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ABSTRACT

The ability of microbial populations to increase fitness through fixation of mutants with an increased
growth rate has been well described. In experimental studies, this is often the only way fitness can be in-
creased. In natural settings, however, fitness can also be improved by increasing the ability of the microbe to
transmit from one host to the next. For many pathogens, transmission includes a phase outside the host
during which they need to survive before the chance of reinfecting a new host occurs. In such a situation, a
reduced death rate during this phase will lead to improved fitness. Here, we compute the fixation probability
of mutants that better survive the transmission bottleneck during the evolution of microbial populations.
We derive analytical results that show that transmission mutants are often likely to occur and that their
importance relative to growth mutants increases as the population decline during the transmission phase
increases. We confirm our theoretical results with numerical simulations and suggest specific experiments
that can be done to test our predictions.

UNDERSTANDING theevolutionofmicrobial popu-
lations is of both fundamental and applied inter-

est. On a fundamental level, the short generation times
of microbes allow the study of evolutionary processes in
an experimental setting (Lenski et al. 1991; Elena and
Lenski 2003; Manrubia and Lazaro 2006; Colegrave

and Collins 2008). On an applied level, knowing
what drives microbial evolution provides insights into
the dynamics of pathogens in response to selective
pressures created by factors such as antimicrobial drug
use (Baquero and Blazquez 1997; Levin et al. 2000;
Handel et al. 2006), host immunity (Kent et al. 2005;
Nelson and Holmes 2007), or crossing a host–species
barrier (Antia et al. 2003; Woolhouse et al. 2005).

In both experimental and real-world settings, many
microbial populations alternate between a phase of
population growth inside a flask or host followed by a
population bottleneck created by serial passage or
transmission. In serial passage experiments, the bottle-
neck is implemented as an essentially random sampling
of the population, whereby a small aliquot of a culture is
immediately placed into a flask with fresh nutrients.
Even though it is known that bacteria sometimes die
during the stationary phase, which usually follows the
growth phase before the serial passage bottleneck, the
possibility that differences in the survival during sta-
tionary phase might lead to fitness differences is usually

ignored. Instead, most studies focus on the evolution of
fitness as defined by an improved net growth rate [by
means of a shorter generation time, increased fecundity,
more efficient resource uptake, etc. (Wahl and Dehaan

2004; Novak et al. 2006)]. This is likely justified for
most experimental setups. However, for many naturally
spreading pathogens, the ability to survive outside a
host, for instance on fomites or in an aquatic environ-
ment (Walther and Ewald 2004; Kramer et al. 2006),
is crucial. Mutations that decrease the death rate of
pathogens during this phase, and therefore increase
the likelihood of transmission to a new host, can create
microbes that have a greater overall fitness than the wild
type, without increasing the within-host growth rate.
Focusing only on fitness as determined by the patho-
gen’s ability to grow inside a host will miss this important
component.

A number of studies have considered trade-offs be-
tween pathogen growth inside and survival outside a
host. These studies investigated how such trade-offs
influence the evolution of virulence for different sce-
narios (Bonhoeffer et al. 1996; Gandon 1998; Day

2002; Kamo and Boots 2004; Caraco and Wang 2008).
Here, we take a different, complementary approach. We
use a framework that explicitly models the generation
and growth of mutants with increased fitness, which
allows us to compute the probability that such mutants
invade microbial populations. We explore under what
situations we expect to observe ‘‘growth mutants,’’ which
have an improved net growth rate inside a host, vs.
‘‘transmission mutants,’’ which have an improved ability
to survive outside the host. We derive analytical expres-
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sions and compare them with simulations. We find that
transmission mutants are likely to arise and survive,
especially in situations where the reduction in popula-
tion size during the transmission phase is close to the
increase in population size during the growth phase.

RESULTS

To approximate the process of within-host pathogen
growth, followed by a transmission bottleneck, we study
the simple model shown in Figure 1. A founder colony
of size N0 grows exponentially and deterministically with
a growth rate g for a time tg within a host to a size N1 .

N0. At this time, a fraction F1 of the population, with size
N2 # N1, exits the host and enters the environment.
While outside the host, the pathogen population de-
clines at a rate d for a time td down to a size N3 , N2. A
fraction F2 of the pathogens that survive subsequently
infect a new host with an inoculum of size N0 # N3.

