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Polyandry, i.e. mating with multiple males within one reproductive event, is a common female mating

strategy but its adaptive function is often unclear. We tested whether polyandrous females gain genetic

benefits by comparing fitness traits of monandrous (mated twice with a single male) and polyandrous

(mated twice with two different males) female bank voles Clethrionomys glareolus. We raised the offspring in

the laboratory until adulthood and measured their body size, before releasing them to outdoor enclosures

to overwinter. At the onset of the breeding season in the following spring, we found that offspring of

polyandrous females performed significantly better at reproduction than those of monandrous females.

This was mainly due to sons of polyandrous females producing significantly more offspring than those of

monandrous females. No significant differences were found for offspring body mass or winter survival

between the two treatments. Our results appear to provide evidence that bank vole females gain long-term

benefits from polyandry.
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1. INTRODUCTION
Sexual dimorphism in gamete size, costs involved in

mating and differential parental investment predict

different mating strategies for males and females of most

species. Males are expected to increase their reproductive

success by mating with multiple females. Females, on the

other hand, are expected to increase their reproductive

success by choosing a high-quality male and should mate

only as often as is needed to assure fertilization, which is

typically once (Bateman 1948; Trivers 1972). However,

polyandry is a common reproductive strategy among many

species (Birkhead & Møller 1998) and its adaptive

significance is currently one of the most debated subjects

in sexual selection research. In resource-based mating

systems, material benefits to the female seem to outweigh

the fitness costs of multiple mating (Arnquist &

Danielsson 1999; Hosken & Stockley 2003). However,

for many polyandrous species no obvious material benefits

are detectable. In the absence of such direct benefits,

polyandry is explained by genetic benefits, such as the

‘intrinsic male quality hypothesis’ and the ‘genetic

incompatibility hypothesis’ (Jennions & Petrie 2000).

The intrinsic male quality hypothesis states that

multiple mating increases the probability of fertilization

by males with superior genetic quality. This can be

achieved in two ways. First, if females are able to assess

the genetic quality of males prior to mating, they may

remate (i.e. trade up) if they encounter a male that is of

superior genetic quality to a previous mate (Halliday

1983). Second, if females are not able to assess the genetic

quality of a male pre-copulation, they may benefit

from mating multiply via post-copulatory mechanisms.
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If females assess male quality during mating, they may

selectively choose the sperm of the best mate (cryptic

choice; Eberhard 1996). If there is, on the other hand, a link

between sperm competitiveness and offspring viability, the

promotion of sperm competition will increase offspring

viability (Yasui 1997). Additionally, the ‘sexy-sperm

hypothesis’ proposes that fertilizing efficiency under

sperm competition may be paternally heritable, and

therefore polyandrous females will produce sons that are

successful at sperm competition (Keller & Reeve 1995).

The genetic incompatibility hypothesis states that

multiple mating increases the probability of reproducing

with genetically compatible males (Zeh & Zeh 1996).

Because offspring viability is dependent on parental genetic

compatibility, females may benefit from choosing a

compatible male for fertilization. By mating with multiple

males, females can use post-copulatory mechanisms, such

as choice of sperm or assortative abortion of embryos, to

bias paternity towards the most compatible mate (Zeh &

Zeh 1996, 1997). The avoidance of inbreeding, a special

case of the genetic incompatibility hypothesis, is likely to

be the most widespread of all potential sources of genetic

incompatibility (Tregenza & Wedell 2000).

The aim of this study is to test whether bank vole

Clethrionomys glareolus females gain genetic benefits from

mating with multiple males. The bank vole is a common

boreal rodent with a promiscuous and non-resource-based

mating system. Bank vole females gain direct benefits from

multiple mating in the form of an increased probability

of pregnancy initiation due to increased stimulation

(Klemme et al. 2007). However, this direct benefit may

not explain the occurrence of polyandry, because the

stimulus needed to initiate pregnancy can be achieved

by repeated matings with the same male (Klemme et al.

2007) and such repeated matings are common in bank

voles (Milligan 1979). Furthermore, when presented
This journal is q 2008 The Royal Society
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sequentially to two males, a majority of bank vole females

mated polyandrously and did not base their remating

decision on male social status (Klemme et al. 2006).

