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Abstract
When given systemically to rats and humans, the drug of abuse 3–4
methylenedioxymethamphetamine (ecstasy, MDMA) elicits hyperthermia, hyperactivity,
tachycardia, and hypertension. Chemically stimulating the dorsomedial hypothalamus (DMH), a
brain region known to be involved in thermoregulation and in stress responses, causes similar effects.
We therefore tested the hypothesis that neuronal activity in the DMH plays a role in MDMA-evoked
sympathetic and behavioral responses by microinjecting artificial CSF or muscimol, a neuronal
inhibitor, into the DMH prior to intravenous infusion of saline or MDMA in conscious rats. Core
temperature, heart rate, mean arterial pressure and locomotor activity were recorded by telemetry
every minute for 120 minutes. In rats previously microinjected with CSF, MDMA elicited significant
increases from baseline in core temperature (+1.3 ± 0.3°C), locomotion (+50 ± 6 counts/min), heart
rate (+142 ± 16 beats/min), and mean arterial pressure (+26 ±3 mmHg). Microinjecting muscimol
into the DMH prior to MDMA prevented increases in core temperature and locomotion and attenuated
increases in heart rate and mean arterial pressure. These results indicate that neuronal activity in the
DMH is necessary for the sympathetic and behavioral responses evoked by MDMA.
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2. Introduction
The popular drug of abuse 3,4-methylenedioxymethamphetamine (ecstasy or MDMA) is
associated with numerous medical complications (Gowing et al., 2002). In both humans and
laboratory animals, MDMA evokes complex physiologic and behavioral responses including,
but not limited to, increases in locomotion (Spanos and Yamamoto, 1989), increases in heart
rate and blood pressure (Dumont and Verkes, 2006; Rusyniak et al., 2007), and hyperthermia
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(Dumont and Verkes, 2006; Gowing et al., 2002). MDMA is thought to mediate these responses
by facilitating monoaminergic neurotransmission. Indeed, numerous studies suggest that the
responses evoked by MDMA involve receptors for serotonin, dopamine, and norepinephrine
(Aguirre et al., 1998; Callaway et al., 1992; Green et al., 2004; Herin et al., 2005; Rusyniak et
al., 2007; Sprague et al., 2004).

Despite our current understanding of its pharmacology, the central sites and mechanisms by
which MDMA evokes its responses are unknown. In part, this is due to complex interactions
between neurotransmitters affected by MDMA and the receptors through which these
neurotransmitters act. One strategy to overcome these difficulties, and the one this paper
employs, is to first identify central sites involved in MDMA’s effects. Once identified,
characterizing the relevant neurons in these regions may provide insights into new treatment
strategies. To date, however, the specific brain regions involved in mediating MDMA’s effects
are largely unknown. The dorsomedial hypothalamus (DMH), classically, considered part of
the “hypothalamic defense area”, plays an essential role in responses to physiologic stress and
experimental fever (DiMicco et al., 2002; Zaretskaia et al., 2002). When excited or disinhibited,
neurons in the DMH evoke tachycardia, hypertension, hyperthermia and increased locomotion
in rats (Cao et al., 2004; DiMicco et al., 2006; Zaretskaia et al., 2002) -- effects strikingly
similar to those produced by systemic doses of MDMA. Conversely, microinjecting muscimol,
a GABAA agonist and neuronal inhibitor, into the DMH suppresses tachycardia and
hyperthermia elicited by either restraint stress or preoptic microinjections of prostaglandin
E2 (DiMicco et al., 1996; Zaretskaia et al., 2003).

We hypothesized that physiologic and behavioral effects mediated by the systemic
administration of MDMA depend on neuronal activity in the DMH. This study’s principal aim
was to assess the effects of microinjecting muscimol into the DMH on the thermogenic,
cardiovascular, and behavioral responses evoked by subsequent intravenous injection of
MDMA in conscious rats.

3. Results
Baseline Physiologic parameters

Baseline parameters for temperature in degrees Celsius (°C), locomotion in activity units (a.u.),
heart rate in beats per minute (beats/min) and mean arterial pressure in millimeters of mercury
(mmHg) were similar in all groups (table 1).