Survival probability of transmission and growth
mutants: We are interested in the probability that a
mutant that has a different growth rate inside the host
(growth mutant) or a different death rate during the
transmission phase (transmission mutant) will be able
to survive and dominate the population. Ignoring
stochastic drift, a mutant can invade only if its fitness
is larger than the fitness of the existing clone. In our
model, this can be achieved by either an increased
growth rate (g9 ¼ g(1 1 s), s . 0) or a decreased death
rate (d9¼ d(1�s), s . 0). Previous studies have studied
the survival probability of mutants with an increased
within-host growth rate (Wahl and Gerrish 2001;

Wahl et al. 2002). Here, we allow mutants to change
in both growth rate inside the host and death rate
during the transmission phase. Let P(t, s, s) be the
probability that an individual mutant with growth muta-
tion s and transmission mutation s created at time t after
the start of a growth phase (0 , t , tg) will not go extinct
after all subsequent bottlenecks and therefore be able
to take over the population. In the appendix, we show
that for the situation illustrated in Figure 1, P(t, s, s) is
given by

Pðt; s;sÞ ¼ 1� exp logðxÞe�g ð11sÞt� �
; ð1Þ

where x is given by the implicit equation

x ¼ expf�edstd1gstgð1� xÞg ð2Þ

and denotes the probability that a mutant with growth
rate change s and death rate change s, created at the
beginning of the growth phase, will go extinct (Wahl

and Gerrish 2001). If we make the—often biologically
reasonable—approximation that fitness increases or de-
creases only by a small amount (k s k>1 and k s k>1),
then we can approximate the nontrivial (x ¼ 1) solution
of Equation 2 as x� 1� 2gtgs� 2dtds, which leads us to

Pðt; s;sÞ � 2e�gtðgtgs 1 dtdsÞ: ð3Þ

This result agrees with a previous one for a scenario with
no transmission mutants (Wahl and Gerrish 2001;
Wahl et al. 2002). We refer the interested reader to
these previous studies for some additional details and a
discussion on how this fixation probability relates to the
classical work by Haldane and others (Haldane 1927;
Fisher 1930; Crow and Kimura 1970).

Having determined P(t, s, s), we can calculate the
expected number of mutations with growth advantage s
and survival advantage s that appear during the whole
growth phase and survive subsequent bottlenecks,
L(s, s). Following Wahl et al. (2002), we can write

Lðs;sÞ ¼
ðtg

t¼0

_N Q ðs;sÞPðt; s;sÞdt: ð4Þ

The rate of creation of new microbes, _N , is given by
_N ¼ N0gegt . The expression Q(s, s) is the probability

density per replication that a mutation occurs that has a
change in growth rate of size s and a change in death
rate of size s. In other words, Q(s, s)dsds is the prob-
ability that when a replication occurs, the new microbe
will have a growth mutation between s and s 1 ds and
a transmission mutation between s and s 1 ds. We
specify Q(s, s) below.

After substituting Equation 3 into Equation 4 we
arrive at

Lðs;sÞ � 2N0gtgðgtgs 1 dtdsÞQ ðs;sÞ; ð5Þ

which specifies the expected number of mutations with
change s in growth rate and change s in death rate that

Figure 1.—Serial passage with a transmission phase. A
founder colony of size N0 grows exponentially at rate g for
a time tg within a host (or flask) to a size N1 ¼ N0egtg . At this
time, a fraction F1 of the population, with size N2 # N1, is
transmitted into the environment. While outside the host,
the population declines at a rate d for a time td down to a size
N3 , N2. A fraction F2 of the microbes that survive the trans-
mission phase subsequently infect a new host with an inocu-
lum of size N0 # N3 and the next growth phase begins.
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will arise and survive the bottlenecks. To complete
Equation 5, we need to specify Q(s, s), which we do in
the next two sections.

Mutations that change a single trait: Let us first
assume that during the growth phase both types of
mutations, growth and transmission, can occur but that
a mutation in one phenotype does not affect the other.
If a particular mutation improves the growth rate of the
pathogen, it does not at the same time affect its death
rate during the transmission phase, and vice versa (see
Figure 2a).

The function Q(s, s) for these mutations can then be
written as

Q ðs;sÞ ¼ msDsðsÞQðsÞdðsÞ1 msDsðsÞQðsÞdðsÞ; ð6Þ

where d(x) is the Dirac delta function and Q(x) is the
Heaviside step function. This choice for Q(s, s) ensures
that only either pure growth mutants (s . 0, s ¼ 0) or
transmission mutants (s¼ 0, s . 0) occur. The constants
ms and ms are the rates at which either a growth or a
transmission mutant is generated (essentially the prob-
ability of a mutation occurring during a single replica-
tion). The distributions Ds(s) and Ds(s) describe the
probability distribution for a growth mutation of size
s or transmission mutation of size s (s, s . 0). For
instance, the first term in Equation 6 says that when a
growth mutant occurs (with frequency ms), the change
in the growth rate, s is ensured to be positive [since
Q(s) ¼ 0 for s , 0] and distributed according to the
function Ds(s). Furthermore, when the growth mutation
occurs, the delta function, d(s), ensures that there will
be no corresponding change in the death rate.