A possible experimental set-up for testing whether

multiple mating brings genetic benefits is to compare the

fitness of females for which the number of mates is varied

experimentally (monandrous versus polyandrous), while

mating frequency is controlled for (reviewed in Neff &

Pitcher (2005) and Simmons (2005)). Most of the

reviewed studies use invertebrates as a model and test

genetic fitness benefits under laboratory conditions. In our

experiment under semi-natural conditions, we worked

with small mammals whose offspring reproduced in a

subsequent season, separated by a long harsh winter that

exerts strong selection on the offspring. Moreover, most of

the previous studies focused on early offspring survival or

offspring number as a measure of fitness to be compared

between females with different mating regimes. In this

study, we looked, in addition to offspring winter survival

and body mass, on reproductive performance. We used

offspring from females that were experimentally assigned

to be either monandrous or polyandrous and conducted a

long-term outdoor enclosure experiment to test whether

polyandry increases these fitness traits.
2. MATERIAL AND METHODS
(a) Experimental animals

The study was conducted from summer 2004 to spring 2005.

The animals used were laboratory-born descendants of wild

captured bank voles, originally trapped in 2002 in Konnevesi,

Central Finland (62837 0 N, 26820 0 E). The colony was

replenished every year with wild males and females trapped

at the same site. All animals were housed individually in

standard mouse cages (43!26!15 cm) with saw dust and hay

as bedding. The temperature was kept constant at 22G18C

and a 16 L : 8 D photoperiod was maintained. All animals

were individually marked with small mammal ear tags. Bank

voles are seasonal breeders and most animals breed only during

one breeding season (Kaikusalo 1972; Prevot-Julliard et al.

1999). Female bank voles are territorial during breeding

(Bujalska 1994). Young are weaned at the age of three weeks.

(b) Experimental procedure

For this experiment, we used F1 progeny of a laboratory

experiment conducted during June–July 2004, in which

females were randomly mated either two times with a single

male (monandrous matingZM-treatment) or once with each

of two different males (polyandrous matingZP-treatment;

Klemme et al. 2007). The males used in both treatments were

the same, so that a pair of males was mated to one single

female (P-treatment) and each male was also mated alone to

a different female (M-treatment). Initially, we had 30 females

in each treatment and 30 males altogether. Therefore, each

male was used twice in the P-treatment, always with a

different male partner. Using the same set of males in both

treatments controls for inherent male genetic-quality effects

and thus assures that average male quality is identical in the

treatments (Tregenza & Wedell 1998; Zeh & Zeh 2001). Not

all of the 30 females bred successfully and not all offspring

survived until adulthood in the laboratory. Therefore, we

selected for this experiment only those litters that were

complete and for which we had used identical males in

the P- and M-treatments, i.e. one complete litter from the
Proc. R. Soc. B (2008)
P-treatment plus two complete litters from the M-treatment

sired by the same two males. In total, we used 14 litters

delivered by M-females and 10 litters delivered by P-females,

resulting from matings with a set of 14 males. Unequal litter

numbers between treatments are caused by using only a

selection of litters from the original dataset. Among this

selection, 6 of the 14 males were used twice in the P-treatment,

and each of these 6 males has only one ‘counterpart litter’ in

the M-treatment.

In the original dataset, we found no differences in the

number of breeding females, in litter sizes and progeny

survival until weaning between the treatments (Klemme et al.

2007). Considering the selected litters, litters from the

M-treatment (meanGs.d., 5.1G1.3) appeared to be larger

than those from the P-treatment (4.3G1.4; t-test; t22Z1.513,

pZ0.144). Litters of both the treatments did not differ in sex

ratio (males per female; meanGs.d.: M: 1.1G1.0, P: 1.2G

1.2; t-test, t22ZK0.358, pZ0.724). The progeny were

raised in the laboratory until they were at least five weeks

old. Litters were weaned at the age of 21 days and progeny

were subsequently kept either with one (half-) sibling of the

same sex or alone. Offspring from both the treatments were

homogeneously distributed over the single and the double

housing options. Among female offspring, 6.1% in the

M-treatment and 9.1% in P-treatment were housed alone

(c2Z0.18, NZ55, pZ0.672) and among male offspring, 71.8

and 61.9% were housed alone, respectively (c2Z0.62,

NZ60, pZ0.432). We measured the body mass of all

individuals before the field experiment with an electronic

scale to the nearest 0.1 g.