Microinjecting muscimol into the DMH prevents MDMA-induced hyperthermia and
hyperactivity

Microinjecting artificial CSF into the DMH followed by infusions of i.v. saline (CSF/Saline)
had no effect on body temperature (Figure 1A). Microinjecting muscimol (80 pmol) followed
by i.v. infusion of saline (Muscimol/Saline) caused a gradual decrease in body temperature
reaching a nadir of 0.7 ±0.2°C below baseline at 90 minutes. Rats given MDMA after
microinjections of CSF developed significant hyperthermia with core temperatures rising 1.4
± 0.3°C above baseline by 120 minutes. Prior microinjections of muscimol completely
prevented MDMA-induced hyperthermia with animals instead developing modest decreases
in body temperature. These decreases were statistically identical to those seen after
microinjecting muscimol followed by saline.

Microinjecting either CSF or muscimol into the DMH followed by i.v. infusion of saline did
not affect activity (Figure 1B). Infusion of MDMA after microinjection of CSF increased
locomotion 50 ± 6 a.u. above baseline by 90 minutes. Microinjecting muscimol into the DMH
prior to i.v. infusion of MDMA abolished this effect.
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Microinjecting muscimol into the DMH attenuates MDMA-induced cardiovascular responses
Microinjecting CSF caused transient increases in heart rate and blood pressure prior to the
intravenous injections of saline or MDMA (time 0, Figures 2A and 2B). These increases were
absent in animals microinjected with muscimol. In animals’ microinjected with CSF, the
subsequent infusion of MDMA increased heart rate 136 ± 15 beats/min above baseline at 120
minutes and increased mean arterial pressure 24 ± 4 mmHg above baseline at 30 minutes.
Microinjecting muscimol into the DMH prior to MDMA significantly attenuated these
responses (Figures 2A and B).

4. Discussion
Results of this study demonstrate that neuronal activity in the DMH plays a role in the
thermogenic, cardiovascular and behavioral responses induced by MDMA. This study
represents the first time a discrete brain region has been shown to be involved in both the
sympathetic and behavioral responses induced by MDMA. As MDMA’s physiologic
responses, especially hyperthermia, are linked to human deaths and animal neurotoxicity
(Cadet et al., 2007; Gowing et al., 2002), further characterizing the relevant neurons in the
DMH and the role they play in these responses may provide insight into new treatment
strategies.

Physiologic responses evoked by MDMA and stress are similar
In a response highly conserved across mammalian species, emotional stress evokes an
integrated pattern of endocrine, autonomic and behavioral changes. Among these changes are
increases in heart rate, mean arterial pressure, body temperature, locomotion, and circulating
levels of corticosterone. These responses, as evident in Figure 1 and Figure 2, are similar to
those evoked by MDMA. Similar to stress, MDMA also increases circulating levels of
corticosterone (Nash et al., 1988). As previous and current findings demonstrate, the similar
physiologic responses to stress and MDMA depend on neuronal activity in a common
hypothalamic area – the DMH. Although abused by humans presumably for its pleasurable
psychoactive effects, it is conceivable that MDMA’s effects in the laboratory animal may not
be pleasurable but rather stressful. If true, this could create difficulties in separating effects
directly attributable to MDMA’s pharmacologic action from effects mediated by the stress this
agent creates.

We do not believe this to be a problem in the responses we studied. In anesthetized animals, a
condition in which animals are incapable of experiencing exteroceptive or “emotional” stress,
administration of MDMA still evokes increases in heart rate, mean arterial pressure and body
temperature (Blessing et al., 2003; Rusyniak et al., 2005a; Rusyniak et al., 2005b). Likewise,
in humans recreational doses of MDMA (doses chosen by users presumably for pleasure-
provoking responses) cause increases in temperature, heat rate, blood pressure and cortisol
similar to those observed in conscious animal models (de la Torre et al., 2000). Therefore,
although the physiologic responses elicited by MDMA in the present study are similar to those
evoked by stress in conscious rats, they are unlikely to be a consequence of drug-induced stress.