On the basis of theoretical arguments and previous
studies (Gillespie 1984; Imhof and Schlotterer 2001;
Rozen et al. 2002; Orr 2005), we choose the distribu-
tions Ds(s) and Ds(s) to be exponentially decaying
functions as the strength of the mutation increases; i.e.,
Ds(s) ¼ asexp(�ass) and Ds(s) ¼ asexp(�ass). Sub-

stituting Equation 6 into Equation 5 and integrating
over s and s (see appendix) gives

Mtot ¼
ð‘

�‘

ds

ð‘

�‘

dsLðs;sÞ

¼ 2N0gtg
dtdms

as

1
gtgms

as

� �
; ð7Þ

which is the expected number of mutants that survive
the bottlenecks and reach fixation. Note that Equation 7
naturally partitions into two contributions, Mtot¼Ms 1

Ms, giving the total number of fixed transmission and
growth mutants, respectively. The ratio R of expected
transmission mutants to growth mutants that reach
fixation is given by

R ¼ Ms

Ms
¼ dtdmsas

gtgmsas

¼ r
msas

msas

; ð8Þ

where we defined

r ¼ dtd

gtg
¼ logðN2=N3Þ

logðN1=N0Þ
: ð9Þ

Equations 8 and 9 show that the ratio of transmission to
growth mutants, R, depends on the mutation rates and
the distribution of fitness effects, ms, ms, as, as. While
these quantities are likely difficult to measure, it is not
unreasonable to assume that in many cases, there are a
similar number of ways to improve growth inside a host
as there are ways to improve survival in the environment;
i.e., these parameters might be of similar magnitude.
If this is the case, then R is most strongly influenced by
the sizes of the different populations at the beginning
and the end of the growth and transmission phases. As r

varies from zero to one, the scenario changes from one
where the transmission phase is negligible to one where
contraction during the transmission phase equals the
amount of expansion during the growth phase. For a
situation where the pathogen population does not con-

Figure 2.—Schematic of the mutation process.
The possible mutations naturally partition into
eight regions, depending on the relative signs
of s and s (s ¼ 0 and s ¼ 0, which do not affect
fitness, are not considered). Solid regions con-
tain deleterious mutations, while mutations in
open regions are always beneficial. Shaded re-
gions, in which mutations are positive for one var-
iable and negative for the other, may be either
beneficial or deleterious. For each version of the
model discussed, two types of mutation (‘‘growth’’
or ‘‘transmission’’) can occur, and the regions in
which they exist are denoted by the circles. (a) Al-
lowed mutations when pleiotropy is not present.
Growth mutations increase growth, g, by s, while
transmission mutations decrease death, d, by s.
(b) Allowed mutations with negative pleiotropic
effects. Beneficial growth mutations lead to a de-
crease in d (s , 0) while beneficial transmission
mutations lead to a decrease in g (s , 0).
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tract much during the transmission phase (i.e., N3 �
N2), a reduced death rate is obviously of little advantage
and we have r � 0. Such a situation likely applies to
pathogens that use the respiratory route and directly
transmit from person to person. For a situation where
almost all pathogens are released into the environment
and die down to the inoculum size, i.e., N1 U N2 and N3 U
N0, we find r ) 1 (the symbols U and ) stand for
‘‘greater/less than but very close to’’). Such a scenario
might be more likely for gastrointestinal infections that
use fecal–oral transmission routes or for pathogens that
have a long fomite phase. Note that due to the con-
straint of continued survival of the population, values
for r are between 0 and 1. Importantly, if we know the
inoculum size, N0, the pathogen load at the time of
shedding, N1, the amount of pathogens released into the
environment, N2, and the number of pathogens at the
end of the transmission phase, N3, it is not necessary to
know the growth or death rates and duration of the
growth and transmission phases.

