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Abstract
Receiver operating characteristic (ROC) curves were generated to obtain classification area under
the curve (AUC) as a function of feature standardization, fuzzification, and sample size from nine
large sets of cancer-related DNA microarrays. Classifiers used included k nearest neighbor (kNN),
näive Bayes classifier (NBC), linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), learning vector quantization (LVQ1), logistic regression (LOG), polytomous logistic
regression (PLOG), artificial neural networks (ANN), particle swarm optimization (PSO),
constricted particle swarm optimization (CPSO), kernel regression (RBF), radial basis function
networks (RBFN), gradient descent support vector machines (SVMGD), and least squares support
vector machines (SVMLS). For each data set, AUC was determined for a number of combinations
of sample size, total sum[−log(p)] of feature t-tests, with and without feature standardization and
with (fuzzy) and without (crisp) fuzzification of features. Altogether, a total of 2,123,530
classification runs were made. At the greatest level of sample size, ANN resulted in a fitted AUC of
90%, while PSO resulted in the lowest fitted AUC of 72.1%. AUC values derived from 4NN were
the most dependent on sample size, while PSO was the least. ANN depended the most on total
statistical significance of features used based on sum[−log(p)], whereas PSO was the least dependent.
Standardization of features increased AUC by 8.1% for PSO and -0.2% for QDA, while fuzzification
increased AUC by 9.4% for PSO and reduced AUC by 3.8% for QDA. AUC determination in planned
microarray experiments without standardization and fuzzification of features will benefit the most
if CPSO is used for lower levels of feature significance (i.e., sum[−log(p)] ~ 50) and ANN is used
for greater levels of significance (i.e., sum[−log(p)] ~ 500). When only standardization of features
is performed, studies are likely to benefit most by using CPSO for low levels of feature statistical
significance and LVQ1 for greater levels of significance. Studies involving only fuzzification of
features should employ LVQ1 because of the substantial gain in AUC observed and low expense of
LVQ1. Lastly, PSO resulted in significantly greater levels of AUC (89.5% average) when feature
standardization and fuzzification were performed. In consideration of the data sets used and factors
influencing AUC which were investigated, if low-expense computation is desired then LVQ1 is
recommended. However, if computational expense is of less concern, then PSO or CPSO is
recommended.
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1 Introduction
DNA Microarrays have been used extensively to interrogate gene expression profiles of cells
in different classes of treatment or disease. The majority of analyses performed with DNA
microarrays commonly include identification of differentially expressed genes via inferential
tests of hypothesis, predictive modeling through function approximation (e.g., survival
analysis), unsupervised classification to identify similar profiles over samples or features, or
supervised classification for sample class prediction. There is a voluminous literature on
statistical power and sample size determination for inferential testing to identify differentially
expressed genes [1–9]. That so much concentration on power and sample size is devoted to
differential expression stems from the predominance of applications focusing on biological
questions, where differential expression is the primary goal. Etiological (cause-effect)
biological questions are routinely part of both experimental and clinical applications, which
ultimately target the roles of molecules and pathways responsible for the observed effects. On
the other hand, expression-based sample classification (e.g., patient classification) is less
biologically focused on genes in causal pathways and more directed toward clinical questions
related to patient classification.

While there is great interest in sample classification with DNA microarrays, there is a sparse
body of literature on statistical power and sample size determination for classification. Hwang
et al [10] reported power and sample size for Fisher’s discriminate analysis. Mukherjee et al
[11] reported levels of significance for sample classification for 8 cancer data sets in the public
domain using a permutation-based test. Moreover, there is little information available on power
and sample size determination for a variety of classifiers used in machine learning and
computational intelligence. In light of these shortcomings, this paper reports numerical results
for area under the curve (AUC) estimates based on receiver operator characteristic (ROC)
curves generated under a variety of conditions for 9 public domain cancer-related data sets
using 14 classifiers.

1.1 DNA Microarray Data Sets Used
Data used for classification analysis were available in C4.5 format from the Kent Ridge
Biomedical Data Set Repository (http://sdmc.i2r.a-star.edu.sg/rp). The 2-class adult brain
cancer data were comprised of 60 arrays (21 censored, 39 failures) with expression for 7,129
genes [12]. The 2-class adult prostate cancer data set consisted of 102 training samples (52
tumor, and 50 normal) with 12,600 features. The original report for the prostate data supplement
was published by Singh et al [13]. Two breast cancer data sets were used. The first had 2 classes
and consisted of 15 arrays for 8 BRCA1 positive women and 7 BRCA2 positive women with
expression profiles of 3,170 genes [14], and the second was also a 2-class set including 78
patient samples and 24,481 features (genes) comprised of 34 cases with distant metastases who
relapsed (“relapse”) within 5 years after initial diagnosis and 44 disease-free (“non-relapse”)
for more than 5 years after diagnosis [15]. Two-class expression data for adult colon cancer
were based on the paper published by Alon et al [16]. The data set contains 62 samples based
on expression of 2000 genes in 40 tumor biopsies (“negative”) and 22 normal (“positive”)
biopsies from non-diseased colon biopsies from the same patients. An adult 2-class lung cancer
set including 32 samples (16 malignant pleural mesothelioma (MPM) and 16 adenocarcinoma
(ADCA)) of the lung with expression values for 12,533 genes[20] was also considered. Two
leukemia data sets were evaluated: one 2-class data set with 38 arrays (27 ALL, 11 AML)
containing expression for 7,129 genes [21], and the other consisting of 3 classes for 57 pediatric
samples for lymphoblastic and myelogenous leukemia (20 ALL, 17 MLL and 20 AML) with
expression values for 12,582 genes [22]. The Khan et al [23] data set on pediatric small round
blue-cell tumors (SR-BCT) had expression profiles for 2,308 genes and 63 arrays comprising
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4 classes (23 arrays for EWS-Ewing Sarcoma, 8 arrays for BL-Burkitt lymphoma, 12 arrays
for NB-neuroblastoma, and 20 arrays for RMS-rhabdomyosarcoma).

