to
the predicted learning outcome. In designing this study’s DA as a method of forecasting
development of word-problem skill, we hypothesized a connection between algebraic
cognition and word-problem skill because (a) although linguistic content is absent from
algebra, algebra does require understanding of relations among quantities, as is the case for
solving word problems, and (b) some research (e.g., Fuchs, Seethaler, Powell, Fuchs, Hamlett,
& Fletcher, 2008) shows that algebra can be used to develop students’ word-problem skill,
even in the primary grades.

In addition, we extended prior DA work in terms of the scope of the variables we considered
as competitors to DA in predicting outcome. That is, we incorporated the nature of treatment
into the prediction model, even as we simultaneously included static cognitive abilities as well
as foundational math skill (on calculations as well as word problems) to predict outcomes that
were proximal to as well as distal from the instruction students received in school. Our
pretreatment measurement modeling supported DA as representing a dimension of
pretreatment ability distinct from existing language ability, nonverbal reasoning, attentive
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behavior, and math skill. This finding echoes the work of Day et al. (1997) conducted with
preschoolers, who found that the measurement model that retained DA as a construct separate
from pre-DA provided better fit of the data. Together, Day et al.’s and our pretreatment
measurement modeling indicates that DA may represent an aspect of students’ learning
potential that is distinct from conventional static measures. This makes sense because static
assessment quantifies already-developed abilities that are influenced by environmental factors
such as educational opportunity in school, parental support, and test-taking skills (Grigorenko
& Sternberg, 1998), whereas DA measures a student’s potential to learn. In this way, findings
provide support for Vygotsky’s (1978) concept of the zone of proximal development, or the
distance between a child’s realized developmental level as assessed by independent
performance and that child’s potential development as assessed via supported performance, as
a distinct cognitive characteristic.

Importantly, however, our work also extends Day et al.”s (1997) investigation as well as other
seminal DA studies that examine DA’s utility as a predictor of academic performance (e.g.,
Speece et al., 1990; Swanson & Howard, 2005) by assessing whether DA is a viable predictor
of future (rather than concurrent) learning. It also extends Spector’s (1997) prediction of
kindergarteners’ future reading performance by considering how instruction affects relations
among static and dynamic measures in forecasting school learning. In terms of whether DA is
a viable predictor of future learning, our results provide support. We contrasted a full model
of predictors, which included treatment plus six dimensions of pretreatment performance
(language ability, nonverbal reasoning, attentive behavior, DA, calculations skill, and word-
problem skill), against models that isolated static cognitive abilities (language ability,
nonverbal reasoning, and attentive behavior), that isolated DA, and that isolated math skill (on
calculations and word problems). None of these contrasting, more parsimonious models fit the
data as well as the full model. Therefore, although DA (along with treatment) was insufficient,
it was necessary in accounting for the data structure. This finding suggests that DA may serve
an important role in predicting students’ future learning. It also indicates that forecasting later
academic performance creates variance for DA to capture. This may occur because upcoming
learning may relate better with learning potential as indexed via DA than with static
assessments that are determined in part by culture, socioeconomics, and previous learning
opportunity. More specifically, these findings support a possible connection between algebraic
cognition and word-problem skill, a possibility that should be pursued in future work, and
indicate that novel academic content may provide a productive avenue for designing DASs in
other academic domains.

With respect to how instruction affects relations among static and dynamic measures in
forecasting actual school learning, our measurement models showed that two latent variables
of outcome, near- and far-transfer, were necessary to account for the structure of students’
posttreatment word-problem skill, and both dimensions of outcome were important for
understanding how instruction affects the relations among static and dynamic measures in
forecasting learning. Although all items on all five outcome measures were novel and none
had been used for instruction, only treatment and pretreatment calculations skill accounted for
learning on the latent outcome variable more closely aligned with treatment. By contrast, to
forecast learning on word-problem measures more distally related to treatment, DA as well as
pretreatment language ability and pretreatment word-problem skill were necessary.