Mutations that change both traits: Trade-offs and
pleiotropic effects are well-known mechanisms that
can influence evolution (Taylor and Higgs 2000;
Ostrowski et al. 2005; De Paepe and Taddei 2006;
Knies et al. 2006; Sleight et al. 2006). We now account
for them by assuming that mutations occur that simul-
taneously change growth rate, g, and death rate, d. We
assume that a mutation that improves fitness in one of
the traits causes a pleiotropic negative effect in the
other, as shown in Figure 2b. For instance, if a mutation
allows a pathogen to survive better in the environment
(perhaps by increasing cell wall density), there will be a
related decrease in the growth rate (perhaps because
building a stronger cell wall slows down the rate of
division). We can model this by modifying Q(s, s), such
that a positive effect in one trait is now accompanied by a
negative contribution in the other. This leads to

Q ðs;sÞ ¼ msDsðsÞQðsÞdðs 1 bssÞ
1 msDsðsÞQðsÞdðs 1 bssÞ: ð10Þ

This equation says that if a growth mutation of magni-
tude s occurs, there is a related decrease in the survival,
with s ¼ �bss. Similarly, if there is a positive trans-
mission mutation of size s, the resulting change in the
growth will be s ¼ �bss.

Substituting Equation 10 into Equation 5 again gives
us two terms representing the number of successful
mutations of each type. After integration we arrive at

Ms ¼ 2N0ðgtgÞ2
ms

as
1� rbs½ � ð11Þ

and

Ms ¼ 2N0ðgtgÞ2
ms

as

r� bs½ �: ð12Þ

Note that now a mutant has changed both growth
and death rates. We define a transmission mutant as a

mutant with reduced death rate, while a growth mutant
is a mutant with increased growth rate, as previously.
The ratio of expected transmission to growth mutants is
found to be

R ¼ msas

msas

r� bs

1� rbs

� �
; ð13Þ

which reduces to the previous result (Equation 8) in the
absence of pleiotropic effects (bs¼ bs¼ 0). As Equation
11 shows, a growth mutation can be successful only if the
pleiotropic decrease in s satisfies bs , 1/r. Otherwise,
the mutant would not survive the bottlenecks. Similarly,
for transmission mutants to survive we must have bs , r.
Since r 2 [0, 1], transmission mutants become impos-
sible for bs $ 1, i.e., if a decrease in the death rate leads
to a comparably strong decrease in the growth rate.
Therefore, if the population decline during the trans-
mission phase is small, even small pleiotropic effects on
the growth rate make transmission mutants impossible,
something that is intuitively obvious. However, for a
larger contraction phase, transmission mutants become
more likely, and the ratio of transmission to growth mu-
tants increases faster compared to the situation without
pleiotropy (Figure 3). While we assumed for simplicity
that the pleiotropic relation between growth and sur-
vival is linear, qualitatively similar results can be obtained
if one considers nonlinear pleiotropic effects.

Comparison with simulations: To test the analytically
derived results, we decided to compare them to a sim-
plified version of a previously developed simulation of
bacterial growth and dilution cycles (Rozen et al. 2008).

Figure 3.—Ratio of transmission to growth mutants, R,
with and without pleiotropic effects. We show a situation
where a growth mutation leads to a reduction in survival
(bs ¼ 0:5;bs ¼ 0; solid lineÞ, a transmission mutation leads
to a reduction in growth rate bs ¼ 0;bs ¼ 0:5, dashed line),
and for both growth and transmission mutations, a reduction
in the other trait occurs ðbs ¼ bs ¼ 0:5, dashed-dotted line).
For comparison, we also plot the case of no pleiotropy
(bs ¼ bs ¼ 0, shaded line). In all cases, ms ¼ ms ;as ¼ as .
Changing either m or a decreases or increases the slope of
R, as seen from Equations 8 and 13.
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At the start of the simulation, the population consists of
N0 identical clones. The bacteria divide at intervals given
by the inverse of their growth rate. Whenever a clone
divides, there is a certain probability that it creates a
mutant offspring with either changed within-host
growth rate or changed death rate during transmission.
Growth continues until the population has reached final
size, N1. At this point, multinomial sampling reduces
the population size to N2. This is followed by another
multinomial sampling, this time weighted by the death
rate of each clone, to a population size N3, and one more
(unweighted) sampling to population size N0, which
then starts a new growth cycle. As in the mathematical
model, death during the within-host growth phase is
ignored. The only way a clone gets eliminated is by not
surviving the transmission bottlenecks. The simulation
is implemented in Matlab R2007a (The Mathworks),
and the code is available from the authors upon request.