Our field experiment aimed to collect data on offspring

winter survival and reproductive performance at the onset of

breeding in spring. The field experiment was carried out from

October 2004 to April 2005 in eight 0.25 ha vole proof

outdoor enclosures situated in an old field with a grass and

herb vegetation layer, willow bushes and young trees. Each

enclosure held a grid of 25 multiple-capture live traps

(Ugglan Special) at regular intervals of 10 m. We released

altogether 115 individuals, 72 F1 progeny from the

M-treatment and 43 F1 progeny from the P-treatment. Five

enclosures were filled with 14 progeny each and three

enclosures with 15 progeny each, mixed from both the

treatments. The number of progeny originating from the

M-treatment varied from 8 to 10 per enclosure, and that

from the P-treatment varied from 4 to 7 per enclosure. The

number of male and female progeny of either treatment

released to the same enclosure was nearly the same.

Consequently, the overall sex ratio (males per females) per

enclosure varied from 1.0 to 1.3 and was on average 1.1. The

age at release was on average 10 weeks (range 5–12 weeks) for

the M-treatment and on average 11 weeks (range 5–12 weeks)

for the P-treatment. All individuals within the same enclosure

were unrelated to each other, i.e. no full or half siblings.

We released the individuals on 1 October 2004 to the

centre of each enclosure. At the onset of breeding, we

conducted a 4 day trapping series from 26 to 29 April 2005

to estimate the survival of the progeny. All the survived

individuals were transferred back to the laboratory and

parturition of pregnant females was monitored.

(c) Paternity analysis

We collected tissue samples from all surviving individuals of

our enclosure experiment and the resulting offspring and

conducted paternity analyses to estimate the number of F2
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progeny for each experimental female. DNA was extracted

from a small piece of ear (2 mm in diameter) with use of

KingFisher silicate magnetic beads and a KingFisher

magnetic particle processor (ThermoLabsystems) according

to the manufacturer’s protocol. All females, offspring and

potential fathers were genotyped at six microsatellite loci

developed for bank voles: MSCg4; MSCg7; MSCg9;

MSCg15; MSCg18; and MSCg24 (Gockel et al. 1997;

Gerlach & Musolf 2000). DNA fragments were amplified

using polymerase chain reaction as described in Gockel et al.

(1997). Genotypes were scored on an ABI PRISM 3100

Genetic Analyser (Applied Biosystems) and analysed with

GENEMAPPER v. 3.7 software. Paternity was assigned manu-

ally by comparing the alleles of each offspring with those of

the known mother and all potential fathers. All offspring

could be unambiguously assigned to one of the potential

fathers in all six loci. Paternity for all other potential sires

could be excluded in at least two loci.

(d) Statistics

Statistical analyses were performed using SAS v. 9.1. Unless

stated otherwise, means are given with their (C/K) standard

deviations, probability values are two-tailed and the level of

significance was set at aZ0.05. We used generalized linear

mixed models (GLMMs) with either a normal (offspring

body mass before the field study), a binomial (offspring

survival) or a Poisson error distribution (offspring reproduc-

tive performance) to analyse the data. For body mass,

treatment and sex were entered as fixed effects, age at

weighing as covariate and mother as random factor to control

for the non-independence of data from siblings. For survival

and reproductive performance, treatment and sex were

entered as fixed effects, body mass and age at release as

covariates, and enclosure as well as mother as random factors

to control for the non-independence of data from individuals

sharing the same enclosure and from siblings.
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Figure 1. Effect of mating treatment and sex on (a) offspring
body mass before the field study (NZ115), (b) winter survival
(NZ115) and (c) the number of F2 offspring produced by all
surviving F1 offspring (NZ41). All values are adjusted means
(Gs.e.) from the final models. White bars, daughters; black
bars, sons.
3. RESULTS
(a) Offspring body mass

Offspring body mass at the age of 5–12 weeks did not differ

between treatments (GLMM, F1,19.1Z0.47, pZ0.501;

figure 1a). Females were significantly lighter than males

(F1,92.4Z39.99, p!0.001) in both the treatments (treat-

ment!sex F1,92.4Z0.46, pZ0.499; figure 1a). Age at

weighing had no effect on offspring body mass (F1,17.6Z
2.51, pZ0.131).

(b) Offspring survival

Of 115 F1 progeny introduced to the field, 41 (26 females

and 15 males) survived until the next breeding season.

Per enclosure, the number of survivors ranged from 0 to 9

and was on average 5.9G2.1 individuals. Among all

enclosures with survivors, at least one female from each

treatment survived. The total number of females

survived per enclosure ranged from 2 to 7 and was on

average 3.7G1.6. In five out of seven enclosures with

survivors, at least one male from each treatment survived.