That treatment forecasted near- but not far-transfer word-problem outcome is not surprising
because randomized control trials (e.g., Fuchs et al., 2003; Fuchs, Fuchs, Craddock,
Hollenbeck, Hamlett, & Schatschneider, 2007) have, while demonstrating the efficacy of the
validated word-problem treatment used in the present study, revealed stronger effect sizes for
near-transfer word-problem outcome measures (e.g., 1.73-1.90.; Fuchs et al., in press) than
for far-transfer word-problem outcome measures (e.g., 0.36; Fuchs etal., in press). It is possible
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that with more comprehensive treatments that more fully address more generalized
performance, the value of DA (as well as language ability and pretreatment word-problem
skill) in predicting outcome would decrease, as the value of the treatment increases. However,
effecting transfer to distal problems represents a formidable challenge in the area of math
problem solving (Bransford & Schwartz, 1999; Cooper & Sweller, 1987; Mayer, Quilici, &
Moreno, 1999). Moreover, we note that the validated intervention employed in the present study
is theoretically rooted in schema theory that addresses transfer (e.g., Chi, Feltovich, & Glaser,
1981; Gick & Holyoake, 1980; Mayer, 1992; Quilici & Mayer, 1996) and has been shown to
accomplish transfer more effectively than conventional math problem-solving instruction
(Fuchs et al., 2003). In addition, it is impossible to address all novel problem types within any
given instructional program. Thus, the prediction of distal transfer, as reflected in the kinds of
complex, real-world problem solving and high-stakes assessments used as distal measures in
the present study, is important.

Results are relevant to the present education reform known as responsiveness-to-instruction
(RTI). RTI is embedded in a multi-level prevention system, borrowed from the public health
system. In a multi-level prevention system, general education constitutes primary prevention.
Students who do not respond to this universal, core program enter secondary prevention. In
most research, this involves one or more rounds of small-group tutoring using a validated
tutoring protocol. Students who do not respond to this more intensive secondary prevention
program are understood to have demonstrated “unexpected failure” to validated instruction (to
which most students respond). On this basis, unresponsive students are deemed appropriate
for more intensive and individualized forms of instruction at the tertiary prevention level. In
this way, RTI has two complimentary purposes: (a) to identify at-risk students early and offer
them intervention to prevent the onset of severe and often intractable deficits and (b) to identify
students who are unresponsive to standard, validated instruction and who therefore require
individualized instruction. In most RTI systems, these chronically unresponsive students are
considered to have a learning disability (LD). In fact, the 2004 reauthorization of the Individuals
with Disabilities Education Improvement Act (P.L. 108-446) encourages RTI for LD
identification as an alternative to the traditional identification procedure, which requires
documentation of a discrepancy between 1Q and school achievement and often delays
identification until the intermediate grades (Vaughn & Fuchs, 2003).

Within RTI models, responsiveness to secondary prevention is considered the “test” for
differentiating between two explanations for low achievement: inadequate instruction versus
disability. If a child responds poorly to instruction that benefits most students, then this
eliminates instructional quality as an explanation of poor learning and instead suggests
disability. Although earlier identification/treatment of LD represents a potential advantage of
RTI, conducting secondary preventive tutoring requires at least 10 weeks and, in some models,
as many as 30 weeks. Present findings suggest that DA might serve an important function in
predicting responsiveness to intervention, by forecasting distal, critical aspects of learning that
are not highly relevant to the student’s proximal instructional needs. For example, within RTI
reading models at first grade, secondary prevention focuses predominantly on the development
of word-level skills and fluency because some work (e.g., Fuchs & Fuchs, 2005; Fuchs, Fuchs,
Kazdan, & Allen, 1999) suggests that instruction to develop comprehension strategies when
students are still struggling to identify words accurately and fluently may detract from reading
development. Nonetheless, studies (Catts & Hogan, 2002; Compton, Fuchs, Fuchs, Elleman,
& Gilbert, submitted; Leach, Scarborough, & Rescorla, 2003; Lipka, Lesaux, & Siegel, 2006)
show that a small but significant portion of the population experiences late-emerging reading
disability, whereby their word-level and fluency skills develop typically, but serious
comprehension deficits become evident at third or fourth grade. Yet, research has not reliably
identified early predictors of late-emerging reading disability (Compton et al., submitted). It
is possible that DA might be used in first grade to forecast development of late-emerging
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reading disability. This would help teachers design appropriate instruction for this subset of
students early on. In a different way, DA might be used productively within an RTI framework
to help identify students who will ultimately, 10-30 weeks later, prove unresponsiveness to
secondary prevention. If earlier identification, via DA, were possible, then more intensive and
individualized forms of instruction could be introduced sooner, without children experiencing
10-30 weeks of additional failure.