How DMH neurons may be involved in MDMA evoked hyperthermia
The findings of this study represent the first time a discrete brain region has been implicated
in the thermogenic response to MDMA. Our choice of muscimol as a neuronal inhibitor is
based on its ability, by virtue of its GABAA receptor agonist properties, to inhibit virtually all
mammalian neurons. It is these properties that have made microinjections of muscimol a
standard technique to achieve acute reversible suppression of neuronal activity in discrete brain
regions. One inherent difficulty in microinjection studies is the possibility that effects may
arise from diffusion or spread of microinjectate to regions adjacent or even relatively distant
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to the actual site of injection. In this study we do not believe this to be the case. Previous work
from our laboratory demonstrated that microinjection of an identical dose (80 pmol) and
volume (100 nl) of muscimol into the DMH inhibits both the cardiovascular and
neuroendocrine responses to experimental stress (Stotz-Potter et al., 1996a; Stotz-Potter et al.,
1996b). However, identical injection of muscimol at sites as little as 500 microns anterior to
the region of the DMH was approximately half as effective and completely ineffective when
microinjected directly into the nearby paraventricular nucleus (Stotz-Potter et al., 1996a; Stotz-
Potter et al., 1996b). Thus, microinjection of muscimol in this manner has been shown to
produce effects with a high degree of anatomical resolution. Furthermore, the region around
our microinjection sites includes a highly compact group of neurons known to project to
sympathetic premotor neurons in the raphe pallidus. When disinhibited, these neurons evoke
cardiovascular responses similar to those we report in this study after a systemic dose of
MDMA. induced by systemic administration of MDMA (Samuels et al., 2002). Therefore,
while the involvement of adjacent regions cannot be definitively excluded, it seems most likely
that the site of action of muscimol and consequently the location of neurons relevant to the
observed effects of MDMA is the DMH.

The finding that inhibition of the DMH prevents MDMA-mediated hyperthermia leads to
several questions: Does MDMA act directly on neurons in the DMH; are monoamines released
in the DMH by MDMA; and do monoamine receptors within the DMH contribute to MDMA-
induced hyperthermia? By a mechanism involving binding to monoamine transporters, MDMA
increases extracellular tissue concentrations of norepinephrine, serotonin, and dopamine in
various brain regions including the hippocampus, striatum, nucleus accumbens and prefrontal
cortex (Gudelsky and Yamamoto, 2007; White et al., 1996). None of these sites, however, are
thought to be involved in MDMA-evoked hyperthermia. Although not specifically studied,
MDMA may have direct effects within the DMH. The DMH has high concentrations of both
serotonin and norepinephrine transporters and to a lesser extent dopamine transporters
(Hoffman et al., 1998). The DMH also has high concentrations of dopamine and norepinephrine
(Moore and Bloom, 1979) and either stimulating neurons in the DMH by local infusion of the
GABAA antagonist bicuculline methiodide (BMI) or exposing rats to restraint stress increases
the extracellular release and tissue concentrations of serotonin, dopamine and norepinephrine
(Kvetnansky et al., 1977; Lowry et al., 2003; Shekhar et al., 2002). Whether similar increases
occur after MDMA and whether they result from the direct effects of MDMA in the DMH or
secondary to activation of the DMH from upstream sites requires further study. Similarly,
determination of the physiologic consequence of MDMA-induced increases in monoamine
release in the DMH will also require further investigation.