In the remaining two enclosures, only one male survived in

each, one from the M-treatment and one from the

P-treatment, respectively (the number of surviving

females in both the enclosures was three). Thus, the

total number of males survived per enclosure ranged from

1 to 4 and was on average 2.2G1.1.
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Offspring of monandrous and polyandrous females did

not differ in survival (GLMM, F1,29.5Z0.56, pZ0.460;

figure 1b). Female offspring survived significantly better

than male ones (F1,109Z7.96, pZ0.006) and this pattern

was the same in both the treatments (treatment!sex

F1,109Z0.46, pZ0.499; figure 1b). Age at release and

body mass at release did not affect survival (F1,25.9Z0.91,

pZ0.348 and F1,104.4Z2.58, pZ0.111, respectively).
(c) Offspring reproductive performance

The surviving F1 individuals produced 18 litters with 84 F2

progeny among all seven enclosures in which voles survived.

Offspring of polyandrous females performed significantly

better at reproduction than those of monandrous females
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(GLMM, F1,17.5Z4.52, pZ0.048; figure 1c). There was no

significant difference between sexes (F1,22.5Z1.97,

pZ0.174). Though the treatment!sex interaction was

not statistically significant (F1,18.2Z3.80, pZ0.066), we

explored it more closely because in the final model, male

offspring contribute much more to the significant main

effect of the treatment than female offspring (figure 1c). Post

hoc LSmeans significance tests showed that sons of

polyandrous females sired more offspring than those of

monandrous females (t15.9ZK2.73, pZ0.015), but there

was no significant difference in the production of offspring

between daughters of monandrous and polyandrous

females (t20.6ZK0.31, pZ0.760). Age at release or body

mass at release did not affect reproductive performance

(F1,24.1Z0.24, pZ0.505 and F1,35Z0.04, pZ0.630,

respectively).
4. DISCUSSION
We were able to show that bank vole females gained long-

term fitness benefits from multiple mating with different

males. Offspring of polyandrous females performed

significantly better at reproduction than those of monan-

drous females, caused mainly by sons of polyandrous

females producing more offspring than those of monan-

drous females. Offspring body mass and survival were not

affected by mating treatment. To our knowledge, this is the

first experimental study on mammals measuring offspring

reproductive performance as fitness component poten-

tially affected by polyandry.

Recent studies have demonstrated an increase in female

fitness due to polyandry that can be attributed to genetic

effects (Neff & Pitcher 2005; Simmons 2005). Most of

these studies, including two on mammals, have focused on

early offspring survival as a component of fitness. For

example, a field study on the brown antechinus Antechinus

stuartii showed that polyandry significantly increased

offspring survival until weaning (Fisher et al. 2006).

A similar result was found in a laboratory study on yellow-

toothed cavies Galea musteloides (Keil & Sachser 1998,

mating frequency not controlled for). An effect of

polyandry on offspring reproductive performance has

been previously examined in only four studies. Daughter

fecundity was found to be increased in bulb mites

Rhizoglyphus robini (Konior et al. 2001, mating frequency

not controlled for) and increased and decreased in red

flour beetles Tribolium castaneum, depending on the

competitive environment (Pai & Yan 2002, mating

frequency not controlled for). Son reproductive success

was enhanced by polyandry again in red flour beetles

(Bernasconi & Keller 2001; Pai & Yan 2002) but

decreased in black field crickets Teleogryllus commodus

(Jennions et al. 2007).

The increased reproductive performance of polyan-

drous offspring in our study could be explained by both

the intrinsic male quality and the genetic incompatibility

hypotheses. Post-copulatory processes, as the inevitable

result of polyandry, may have secured offspring with an

improved genetic quality due to fertilization by ‘good

sperm’, ‘sexy sperm’, ‘compatible sperm’ or a com-

bination of these (Jennions & Petrie 2000). We found

that sons of polyandrous females contributed much more

than daughters to the increased reproductive per-

formance, suggesting that polyandry may have had a
Proc. R. Soc. B (2008)
positive effect on son fertilization efficiency or attractive-

ness. The sexy-sperm hypothesis assumes an increase in

female fitness solely due to the competitive ability of sons

under sperm competition, for example, via the quantity or

quality of sperm or other mechanisms preventing compe-

titors from fertilizing (e.g. sperm displacement; Keller &

Reeve 1995). Even though daughters also contributed to

the increased reproductive success of offspring from the

polyandrous treatment (the interaction term treatment!
sex was insignificant), the sexy-sperm hypothesis could

potentially at least partly explain the 2.5-fold higher

reproductive success of sons of polyandrous females.

Alternatively, sons of polyandrous females may have been

more attractive to females. ‘Attractiveness’ in bank vole

males may be, for example, characterized by social status.