Simulated data were not generated for this study because the intent was to investigate the
characteristics of various classifiers and influence of sample size, statistical significance of
features selected, standardization, and fuzzification of features on AUC. While it is possible
to artificially create features with varying levels of differential expression and samples
containing a number of features, we wanted to focus mainly on what was observed from the
use of real data sets, and even more importantly focus on AUC from empirical data. By
establishing such boundary conditions and avoiding simulations, our results are generalizable
to the empirical data considered.

1.2 Feature Selection Using Best Ranked N
The suboptimal best ranked N method of feature selection was used. Let n and p be the number
of input samples and input features, respectively. Let xij (i = 1, 2, …, n; j = 1, 2, …, p) represent
the expression value of feature j for sample i. Each classification analysis involving Ω classes
was evaluated using Ω (Ω − 1)/2 2-class problems. For each 2-class comparison, the t-statistic
for feature j is

(1)

where  and  are the mean expression values for classes k and l,  and  are the variances,
and nk and nl are the class-specific number of input samples. Feature selection was based
exclusively on all input samples within each class prior to classification analysis, and we did
not re-evaluate and rank features after randomly selecting training or test samples. The t-test
was applied to all genes for each possible Ω (Ω − 1)/2 class comparison. For each class
comparison, values of tj were ranked in descending order and p-values for each t-statistic
determined. After constructing the Ω (Ω − 1)/2 lists of sorted genes, we generated a single
mutually exclusive list of the top 20 ranked genes representing all class comparisons. During
classification analysis, genes were added in sets of Ω (Ω − 1)/2 until 20 or more genes were
selected. The cumulative value of sum[−log(p)] for the genes used in classification was cached
and used as an independent variable in multiple linear regression (described later).

1.3 Fuzzification of Features
Fuzzy logic provides a mixture of methods for flexible information processing of ambiguous
data[17–19]. Fuzzy transformations were used to map the original values of an input feature
into 3 fuzzy sets representing linguistic membership functions in order to facilitate the semantic
interpretation of each fuzzy set (Figure 1). The fuzzy sets low, medium, and high exploit
uncertainty among the original feature values, reducing the information in order to obtain a
robust, less-expensive, and tractable solution. Determine xmin and xmax as the minimum and
maximum values of xij for feature j over all input samples and q1 and q2 as the quantile values
of xij at the 33rd and 66th percentile. Also, calculate the averages Avg1 = (xmin+q1)/2, Avg2 =
(q1 + q2)/2, and Avg3 = (q2 + xmax)/2. Next, translate each value of xij for feature j into 3 fuzzy
membership values in the range [0,1] as μlow,i,j, μmid,i,j, and μhigh,i,j using the relationships

(2)
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(3)

(4)

The above computations result in 3 fuzzy sets (vectors) μlow,j, μmed,j and μhigh,j of length n
which replace the original input feature. During classification with fuzzy features, the
incorporation of new features was incremented in sets of size 3Ω (Ω − 1)/2. Figure 1 illustrates
the values of the membership functions as a function of xij. When features are fuzzified using
the methods described above the classifiation is called “fuzzy,” whereas without feature
fuzzification, classification is called “crisp.”

1.4 Classification Analysis
Fourteen classifiers were employed: k nearest neighbor (kNN), näive Bayes classifier (NBC),
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), learning vector
quantization (LVQ1), logistic regression (LOG), polytomous logistic regression (PLOG),
artificial neural networks (ANN), particle swarm optimization (PSO), constricted particle
swarm optimization (CPSO), kernel regression (RBF), radial basis function networks (RBFN),
gradient descent support vector machines (SVMGD), and least squares support vector
machines (SVMLS).

1.4.1 k-Nearest Neigbor (kNN)—The k-nearest neighbor classifier (kNN) is based on the
Euclidean distance between a test sample and the specified training samples[24]. A test sample
x is assigned to the class ω of its nearest neighbor, where mi is a nearest neighbor to x if the
distance

(5)

where D(mj, x) = ||mj − xi|| is the Euclidean distance. The k-nearest neighbors to x are identified
and the decision rule D(x ⇝ω) is to assign sample x to the class ω which is the most popular
among the k nearest training samples. In this study, we set k=4 for all runs, and thus the classifier
is noted as 4NN.