MDMA activates the sympathetic nervous system to increase the production of heat by brown
adipose tissue (Blessing et al., 2006) and to constrict cutaneous blood vessels, thus reducing
dissipation of body heat (Pedersen and Blessing, 2001). Together these effects contribute to
hyperthermia. Our finding that inhibiting neurons in the DMH prevents MDMA-evoked
hyperthermia may reflect the role that neurons in the DMH play in controlling heat generation
in interscapular brown adipose tissue (iBAT) and possibly cutaneous blood flow (Dimicco and
Zaretsky, 2007). Activating neurons in the DMH increases sympathetic outflow to and heat
production in iBAT (Cao et al., 2004; Zaretskaia et al., 2002). This effect is thought to be
mediated by efferent connections from the DMH to the medullary raphe pallidus (RPa) where
sympathetic premotor neurons controlling metabolic activity in iBAT are located (Cao et al.,
2004). Similarly, via the RPa, electrically stimulating the DMH constricts vascular beds in the
ear pinna of the rabbit (Nalivaiko and Blessing, 2001), the thermoregulatory counterpart to the
rat tail. Therefore, inhibiting the DMH may suppress MDMA-evoked hyperthermia by
preventing iBAT thermogenesis and cutaneous vasoconstriction. Further studies are needed to
confirm this possibility.
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Drugs that lower body temperature typically prevent MDMA-mediated hyperthermia. After
the administration of these drugs, a subsequent dose of MDMA commonly causes hypothermia
(Malberg et al., 1996). This makes interpretation difficult, as prevention of hyperthermia may
not represent a specific pharmacologic effect, but rather the net sum of two opposing responses.
In our study, modest decreases from baseline in body temperature were seen after
microinjection of muscimol into the DMH in rats treated with either vehicle (from 37.5 ± 0.3
to 36.8 ± 0.2°C) or MDMA (from 37.6 ± 0.1 to 36.7 ± 0.2 °). These decreases were not only
statistically identical between the groups, the decrease in the Muscimol/MDMA group is
insufficient to merely oppose the hyperthermia in the CSF/MDMA group. Therefore,
muscimol’s effect on preventing increases in body temperature evoked by MDMA appears to
represent specific inhibition and not the result of a simple combination of opposing physiologic
responses (i.e. hyperthermia by MDMA and hypothermia by microinjection of muscimol).

Microinjections of muscimol into the DMH also prevent hyperactivity induced by MDMA.
Although motor activity generates heat, previous work suggests that the locomotor and
hyperthermic responses induced by MDMA in conscious rats are disassociated (Dafters,
1994; Rusyniak et al., 2007). Further supporting this are studies showing that MDMA evokes-
hyperthermia in animals anesthetized and unable to move (Blessing et al., 2003; Rusyniak et
al., 2003; Rusyniak et al., 2005a). It follows, therefore, that the abolition of MDMA-induced
hyperthermia by inhibiting the DMH is not merely a consequence of the suppression of
locomotor activity.

How DMH neurons may be involved in behavioral and psychologic effects evoked by MDMA
In a dose-dependent manner, MDMA causes increases in spontaneous locomotion in rats, a
response that is also seen in the serotonin behavioral syndrome (Spanos and Yamamoto,
1989). MDMA-and amphetamine-induced locomotion are classically attributed to increases in
monoaminergic activity in nigrostriatal and mesocorticolimbic circuits (Bankson and
Cunningham, 2001; Gold et al., 1989; Selken and Nichols, 2007). Our finding that inhibiting
neurons in the DMH prevents MDMA-induced locomotion represents, to our knowledge, the
first time a site outside these areas has been implicated in MDMA-induced hyperactivity.
Previous work suggests that the DMH may be involved in increased locomotor activity and
anxiety- and panic-related behavior. When disinhibited, neurons in the DMH evoke increased
locomotor activity (Bailey and Dimicco, 2001; Shekhar and DiMicco, 1987) and when these
neurons are lesioned decreases in spontaneous locomotor activity ensue (Chou et al., 2003).
Along with increasing locomotion, stimulating or disinhibiting neurons in the DMH increases
experimentally-induced anxiety in rats (Shekhar et al., 1990). MDMA, likewise provokes
anxiety in both humans (Liechti et al., 2005) and rats (Morley and McGregor, 2000). The role
that the DMH plays in anxiogenic responses to MDMA remains to be determined.