Laboratory experiments have shown that female bank

voles prefer dominant over subordinate males pre-

copulatory (Horne & Ylönen 1996), paternity is skewed

towards dominant males when females mate with both a

dominant and a subordinate male (Klemme et al. 2006),

and traits reflecting dominance are highly heritable

(Horne & Ylönen 1998). On the other hand, also a

more heterozygote male may be more attractive. Fennos-

candian bank vole populations undergo multiannual

population density cycles (Krebs & Myers 1974) and

thus often pass through genetic bottle necks. Inbreeding,

as a special case of genetic incompatibility, may reduce

progeny fitness due to a decrease in size, vigour and

reproductive success (reviewed in Shields 1993) and thus

females are expected to choose sperm of dissimilar males

or embryos sired by dissimilar males among multiple

partners to promote offspring heterozygosity at many loci

(Pusey & Wolf 1996). However, with our experimental

design, we are not able to estimate whether the sons of

polyandrous females had a higher access to females than

those of monandrous females or, given that polyandry was

common among the F1 generation, whether the resulting

paternity pattern stemmed from sperm competition,

female choice or both. Future studies should therefore

address, for example, fertilizing efficiencies of sons from

polyandrous and monandrous females.

Are there alternative explanations for the enhanced

fitness of polyandrous females? The increased reproduc-

tive performance of polyandrous offspring may also, or

additionally, be explained by maternal effects. If females

of polyandrous species have no opportunity to mate with

multiple males and as a consequence are likely to suffer

from fitness costs, they may invest less in their offspring

(Simmons 2001). In bank voles, male infanticide is a

common phenomenon (Ylönen et al. 1997) and polyandry

may serve as a confusion of paternity to prevent males

from killing potential offspring (Ebensperger 1998).

Therefore, females who are not able to mate polyan-

drously may invest less in their embryos during pregnancy

due to the likelihood that they are killed post-partum.

Here, we found no differences in body mass supporting

such a differential allocation. However, body mass has

only been measured at adulthood and possible compen-

satory growth effects (Oksanen et al. 2001) may have

obscured potential differences in body mass at birth.

Additionally, females may derive direct benefits from

multiple mating. Females of both the treatments poten-

tially differed in the amount of sperm received because in

successive matings with the same female, males may
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allocate progressively smaller ejaculates. In mammals it is

unclear though, whether potential differences in the

amount of sperm received can have long-term conse-

quences on female reproduction or offspring performance.

Polyandry did not seem to affect offspring body mass at

adulthood nor long-term offspring survival. However, it is

important to note that good-genes effects can be very small

(though considerable on an evolutionary time scale) due

to a generally small heritability of fitness (Alatalo et al.

1997; Møller & Alatalo 1999). Thus, often large sample

sizes are needed to demonstrate such an effect. Addition-

ally, polyandrous females had only a choice of two males.

These may have been very similar in genetic quality,

making it difficult to detect small genetic effects. In future,

it will be crucial to conduct experiments in which male

genetic quality is varied and controlled for.

Female offspring survived significantly better than male

in both the treatments. A decreased winter survival of

males has been reported in earlier studies on voles. For

instance, a higher mortality rate of bank vole males

compared with females has been demonstrated in an

enclosed population in Fennoscandia (Ylönen & Viitala

1985) and in one of three wild populations studied in the

French Alps (Yoccoz & Mesnager 1998). As also shown in

this study, bank vole males are larger than females during

the non-reproductive season (Bondrup-Nielsen & Ims

1990). A reduced winter survival of male voles could be

explained by their larger size, because both large and very

small individuals do not meet their physiological optimum

in terms of winter survival (Aars & Ims 2002 and

references therein).

The benefit hypotheses proposed to explain polyandry

are not mutually exclusive and our results on bank voles,

together with previous findings (Klemme et al. 2007),

show that females can gain diverse benefits from multiple

mating. Although our data on offspring reproductive

performance are restricted to the onset of breeding and

we were not able to compare the lifetime reproductive

success of offspring from both mating treatments, our

findings may represent a clear fitness advantage for

polyandrous females; if offspring of polyandrous females

perform better at reproduction, polyandrous females may

gain significantly more grand offspring than monandrous

females. The mechanisms underlying our results are not

clear and we cannot rule out maternal effects. However,

our observations are consistent with the hypothesis that

females can increase their fitness by multiple mating with

different males and may therefore explain the maintenance

of polyandry in bank voles.
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