1.4.2 Näive Bayes Classifier (NBC)—Näive Bayes classifiers (NBC) were developed
from probability-based rules derived from Bayes Rule, and therefore are able to perform
efficiently with minimum error rate[24]. Our application of NBC was based entirely on
discretizing expression values across samples into categorical codes for quantiles. Training for
NBC first requires calculation of the 3 cutpoints of quartiles of each training feature over the
training samples independent of class, which characterizes the distribution of each training
feature considered. We used an array of size # training features × 3 to store the 3 quartile
cutpoints for each feature. Using the cutpoints for quantiles of each feature, we transformed
continuous feature values into categorical quantile codes and tabulated cell counts n(j, qj, ω),
which is the number of samples having a quantile value of qj (qj = 1, 2, 3, 4) for the j th feature
in class ω. At program start, each cell count is set to n(j, qj, ω) = 1 in order to prevent
multiplication by zero when probabilities are determined during testing. This was performed
for all training samples. During testing, we used the array of quantile cutpoints to transform
each test sample’s continuous feature values into categorical quantile values of qj =1,2,3 or 4.
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The assignment of a test sample x to a specific class was based on the posterior probability of
class ω, given as

(6)

where P(ω) is the class prior and P(x|ω) is the conditional probability density. Note that P
(ω) is constant and therefore only P(x|ω) requires maximization. Thus we compute

(7)

where n(ω) is the number of samples in class ω used for training and p is the number of training
features. It is clear that we are using the categorical quantile values of qj for each feature of
the test sample to obtain the probability n(j, qj, ω)/n(ω), which is multiplied together for all
features. The decision rule for the test sample x is

(8)

1.4.3 Linear Discriminant Analysis (LDA)—Linear discriminate analysis (LDA) first
requires calculation of the p × p class-specific variance-covariance matrices Sω[25]. For a given
set of p features, calculation of Sω is based on samples having class label ω. The diagonal
elements of the matrix Sω are written in the form

(9)

and off-diagonal elements as

(10)

where  is the variance for feature j among samples in class ω, sjk is the co-variance between
features j and k among samples in class ω, and ȳj is the mean of feature j for samples in class
ω. The major assumption for LDA is that the variance-covariance matrices are all equal, that
is, S1 = S2 = … = SΩ. Using the class-specific variance-covariance matrices, we calculate the
pooled covariance matrix as

(11)

For a given sample y represented by a p × 1 vector of feature values, the distance from the
sample to the centroid of class ω is defined as

(12)

where ȳω is a p × 1 vector of mean feature values for samples in class ω, for which the individual
elements are
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(13)

The decision rule D(y ⇝ω) is to assign sample y to the class for which Dω(y) is the smallest.

1.4.4 Quadratic Discriminant Analysis (QDA)—When the covariance matrices are not
equal, the distance from each sample to class centroids is biased by large variance values on
the matrix diagonals[25]. To minimize this bias among unequal covariance matrices, we
replace the pooled covariance matrix Spl in (12) with the class specific covariance matrices in
the form

(14)

The same decision rule is used as before, in which sample y is assigned to the class for which
Dω(y) is the smallest.

1.4.5 Learning Vector Quantization (LVQ1)—Supervised classification under learning
vector quantization 1 (LVQ1) involves a punishment-reward method for moving prototypes
toward samples with the same class and away from samples with different class labels [26].
We first specified the number of prototypes per class. This can be done arbitrarily or through
a grid search over the specified number of prototypes. Some authors recommend setting the
number of prototypes the same in each class, however, this may be uncecessary since there
may be more(fewer) prototypes than are needed for class separability. Nevertheless, we used
a fixed value of k = 2 prototypes per class derived from k-means cluster analysis.

Let xi be the i th sample (i = 1, 2, …, n) and mj (j = 1, 2, …, P) be a prototype. During the
initial iteration LVQ1 selects the first sample xi and derives the distance to each prototype
mj among all P prototypes in the form

(15)

The closest prototype is then updated according to the rule

(16)

where mj is the prototype closest to sample xi and α(t) is the learning rate at the tth iteration
(t = 1, 2, …, Tmax). Under the above updating rule the closest prototype is rewarded if its class
label is the same as the class label of the sample and punished if different. A suitable choice
for the learning rate α(t) is

(17)

Reliable results for LVQ were obtained using a value of α0=0.1 and Tmax = 50 iterations. The
above calculations at iteration t were repeated for the remaining samples, each time looping
over all P prototypes to find the closest prototype. This was then carried out over Tmax total
iterations. During testing, the decision rule is to assign sample x to the class of which the closest
prototype belongs shown as

(18)
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1.4.6 Logistic Regression (LOG)—Logistic regression (LOG) employs a maximum
likelihood optimization approach to model all classification problems in the form of multiple
2-class problems[27]. For example, a 4-class problem equates to 6 = [4(4 − 1)/2] 2-class
problems. Assume a training scenario comparing training samples from class j and class k(k ≠
j, k = 1, 2, …, Ω ). Set yi = 0 if the i th sample is from class j and yi = 1 if the ith sample is from
class k. Logistic regression first requires computation of the logit g1(xi) = β0 + β1xi1 + β2xi2
+···+ βpxip, which is hinged to regression coefficients modeled during the fitting procedure.
Maximum likelihood modeling is performed and after convergence the probability that a test
sample x is in class j is P(j |x) = P(y = 0|x) = 1/[1 + eg1(x)] and the probability of class k
membership is 1 − P(j |x). Hence, the two decision rules for test sample x are Djk = P(j |x) and
Dkj = 1 − Djk. The intermediate decision rule for class j is

(19)

and the final decision rule for test sample x is

(20)