How DMH neurons may be involved in MDMA-evoked cardiovascular responses
MDMA, presumably by activation of the SNS, increases heart rate and blood pressure in
animals and humans (Dumont and Verkes, 2006; Rusyniak et al., 2007). In the present study,
we show that neurons responsible, at least in part, for MDMA-induced cardiovascular
stimulation reside in the DMH. Previous work also demonstrates that disinhibiting neurons in
the DMH by microinjection of BMI increases heart rate and blood pressure (Cao et al., 2004;
DiMicco et al., 1986) and inhibiting these neurons by microinjecting muscimol prevents
experimental stress-induced increases in heart rate and blood pressure (DiMicco et al., 2006;
Stotz-Potter et al., 1996b). These responses involve efferent projections from the DMH to
premotor neurons located in the RPa (Cao et al., 2004; Samuels et al., 2002) and the rostral
ventrolateral medulla (Fontes et al., 2001). Whether cardiac stimulation elicited by MDMA
involves similar pathways is not yet known.
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Conclusions
Activity of neurons in the DMH appears to play a key role in both the physiologic and
behavioral responses to MDMA in rats. Characterizing the mechanisms through which these
neurons contribute to these effects may lead to improved treatments for acute toxicity produced
by MDMA and other substituted amphetamines.

4. Procedures and Methods
All procedures conformed to guidelines set forth by NIH and were approved by the Institutional
Animal Care and Use Committee. Male Sprague–Dawley rats (300 ± 10 g; Harlan,
Indianapolis, IN, USA), maintained in 12-hour light:dark cycle and fed ad libitum, were
anesthetized (either 50 mg/kg pentobarbital, or 80 mg/kg ketamine and 11.5 mg/kg xylazine,
i.p. supplemented as needed) and a telemetric transmitter was implanted intraperitoneally
(Model TA11PA-PXT50; Data Sciences, MN, USA) as described previously (Zaretsky et al.,
2003). Implantation of femoral venous catheters involved the following: inserting a 20 cm
length of Tygon tubing (Small Parts Inc., FL, USA) into the femoral vein; routing it
subcutaneously; exteriorizing between the shoulder blades; fixing it to a harness (Kent
Scientific, Torrington, CT, USA); and flushing it with saline. Rats were then placed in a
stereotaxic apparatus with the incisor bar set 3.3 mm below the interaural line for placement
of microinjection guide cannulae (26 gauge, Plastics One, Roanoke, VA, USA) into the right
and left DMH (coordinates using a 10 degree angle from the sagittal plane: AP −3.1 mm; LR
±2.0mm; HD −7.2 mm; bregma as reference point). Once inserted, cannulae were secured using
three stainless steel screws, Vetbond glue (3M, St. Paul, MN, USA) and cranioplastic cement.
Afterward dummy wire cannulae were inserted in the guides, and rats were returned to their
home cages for recovery. Once within 10g of their pre-surgery weights (typically 7–10 days),
animals were randomized (using a random number generator) to one of four groups. Group
names are defined as microinjection solution/intravenous injection: CSF/Saline (n=5); CSF/
MDMA (n=8); Muscimol/Saline (n=8); or Muscimol/MDMA (n=8). Experiments were
performed between the hours of 10.00 a.m. and 2.00 p.m. during the animals light phase in a
laboratory with ambient temperature maintained between 24–25°C. Rats were placed in their
home cage on a telemetry receiver plate and acclimated to the room for at least 2 hours. A
microinjector (33 gauge, Plastics One Inc., Roanoke, VA, USA) was then connected to a 10
µl Hamilton syringe with Teflon FEP tubing (i.d. = 0.12 mm; o.d. = 0.65 mm; BASI, Lafayette,
Indiana, USA) and the entire system was loaded with artificial CSF or with a solution of
muscimol (80 pmol/100µl; Sigma-Aldrich, St. Louis, MO) both solutions contained 0.25%
fluorescent microspheres (0.04 µm in diameter; Invitrogen, Carlsbad, California), to mark the
exact site of injection. The dummy cannula was removed and the microinjector inserted into
the guide cannula. A Hamilton syringe mounted in an infusion pump (KD-200, KD Scientific,
Holliston, MA, USA) delivered a volume of 100 nL of injectate over 30 s, first through the
right then, two minutes later, through the left cannula. After each microinjection, the injector
was left in place for 90 seconds to prevent backflow upon removal. Five minutes after the last
microinjection, animals were given equal volumes of either saline (0.8 ml) or MDMA (7.5 mg/
kg; NIH), by slow (~120 seconds) intravenous (i.v.) infusion, and monitored for at least 120
minutes. The dose of MDMA (7.5 mg/kg) used in this study was chosen to mimic both the
dose and effect of a serious human intoxication. The route (intravenous) was chosen to
minimize the physiologic and behavioral effects produced by the stress of subcutaneous and
intraperitoneal injections. At the conclusion of each session, rats were injected with
pentobarbital (100 mg/kg, i.v.), a 14 gauge feeding tube was placed in the left ventricle and
perfused with 30 ml of cold saline (4°C) followed by 30 ml of 4% paraformaldehyde. The
brains were removed and postfixed in 4% paraformaldehyde overnight or longer, followed by
placement in a solution saturated with 30% sucrose.
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Brains were cut into 40µm coronal sections on a freezing microtome, the sections were mounted
on slides, and injection sites were determined using a fluorescent microscope according to the
atlas of Paxinos and Watson (1998) by an observer blinded to group allocation.