Before closing, we note the small parameter-to-sample-size ratio in this study. Use of maximum
likelihood estimation with small samples size has a tendency to produce y2 estimates that are
too large. Thus, the decision for accepting or rejecting a particular model may vary as a function
of sample size. Inaddition, sample size affects power in a predictable way, with smaller samples
sizes having less power to detect differences between competing models using the 2 statistic.
Although our sample size was smaller than desirable, we did succeed in detecting significant
differences using the Ay? statistic across competing models. In addition, our reported Type 2
and Type 3 fit indices reflected adequate fit for our final measurement and structural models.
These indices have been shown to be substantially less biased by sample size (Hu & Bentler,
1998). Therefore, we have some confidence that even with our sample size, the final models
represent a good estimation of the relations among measures. Moreover, we ran a trimmed
model, deleting paths with standardized coefficients of less than .10, which provided a similarly
good fit with the data.

Nevertheless, the parameter-to-sample-size ratio remains a limitation of the present study, and
future DA research employing structural equation modeling should incorporate larger samples.
With this caution in mind, we conclude that findings provide an important basis for additional
research assessing the utility of DA for indexing distal outcomes and for identifying students
who require tertiary prevention in a more timely way. The present database indicates the
potential utility of DA for predicting math problem-solving generalization across third grade.
Parallel work, with larger samples, appears warranted to examine other aspects of academic
learning.
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Instructional Scaffolding Levels for DA Skill A
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For DA Skill A, during Instructional Scaffolding Level 1, the tester works problems for the
student without explanation. The tester says, “I’m going to work some problems for you. Watch
carefully while I work because 1’1l ask you to do some more problems like these in a few
minutes.” The tester then demonstrates three problems. Then the tester says, “Now you try to
do some problems like these” and readministers the 6-item test.

During Instructional Scaffolding Level 2, the tester explains the plus and equal signs mean and
what the problem means/is asking. The tester says, “The plus sign tells us to add (point). And
the problem asks us to figure out what number x stands for. What number (point) can we add
to 6 (point) to make the total 8 (point)? If correct: That’s right! 2 + 6 adds to 8. So the missing
number is 2. | write x equals 2 (write). Now let’s look at another problem. If incorrect. That’s
not quite right. 2 plus 6 equals 8. So the missing number is 2. | write x equals 2 (write). Let’s
try another problem. Now try to do this practice problem (guide student using same
procedure).”

During Instructional Scaffolding Level 3, the tester elaborates on what x means, relating x to
the “blank” that is used more commonly in the primary grades. The tester explains, “The blank
(point) stands for the missing number, just like the x stands for the missing number in this
problem (point). These two problems mean the same thing. They ask us to figure out what
number X, or the blank, stands for. The problem asks, “What number (point) can we add to 6
(point) to make the total 14 (point)?” 6 plus what number equals 14? If correct: That’s right!
8 + 6 equals 14. So | write 8 in the blank. That tells me that the missing number, x, equals 8.
If incorrect: That’s not quite right. 6 (point) plus 8 equals 14. So, the missing number is 8. So
I write 8 in the blank. That tells me that the missing number, X, equals 8. After you figure out
what the missing number is, you write the missing number like this: “x = 8” We read the
problem like this: 6 + x = 14; x = 8. Let’s try another problem, but this time you’ll try to do
the work (guide student using same procedures).