1.4.7 Polytomous Logistic Regression (PLOG)—The 2-class and multiclass data sets
used were handled straightforwardly with polytomous logistic regression, where multiclass
problems were not reduced to multiple 2-class problems. Instead, polytomous logistic
regression (PLOG) handles all of the classes considered in a single run. In polytomous logistic
regression, only Ω −1 logits are needed, where the general equation for the logit is gj (xi) =
βj0+ βj1xi1+ βj2xi2+···+ βjpxip = log[P(yij = j |xi )/P(yij = 0|xi ). Because yi0 drops out of the
likelihood equation, only classes ω = 2, 3, …, Ω are needed for setting yij for each sample. For
example, during a 4-class problem analysis, a training sample from class 2 would require the
coding yi1 = 1, yi2 = 0, and yi3 = 0 in order to represent classes 2–4. After the model is fit, the

committee vote (y = 0, 1, …, Ω − 1) for class 1 is , and

 for all other classes. The final decision rule for class j is

(21)

1.4.8 Artificial Neural Networks (ANNs)—Artificial neural networks (ANNs), otherwise
known as multilayer perceptrons (MLPs), are machine-based learning models which simulate
information processing performed by the brain. ANNs consist of neurons, or cells,
interconnected by synaptic weights that filter and transmit information in a supervised fashion
into order to acquire knowledge that can be stored in memory. After adapting to an environment
in which an ANN is embedded, the stored knowledge can be generalized to future experiences
to predict outcome based on input stimuli.

During the feed-forward training input vectors for each sample x were clamped to the input
nodes. Features were standardized over the training samples considered in each run to ensure
the same scale. The initial random connection weights were in the range [−0.5, 0.5]. Node
outputs at the hidden layer were based on a logistic activation function in the form

(22)
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where uj is the input to hidden node j and vj is the output. Using the output of neuron j in the
hidden layer, the total input to the kth neuron in the output layer is

(23)

where  is the connection weight between neuron j in the hidden layer and neuron k in the
output layer. The output of neuron k (k = 1, 2, …, Ω) in the output layer was obtained using
the softmax function

(24)

which normalizes all the zk so that they sum to unity. Finally, the error is determined as the
total sum-of-squares based on the difference between the output vector and the “target” vector
representing the true output, given as

(25)

where ck is the kth element in the binary vector c with known class for this training sample.
For a 4-class example problem, examples of the four possible target vectors c for training
samples known to be in classes 1, 2, 3, or 4 are c = (1, 0, 0, 0), c = (0, 1, 0, 0), c = (0, 0, 1, 0),
and c = (0, 0, 0, 1).

1.4.8.1 Cycles and Epochs (Sweeps): Node outputs described in (22) and (24) only apply to
forward propagation of information for a single sample from the time the input vector is
clamped to the input nodes up to the last output step. After the feed forward step for a sample,
gradient descent back-propagation learning is performed using partial derivatives of the outputs
at the hidden and output layers w.r.t. connection weights[28]. A cycle constitutes a sequence
of forward and backward passes for one sample. A complete cycle of training using all of the
samples is termed a sweep. After the initial assignment of random weights and several sweeps
through the training samples, classification error will start to decrease. As this occurs, the ANN
will be learning the relationship between the input and output vectors. For most data, a marked
reduction in error usually occurs within 25 sweeps, so by default we used 100 sweeps. We have
observed substantial monotonically decreasing reductions in error to near zero levels for 50
sweeps[28], so use of 100 should be less problematic. During testing, the feature values of each
test sample x are clamped to the input nodes and propagated through the connections to derive
the target vector z. The decision rule D(x ⇝ω) is to assign x into the class for which zk is the
greatest. A grid search was employed for each ANN model in which the learning rate ε and
momentum α ranged from 2−9, 2−8, …, 2−1. The grid search for ANNs also included an
evaluation of error for a variable number of hidden nodes in the single hidden layer, which
ranged from the number of training features (i.e., the length of input vector for each sample)
down to the number of output nodes, incremented by −2. In cases when there were multiple
values of grid search parameters for the same error rate, we used the median value.

1.4.9 Particle Swarm Optimization (PSO)—Particle swarm optimization (PSO) was
introduced by Kennedy and Eberhart in 1995 [29] as a new optimization tool for stochastic
searching in multimodal space. PSO is modeled after the behavior of migrating flocks of birds
or feeding behaviors of schools of fish, in which “particles” fly through the multidimensional
space exchanging information along the way in order to influence others movements to find a
global maximum. Each particle has a cognitive memory about the position where the best
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fitness occurred, as well as a social memory on where the best fitness occurred among all
members of the swarm. Particle travel is hinged to the velocity based on the last position, the
cognitive and social memories, and randomness.

Let each particle form a 2 × Ω × p array, where Ω is the number of classes and p is the number
of features. Let the position and velocity vectors for particle l be . The
class-specific particle position is  and the class-specific particle velocity is

. At each iteration, the fitness [30] is based on

(26)

where n is the number of training samples and ω(xi) is the class of sample xi. The velocity
update is

(27)

where w is the inertia factor, c1 is the cognitive parameter and c2 is the social parameter,
bl(t) is the best historical fitness for particle l, and bg(t) is the global best particle. The inertia
at iteration t is w(t) = wstart − (wstart − wend)t/Tmax. The particle position update is rl (t + 1) =
rl (t) + vl (t + 1).