For this study, the DMH was defined as an area bounded ventrally and laterally by the inferior
and lateral borders of fornix, dorsally by the mammillothalamic track, and contained anteriorly
and posteriorly in the region −3.14 to −3.30 mm from bregma. Microinjection of BMI into this
region has been previously shown to induce tachycardia and thermogenic responses (Samuels
et al., 2004; Zaretskaia et al., 2002). All injection sites were within the DMH as defined above
(Figure 3).

Data Analysis
Data were captured using the Dataquest A.R.T data acquisition system (Data Sciences, St.
Paul,MN, USA). Of note activity, counts are arbitrary measures of activity. They are generated
by changes detected in signal strength as the animal moves around. The data was statistically
analyzed using SPSS 15.0 for Windows (Chicago, Illinois, USA), and graphed using Igor Pro
software (WaveMetrics, Portland, OR). Grouped data are reported as change from baseline (10
minute means ± one standard error measurement) for the time points shown. We performed a
two way full factorial repeated measures analysis of variance including in the model main
effects for study group, time, and their interaction. We performed post hoc comparisons among
time points (within a study group) and between study groups (within a time point). Pair-wise
comparisons were adjusted using an LSD procedure.

Abbreviations
MDMA, 3,4-methylenedioxymethamphetamine; DMH, dorsomedial hypothalamus; BMI,
bicuculline methiodide; CSF, cerebral spinal fluid; GABA, Gamma-aminobutyric acid; iBAT,
interscapular brown adipose tissue; i.v., intravenous; MAP, mean arterial pressure; RPa, rostral
raphe pallidus; SNS, sympathetic nervous system.
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Figure 1. Effect of microinjection of muscimol into the DMH on temperature and locomotor activity
to intravenous MDMA
Changes from baseline over time (minutes) in (A) core temperature and (B) locomotion after
microinjecting (t= −5 min) CSF (100nl) or muscimol (80 pmol/100 nl) into the DMH followed
by (t = 0 min) intravenous administration of MDMA (7.5 mg/kg) or saline. *significantly
different from baseline; ‡significantly different from all other groups at the specified time
point. ANOVA and LSD, p < 0.05.
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Figure 2. Effect of microinjection of muscimol into the DMH on cardiovascular responses to
intravenous MDMA
Changes over time (minutes) in (A) heart rate and (B) mean arterial pressure after
microinjecting into the DMH (t= −5 min) CSF (100nl) or muscimol (80 pmol/100 nl) followed
by (t = 0 min) intravenous administration of MDMA (7.5 mg/kg) or saline. *significantly
different from baseline; ‡significantly different from all other groups at the specified time
point. ANOVA and LSD, p < 0.05.
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Figure 3. Sites of injection into the DMH
Schematic coronal sections of the rat brain adapted from the atlas of Paxinos and Watson (1998)
illustrating approximate sites of injections into the DMH. Numbers indicate distance from
bregma in millimeters. Open symbols represent experiments in which animals were infused
with intravenous saline after microinjections of 100 nl of CSF (open circles) or 80 pmol of
muscimol (open squares) into the DMH. Filled symbols represent experiments in which
animals were infused with intravenous MDMA (7.5 mg/kg) after microinjections with either
100 nl of CSF (closed circles) or 80 pmol of muscimol (closed squares). The numbers of animals
in each group is given in parenthesis.
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