During Instructional Scaffolding Level 4, the tester provides the student with the min counting
strategy for finding the missing number. The tester says, What number (point) do we add to x
(point)? (Student: 7) Yes, this problem tells us, 7 plus x. Put the number being added to x, 7,
in your head. Now count up to the total, 13 (point). When | count up, | use my fingers until |
reach the total (point), like this. I already have 7 in my head (point to head). | start counting
up using the next number: 8 (put up one finger), 9 (put up second finger, and continue putting
up fingers for each subsequent number), 10, 11, 12, 13. How many fingers am | holding up?
(Student: 6). Yes, I have 6 fingers up. So, x equals 6. | know that 7 (point) + 6 (write 6 above
the X) equals 13 (point). So, | know that x equals 6, and | write my answer like this: x = 6. You
write the answer for me (student writes). If correct: That’s right! # + # equals #. So | write #
in the blank. That tells me that the missing number, x, equals #. If incorrect: That’s not quite
right. # (point) plus # equals #. So, the missing number is #. So | write # in the blank. That tells
me that the missing number, X, equals #. Let’s try another one, but this time you’ll try to do it
on your own (guide student using same procedures).

During Instructional Scaffolding Level 5, the tester adds color coding to help the student
discriminate the salient components of the min strategy, thereby increasing the level of
scaffolding with concreteness. The tester says, “This problem asks us to find what number x
stands for. The problem asks, “What number (point) can we add to 3 (point) to make the total
5 (point)?” What number (point) do we add to x (point)? (Student: 3) Yes, this problem tells
us, 3 plus x. This number is written in green to help you remember to start counting here
(point). Put the green number, 3 (point), in your head. Now count up to the total, 5 (point).
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What color is the total in this problem? (Student: Red.) Yes, the total is written in red to tell
us when to stop counting up. We put the green number in our head. Then, we count up with
our fingers until we reach the red total, like this. When | count up, I use my fingers until I reach
the total (point). | already have the green 3 in my head (point to head). | start counting up using
the next number: 4 (put up one finger), 5 (put up second finger). How many fingers am I holding
up? (Student: 2). Yes, | have 2 fingers up. So, x equals 2. | know that 3 (point) + 2 (write 2
above the x) equals 5 (point). | know that x equals 2, and | write my answer like this: x = 2.
You write the answer for me (student writes). If correct: That’s right! # + # equal #. So | write
# in the blank. That tells me that the missing number, X, equals #. If incorrect: That’s not quite
right. # (point) plus # equals #. So, the missing number is #. So | write # in the blank. That tells
me that the missing number, X, equals #. Let’s try another one, but this time you’ll try to do
the work (guide student using same procedures).
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Posttreatment Measurement Model
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Pretreatment and posttest measurement models. Panel one shows the base pretreatment
measurement model, which incorporated each of the six dimensions of pretreatment ability
measured in September and October: language ability, attentive behavior, nonverbal reasoning,
calculations skill, word-problem skill, and DA. Panel 2 shows the two dimensions of
posttreatment word-problem outcome measured in March: near-transfer word problems
(Algorithmic Word Problems and Complex Word Problems) and far-transfer word problems
(Real-World Problem Solving, the lowa, and WJ Applied Problems).
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1: Full Model 2: Cognitive Model

Figure 2.
Four structural models predicting pretreatment performance (measured in September and

October) plus treatment to posttreatment near- and far-transfer outcomes (measured in March).
The Full (base) Model is the least parsimonious structural, in which each of the six dimensions
of pretreatment performance plus treatment was included as a predictor of outcomes. Each of
the subsequent (nested) models is more parsimonious. In the Cognitive Model, pretreatment
cognitive dimensions and treatment were examined as the sole predictors of outcomes. In the
Math Model, pretreatment calculations and word-problem skill and treatment were considered
as the sole predictors of outcomes. In the DA Model, pretreatment DA and treatment were
examined as the sole predictors of outcomes.
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