1.4.9.1 Constricted Particle Swarm Optimization (CPSO): In constricted particle swarm
optimization (CPSO), the inertia factor w in (27) was replaced with the constriction factor κ
defined as

(28)

where ϕ, = c1 + c2, ϕ > 4. The velocity update then becomes

(29)

The decision rule for class j of a test sample x is

(30)

Parameter values for PSO were set to: #numparticles = 50, Tmax= 300, υmin = −0.05, υmax =
0.05, c1 = 2, c2 = 2, wmin = 0.4, and wmax = 0.9. Whereas for CPSO, the parameters were
#numparticles = 30, Tmax = 150, υmin = −0.05, υmax = 0.05, c1 = 2.05, c2 = 2.05, wmin = 0.4,
and wmax = 0.9.

1.4.10 Kernel Regression (RBF) and RBF Networks (RBFN)—Kernel regression
(RBF) employs kernel tricks in a least squares fashion to determine coefficients that reliably
predict class membership when multipled against kernels for test samples. Multiple class
problems are solved using all possible 2-class problems. First, k-means cluster analysis is
performed on all of the training samples to determine the centers. Let N be the number of
training samples and M be the number of centers extracted from the training data. Coefficients
for kernel regression are determined using the least squares model
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(31)

where H is an N × M matrix with elements hij = K(xi, cj ), and y a N × 1 vector with yi set to 1
for training samples in the first class and yi set to −1 for samples in the second class being
compared in the 2-class problem. Because HT is an M × N matrix, the inverse of the dispersion
matrix (HTH)−1 is an M × M matrix. When cross multiplied with HT y, which is M × 1, the
resulting vector α is an M × 1 vector. The predicted y for a test sample is based on the sum
product of the kernel K(x, cj) for the test sample and each center by the respective αj for the j
th center, shown as

(32)

A positive value of y denotes membership in the first class and a negative value of y reflects
membership in the second class.

The radial basis function network (RBFN) employed the same matrix algebra as kernel
regression, but was based on the kernel K(xi, cj) = ||xi − cj || and not K(xi, cj) = exp(−||xi − cj||),
since the former commonly provided better results.

1.4.11 Support Vector Machines (SVM)—Support vector machines (SVMs) offer many
advantages over other classifiers, for example, they maximize generalization ability, avoid
local maxima, and are robust to outliers. However, their disadvantages are that they do not
extend easily to multiclass problems, can require long training times when quadratic
programming is used, and are sensitive to model parameters the same way ANNs are sensitive
to the number of hidden layers and number of nodes at each hidden layer.

For multiple class problems, all possible 2-class comparisons were used. Training samples
were coded as a y vector, where yi = 1 for the first class and yi = −1 for the second class. We
used a gradient descent-based [31] and least squares[32] approach to SVM. The gradient
descent L1 soft norm SVM (SVMGD) employed the recursive relationship for the ith training
sample in the form

(33)

where α is a sample × 1 vector of Lagrange multipliers, and K(xi, xi) is the kernel.

The least squares SVM (SVMLS) was an L2 norm SVM, (i.e., ) based on the matrix operation

(34)

for which the intercept term is

(35)

where Ω ij = yiyj K(x, xT) + δij / C, C is the margin parameter, δij =1 if i = j or 0 if i ≠ j,δij/C is
added to the diagonal of K(x, xT). The margin parameter C controls the trade-off between
minimizing the norm of the slack vectors, e.g., ξi = αi/C, and maximizing the target margin.
For SVMLS, all αi are support vectors. A weighted exponentiated RBF kernel was employed
to map samples in the original space into the dot-product space, given as
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, where m=#features. Such kernels are likely to yield the greatest
class prediction accuracy providing that a suitable choice of γ is used. To determine an optimum
value of γ for use with RBF kernels, a grid search was done using incremental values of γ from
2−15, 2−13, …, 23 in order to evaluate accuracy for all training samples. We also used a grid
search in the range of 10−2, 10−1, …, 104 for the margin parameter C. Median parameter values
were used whenever there were multiple grid search values observed at the same error rate.
The optimal choice of C is based on the grid search for which classification accuracy is the
greatest, resulting in the optimal value for the separating hyperplane and minimum norm ||ξ||
of the slack variable vector. The decision function for class j is

(36)

where

(37)

and S is the set of bound support vectors for which αi = C, and b = 1/UΣj ∈U [yi− Σi∈S αi yiK
(xi, xj)] Ω where U are the unbounded support vectors (0 < αi < C). In least squares SVM, b is
directly solved during matrix operations. The decision rule for test sample x is

(38)

1.5 Classification Runs
Using the 9 data sets, we performed 4 runs for each data set. These consisted of no feature
standardization or fuzzification, only standardization, only fuzzification, or both. Because we
varied sample size and feature set size, within each of these four runs there were 60 runs for
AMLALL2, 60 for Brain, 60 for BreastA, 60 for BreastB, 60 for colon, 60 for lung, 60 for
prostate, 36 for MLL Leukemia, and 18 for SRBCT, for a total of 474. Therefore, there were
474 × 4 = 1,896 runs per classifier. Multiplying 1,896 by the 14 classifiers used resulted in
26,544 total classification runs, each of which resulted in an AUC value. These 26,544 AUC
values were used in regression analyses (see below). Taking a deeper look behind the scenes,
we further ran each classifier 40 times for each set of randomly selected samples drawn, and
another 40 times when the class labels were permuted (see below). Overall, we performed a
total of 80 × 26, 544 = 2, 123, 530 classification runs.