We ran simulations in two ways. In the first scenario,
growth or transmission mutants were created during
the first growth cycle, and then we recorded how often
a mutant reached fixation. This number, divided by
the total number of simulations (in most of which no
mutant invades), corresponds to Ms and Ms obtained
analytically. From these values, we can compute R. The
squares and the solid line in Figure 4 show R obtained
from this simulation and the analytical result, respec-
tively. Additionally, we ran simulations for the more
realistic situation where mutants can arise during all
growth cycles. The simulation is run until either a growth
or a transmission mutant has reached fixation. This
approach does not lead to values for Ms or Ms; however,
we can still determine the ratio of transmission to
growth mutants (circles in Figure 4). Reassuringly, this
more realistic scenario leads to results that also agree
well with the theory. Since the implementation of the
simulation differs somewhat from the model on which
our analytics are based, the analytical and simulation
results are not in perfect agreement, but nevertheless
overall agreement is good, suggesting that the analytical
results hold in more realistic situations.

DISCUSSION

A large number of both theoretical and experimental
studies have contributed toward our understanding of
microbial evolution. Most theoretical results apply to
the evolution of populations of fixed sizes (Crow and
Kimura 1970; Woodcock and Higgs 1996; Orr 2005;
Cowperthwaite et al. 2006). The realization that mi-
crobial population sizes often change rapidly and widely
led to the study of evolution of populations that vary in
size (Otto and Whitlock 1997; Pollak 2000; Wahl

and Gerrish 2001; Wilke et al. 2001; Wahl et al. 2002).
Transmission bottlenecks are one important case in
which the size of microbial populations undergoes

extreme changes. A number of studies have considered
the impact of bottlenecks for the evolution of pathogens
(Bergstrom et al. 1999; Wahl and Gerrish 2001; Wahl

et al. 2002; Manrubia et al. 2005; Escarmis et al. 2006).
Those studies focus on mutants that have a different
fitness as measured by the effective growth rate. However,
successful spread of a pathogen in a population depends
on its ability to transmit from host to host. While
increasing population numbers due to an increase in
the growth rate might lead to increased transmission, so
does the ability to better survive during the transmission
phase (Bonhoeffer et al. 1996; Gandon 1998; Day 2002;
Kamo and Boots 2004; Caraco and Wang 2008).

The results obtained from our study suggest that for
pathogens that spend time in the environment as part of
their transmission strategy, the emergence of mutants
that better survive the transmission bottleneck is likely
if the transmission phase is an important part of the
dynamics of the population. Our study shows that the
impact of the transmission phase does not depend on its
duration, per se. Instead, the important factor is the
amount by which the population is reduced during
the transmission phase. Thus a fast death rate with a
short transmission phase can have the same effect as a
long transmission phase, coupled with a slow death rate.
On the basis of our results, we predict that for infections
that involve shedding of a large number of pathogens
into the environment, followed by strong contraction of
the population, the evolution of transmission mutants is
likely. For other pathogens that do not undergo strong
population contraction during the transmission phase,
for instance respiratory pathogens that directly transmit

Figure 4.—Ratio of transmission to growth mutants, no
pleiotropy. Solid line: analytics. Squares: mutants can arise on-
ly during the first growth cycle, corresponding to the theoret-
ical model. Circles: mutants can arise at any time during the
evolution. See text for more details on the simulations. Pa-
rameters are N0 ¼ 103, N1 ¼ 107, ms ¼ ms ¼ 10�7 (Rozen

et al. 2002; Perfeito et al. 2007), as ¼ as ¼ 40 (Rozen et al.
2002). For each data point, 5 3 106 (squares) or 103 (circles)
simulations were run.
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from person to person, mutants that increase survival
seem to be less likely to evolve.

Our theoretical predictions should be easily amena-
ble to experimental testing. One might, for instance,
alter the standard serial dilution protocol by including
an artificial transmission phase. After reaching the end
of a growth phase, one can transfer a fraction of the
microbes under study into a hostile medium to induce
death in some of the remaining population. Then, after
some time, a subpopulation from the hostile medium
is used to found a new colony and begin a new cycle.
Standard competition experiments would detect an
increase in growth rate, while ‘‘inverse competition
experiments’’ in the hostile medium would be able to
detect reduced death rates. On the basis of our results,
experiments that had equal growth and decline phases
would lead—in the absence of pleiotropy—to equal
rates of fixation of transmission or growth mutants. By
altering the transmission/decline phase, one should be
able to scan the range of R as a function of r and obtain
results similar to the ones shown in Figures 3 and 4.
Additionally, by determining how R changes with r and
comparing it with the theory, one might be able to
obtain indirect experimental evidence for the existence
of pleiotropic effects and trade-offs between growth and
transmission adaptations. Without pleiotropy, one ex-
pects a linear relationship between R and r (Equation
8), whereas the relationship will be nonlinear when
pleiotropic effects are prominent. The caveat to this is
that experimental noise might be too high to discern if
there are systematic deviations from the linear slope
that might indicate pleiotropy.