1.6 Receiver Operator Characteristic (ROC) Curves
For each classifier, ROC curves were generated using randomly selected proportions of 10%,
20%, 30%, 40%, 50%, or 60% of the total number of input samples. During each iteration,
classifier training was performed with the randomly selected samples and testing was
performed on the remaining samples left out of training. Random selection of samples was also
stratified to ensure uniform class representation to the extent possible. For a given sample size,
we also varied the number of features used based on the best ranked N features chosen. The
number of steps used for varying the feature count was set equal to 20=(Ω (Ω − 1)/2), so that
no more than 20 features were used for any run.

For each fixed set of randomly selected training samples and features, the proportion of input
samples was resampled B = 40 times in order generate 40 realizations (values) of observed and
null accuracy. Mukherjee et al used B = 50 iterations during randomization tests to obtain SVM
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error rates for linear kernels based on 150 or all features for some of the same data sets [11].
Therefore, it is our belief that the cost-saving attempt to use 40 iterations for considerably more
classification runs is appropriate. At each iteration, we first calculated accuracy based on the
true class labels to obtain Accb (b = 1, 2, …, B), and then permuted class labels to obtain the
null accuracy, . This provided B = 40 values of accuracy for the observed data and 40
values of accuracy for the null data. The mean μ and standard deviation σ of Accb and 
were then determined and used for generating 1000 quantiles of accuracy, based on the
relationship μ+ N(0, 1)σ. Quantiles for the observed accuracy were termed xi and null accuracy
termed . In order to calculate AUC, we needed to transform the lists of
simulated accuracy quantiles into probability density functions. The pdf’s of xi and  were
each approximated by using kernel density estimation (KDE) with M = 1000 equally spaced
bins over the range Δx = min{μ + 4σ, 1} − max{μ − 4σ, 0} based on the bin frequencies

(39)

where f(m) is the smoothed bin count for the mth bin, xi is the simulated accuracy quantile,
xm is the lower wall of the mth bin, and h = 2 − 1.06σN−0.2 is the bandwidth[33]. K is the
Gaussian kernel function defined as

(40)

where u = (xi − xm)/h. The smoothed histogram bin heights f (m) were normalized so that the
approximate area under the curve was unity. KDE resulted in the pdf p(x) for the observed
accuracy distribution and p(x*) for the null accuracy distribution. Construction of ROC curves
assumed that p(x) was the “signal” while p(x*) was the “noise.” AUC was determined with the

relationship . It is important to note that the minimum
and maximum quantile values of accuracy for the null and alternative distributions were
different. Thus, in the case of highly significant classification, the lowest quantile (accuracy)
value of the alternative distribution will be greater than the greatest accuracy value in the null
distribution. This is a common observation when using randomization tests for highly
significant effect measures, where test statistics based on permuted labels are much lower than
test statistics for the observed data.

1.7 Regression Modeling of Area Under the Curve (AUC)
A multiple linear regression model was used to regress AUC as the dependent variable on
several parameters hypothesized to influence AUC for each classifier. That is, AUC was fitted
separately for each classifier. The regression model used is given below:

(41)

where y is the AUC for the selected classifier, 1/#samplesis the inverse of the number of
training samples used, 1/sum[−log(p)] is the inverse of the sum of the minus logarithm of
p-values for features used based on the 2-class t-test, stdrepresents standardization of features
values (0-no, 1-yes) using the mean and standard deviation over all input samples (not training
samples), fuzzyrepresents fuzzification of the features used, and ε is the residual error. Fitted
values of AUC for each classifier (regression model) were generated for a range of sample
sizes (1–50), with and without feature standardization, with and without feature fuzzification,
for low levels of feature statistical significance (1/sum[−log(p)]=1/50) and high levels (1/sum
[−log(p)]=1/500) of feature statistical significance.
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2 Results
Figure 2 illustrates example results for the observed (signal) and null (noise) distributions of
accuracy derived from classification with LDA using the top 12 features selected from the 4-
class SRBCT data set. Figure 3 shows an example ROC curve generated from the signal and
noise distributions shown in Figure 2. Figure 4 provides insight into an example linear fit of
AUCon 1/#samplesfor the 4NN classifier and Figure 5 gives insight into the fit of AUC on 1/

sum[−log(p)]. The clear decreasing trends shown in Figures 4 and 5 support the assumption
for using the 1/x transform for the sample size and sum[−log(p)] parameters in multiple linear
regression.

Table 2 lists the regression coefficients and their standard errors for the multiple regression
model. Use of the number of features used for AUC determination rather than sum[−log(p)]
for the multiple features did not result in coefficients that were more explanatory and more
significant. This was expected because the total statistical significance (i.e., sum[−log(p)])
among a set of best ranked N features can vary greatly with the number of features. The constant
terms β0 listed in Table 2 suggest that at the greatest level of sample size, ANN resulted in the
greatest fitted levels of AUC (90%), while PSO resulted in the lowest fitted AUC (72.1%). In
addition, AUC values derived from 4NN were the most dependent on sample size, while PSO
was the least. ANN depended on the total statistical significance of features used based on sum
[−log(p)], whereas PSO was the least dependent. Standardization of features increased AUC
by 8.1% for PSO and -0.2% for QDA, while fuzzification increased AUC by 9.4% for PSO
and reduced AUC by 3.8% for QDA.

In Figures 6–13, the fitted values of AUC as a function of samples size with and without feature
standardization and feature fuzzification are shown for values of 1/sum[−log(p)]=1/50 and
1/sum[−log(p)]=1/500. Fitted AUC values are based on ((41)) and regression coefficient
values in Table 2. Figures 6 and 7 show fitted AUC when no feature standardization or
fuzzification is performed. In both these figures, one can note the strong dependence of 4NN
on sample size, since sample size had the strongest effect on AUC obtained with 4NN (see
Table 2). In addition, the switch from Figure 6 to 7 involves using a greater significance level
for the features selected, and here fitted AUC based on ANN is observed to change the greatest
as 1/sum[−log(p)]changes from 1/50 to 1/500. This agrees with the results in Table 2, which
show that the strongest effect of feature statistical significance was observed for ANN. Figure
6 shows that the greatest fitted values of AUC were obtained using the CPSO, followed by the
LVQ1 classifier. The lowest values of fitted AUC were obtained using LOG and PLOG. Figure
7 shows that the greatest fitted values of AUC were obtained using ANN followed by CPSO.
LVQ1 resulted in the third greatest level of fitted AUC. The lowest values of fitted AUC in
Figure 7 were obtained using PSO followed by LOG.

Figures 8 and 9 show fitted AUC when only feature standardization is performed. Because the
strongest effect of feature standardization was observed for PSO (Table 2), the large increase
observed for fitted AUC for PSO in Figures 8 and 9 was expected. Figure 8 illustrates that the
greatest fitted values of AUC were obtained using the CPSO followed by PSO. The lowest
values of fitted AUC were obtained using LOG and QDA. Figure 9 shows that fitted AUC was
the greatest for ANN followed by CPSO. LVQ1 resulted in in the third greatest level of fitted
AUC. The lowest values of fitted AUC in Figure 9 were obtained using QDA followed by
LOG.

Figures 10 and 11 shows fitted AUC when only feature fuzzification is performed. Note that,
in Table 2, the strongest effect of feature fuzzification was observed for PSO, and accordingly
the large increase observed for fitted AUC for PSO in Figures 10 and 11 was expected. Figure
10 indicates the greatest fitted values of AUC were obtained using the CPSO followed by PSO.
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The lowest fitted values of AUC were obtained using the QDA and ANN. Figure 11 shows
that the greatest fitted values of AUC were obtained using LVQ1 followed by CPSO. The
lowest values of fitted AUC in Figure 11 were obtained using QDA followed by PSO.

Figures 12 and 13 illustrate fitted AUC when both feature standardization and feature
fuzzification is performed. Not surprisingly, PSO was expected to result in the greatest levels
of fitted AUC following feature standardization and fuzzification because of the strong effects
for these parameters listed in Table 2. Figure 12 reflects that the greatest fitted values of AUC
were obtained using the PSO followed by CPSO. The lowest values of fitted AUC were
obtained using QDA and ANN. Figure 13 shows that the greatest fitted values of AUC were
obtained using PSO then LVQ1. The lowest values of fitted AUC in Figure 13 were obtained
using QDA followed by LDA.

3 Discussion and Conclusions
The effects of sample size, feature significance, feature standardization, and feature
fuzzification varied over the classifiers used. Particle swarm optimization (PSO) and
constricted particle swarm optimization (CPSO) were the best performing classifiers resulting
in the greatest levels of fitted AUC. LVQ1 typically resulted in the second greatest levels of
fitted AUC. Quadratic discriminant analysis (QDA) and logistic regression (LOG) commonly
resulted in the least levels of fitted AUC. Artificial neural networks (ANN) was on occasion
the best and worst classifier. Table 3 lists the two best and two worst classifiers for fitted AUC
values shown in Figures 6–13.

In Table 3, the PSO and CPSO classifiers were listed 5 out of 8 times with the greatest fitted
AUC levels among the 8 combinations of analyses. Without standardization or fuzzification
of features, CPSO outperformed PSO, which is in agreement with previous findings[34]. Use
of the constriction factor in CPSO prevents particles from overshooting the search space (going
outside of the galaxy being searched) and shortens the steps taken. When ϕ < 4, particles tend
to orbit rather than converge, but when ϕ < 4, particles oscillate with quickly decaying
amplitude[35]. LVQ1 was listed 4 times among the 8 types of runs enumerated in Table 3.
ANN and SVMLS were each listed once among the 8 combinations of runs. For the lowest
fitted values of AUC observed, QDA was listed 7 times among the 8 combinations of runs.
LVQ1 was listed 3 times among the 8 combinations of runs, and LOG and ANN were each
listed twice. PLOG and LDA were listed once among the 8 types of runs for yielding the lowest
levels of AUC.

Other general observations regarding the classifiers were the that fitted AUC values for LDA
were greater than those for QDA, and QDA was one of the worst performing classifiers. The
performance of LDA and QDA will suffer whenever features are highly correlated, causing
the variance-covariance matrix to be singular. Singular variance-covariance matrices have at
best one eigenvalue which is equal to the first principal component, resulting in a degeneration
of the Mahalanobis distance. In addition, QDA assumes unequal class-specific variance-
covariance matrices, whereas LDA uses the pooled variance-covariance matrix which may be
less degenerate. PLOG also resulted in fitted AUC values that were greater than those produced
by use of LOG when both standardization and fuzzification of features was not performed.
This indicates that all-at-once classification with PLOG using a likelihood function tailored to
multiple outcomes was better than using pairwise classification based on binary outcomes
required with LOG. ANN performed quite well and was influenced the most by statistical
significance of the features used. Standardization did not effect ANN because we always
standardized features with ANN. Fuzzification degraded performance of ANN as well as NBC
and QDA. RBFN, which employs a distance kernel, resulted in fitted AUC values exceeding
those for RBF, which used a linear kernel. The linear kernel of RBF did, however, perform
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better when both feature standardization and fuzzification were used. The SVMLS consistently
outperformed the SVMGD, especially at lower sample sizes. When compared with gradient
descent SVMs, which are of the L1 soft norm type and convex, least squares SVMs are L2 soft
norm and are strictly convex, providing a unique solution that is typically the same or better.
However, because least squares SVMs employ equality constraints rather than inequality
contraints, they are more dependent on the data and tend to be more sensitive to outliers[32].
Our plots of fitted AUC values for SVMGD are very similar to error plots for SVMs for the
same data sets reported by Mukherjee et al[11].

The major conclusions of this study are as follows. When generating AUC values, the 4NN
classifier depended the most on sample size, while ANN depended the most on statistical
significance of features used. AUC based on PSO is increased by 8.1% and 9.4% from the use
of feature standardization and feature fuzzification, respectively. AUC based on CPSO was
not as sensitive to standardization and fuzzification as PSO was. Lastly, LVQ1 performed
surprisingly well, and essentially produced fitted AUC levels that tied AUC based on PSO
when either feature standardization or fuzzification were performed, but not both. However,
PSO substantially outperformed all other classifiers when both feature standardization and
fuzzification were performed. In consideration of the data sets used and factors influencing
AUC which were investigated, if low-expense computation is desired then LVQ1 is
recommended. However, if computational expense is of less concern, then PSO or CPSO is
recommended.
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Fig. 1.
The 3 fuzzy membership functions μlow,j, μmed,j and μhigh,j, which were used to replace
expression values of feature (gene) j during fuzzy classification.

Peterson and Coleman Page 18

Int J Approx Reason. Author manuscript; available in PMC 2008 December 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Example observed and null accuracy distributions derived from classification with LDA using
the top 12 features selected from the 4-class SRBCT data set. Dotted lines -- - represent null
accuracy distributions and solid lines —– represent observed accuracy distributions.
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Fig. 3.
Example receiver operating characteristic (ROC) curve generated from pdf’s shown in Figure
2 for classification of 4-class SRBCT data using the top 12 features selected.
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Fig. 4.
Example linear fit of AUC on 1/#samples for the 4NN classifier.
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Fig. 5.
Example linear fit of AUC on 1/sum[−log(p)] for the ANN classifier.
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Fig. 6.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/50, without
standardization ( std=0), and without fuzzification ( fuzzy=0).
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Fig. 7.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/500, without
standardization ( std=0), and without fuzzification ( fuzzy=0).
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Fig. 8.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/50, with
standardization ( std=1), and without fuzzification ( fuzzy=0).
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Fig. 9.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/500, without
standardization ( std=1), and without fuzzification ( fuzzy=0).
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Fig. 10.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/50, without
standardization ( std=0), and with fuzzification ( fuzzy=1).
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Fig. 11.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/500, without
standardization ( std=0), and with fuzzification ( fuzzy=1).
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Fig. 12.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/50, with
standardization ( std=1), and with fuzzification ( fuzzy=1).

Peterson and Coleman Page 29

Int J Approx Reason. Author manuscript; available in PMC 2008 December 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 13.
Fitted values of AUC as a function of sample size, for 1/sum[−log(p)]=1/500, with
standardization ( std=1), and with fuzzification ( fuzzy=1).
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Table 1
Data sets used for classification analysis.

Cancer site Classes Samples Features Reference

Brain 2 60 (21 censored, 39 failures) 7,129 Pomeroy et al[12]
Prostate 2 102 (52 tumor, 50 normal) 12,600 Singh et al[13]
Breast 2 15 (8 BRCA1, 7 BRCA2) 3,170 Hedenfalk et al. [14]
Breast 2 78 (34 relapse, 44 non-relapse) 24,481 van ’t Veer et al[15]
Colon 2 62 (40 negative, 22 positive) 2,000 Alon et al[16]
Lung 2 32 (16 MPM, 16 ADCA) 12,533 Gordon et al[20]
Leukemia 2 38 (27 ALL, 11 AML) 7,129 Golub et al [21]
Leukemia 3 57 (20 ALL, 17 MLL, 20 AML) 12,582 Armstrong et al[22]
SRBCT 4 63 (23 EWS, 8 BL, 12 NB, 20 RMS) 2,308 Khan et al[23]
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Table 3
List of classifiers which resulted in the least and greatest levels of fitted AUC.

Feature standardization Feature fuzzification Feature 1/sum[−log(p)] Fitted AUC
Least Greatest

No No 1/50 LOG, PLOG CPSO, LVQ1
1/500 QDA, LVQ1 ANN, CPSO

Yes No 1/50 QDA, LVQ1 PSO, CPSO
1/500 QDA, LVQ1 PSO, CPSO

No Yes 1/50 QDA, ANN PSO, LVQ1
1/500 QDA, LOG LVQ1, SVMLS

Yes Yes 1/50 QDA, ANN PSO, CPSO
1/500 QDA, LDA PSO, LVQ1
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