Additionally, other effects that occur in real systems
but are not part of our model might influence exper-
imental results. For instance, we assumed that extinc-
tion of mutants occurs only during bottlenecks. It might
be possible to extend the results to a situation where
stochastic extinction during the growth phase can occur
(Heffernan and Wahl 2002). Further, the analytical
part focused on the probability of extinction or fixation
of an individual mutation that arises during a growth
cycle. While the latter equations allow for multiple mu-
tants, they are all considered to evolve independently;
i.e., the model cannot account for features such as clonal
interference (Gerrish and Lenski 1998; Orr 2000;
Wilke 2004). Nevertheless, we found good agreement
with more realistic numerical simulations (which al-
lowed for multiple mutants to compete), and we expect
that the theory developed here can help to guide ex-
periments to establish the importance of either growth
or transmission mutants in biological systems.

In summary, our study shows that transmission mu-
tants can gain a significant advantage and are quite
likely to survive and emerge. The current approach of
measuring pathogen fitness by in vitro or in vivo growth
rates is useful to answer basic evolutionary questions.
However, it cannot be directly applied to the spread of

pathogens in populations. To better quantify fitness in
these situations, one needs to consider both within-host
growth and the ability to transmit. Therefore, it will be
important in future experiments to consider transmis-
sion mutants as well as growth mutants. We hope the
present study will trigger experimental studies of this
important aspect of pathogen evolution.

We thank Omar Cornejo, Daniel Rozen, and Lev Tsimring for com-
ments on an earlier version of this manuscript. M.R.B. was supported
by National Institutes of Health grant GM082168-01.
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APPENDIX

Here we present the mathematical derivation of the
results discussed in the main text. We first note some
useful relations between the populations at the start and
the end of each phase. As can be seen in Figure 1, we
have N1 ¼ N0egtg , N2 ¼ F1N1, N3 ¼ N2e�dtd , and N0 ¼
F2N3, leading to F1F2 ¼ ðN0=N1Þedtd and F1F2 ¼ edtd�g tg .
Note that since 0 , F1F2 , 1, it means that the inequality
dtd , gtg must hold, to ensure colony survival. This is
just another way of stating the obvious fact that the final
size of the microbial population at the end of the
transmission bottleneck must be at least as large as the
new inoculum.

Now consider a mutant that has either an increased
growth rate, g9 ¼ g(1 1 s), or a decreased death rate
during the transmission phase d9 ¼ d(1 � s). We now
wish to calculate the probability, x, that the descendants
of a single mutant present at the start of the growth
phase will eventually go extinct due to the bottleneck.
First, if we assume that the growth phase is long enough
such that N1?N0, then the probability Pg(n) that n
mutants survive the first dilution and enter the environ-
ment is well approximated by

PgðnÞ ¼
ln

n!
e�l; ðA1Þ

where l ¼ F1expðg 9tgÞ is the expected number of
mutants to exit the host and reach the transmission
phase. Once in the environment, the mutant cells die at
a rate d9, meaning that the probability for a single
mutant to survive the transmission phase is given by
n ¼ expð�d9tdÞ. Therefore, the conditional probability,
Pd(m j n) that m mutants survive the transmission phase
given that n entered is given by a binomial distribution.
In particular, we have

Pdðm jnÞ ¼
n
m

� 	
nmð1� nÞn�m : ðA2Þ

After surviving the transmission phase each mutant
has a probability F2 to reach the new host. Therefore, the
probability, Pnh(l jm), that l mutants reach the new host
given that there are m mutants at the end of the
transmission phase is once again given by the binomial
distribution,

Pnhðl jmÞ ¼
m
l

� 	
F l

2ð1� F2Þm�l : ðA3Þ

Finally, the probability, Pse(l ), that l mutants reaching a
new host face subsequent extinction is simply given by

Pse ¼ xl : ðA4Þ

If we combine Equations A1–A4 and sum over all
possible outcomes, we arrive at an implicit equation for
x, namely
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x ¼
X‘

n¼0

PgðnÞ
Xn

m¼0

Pdðm jnÞ
Xm

l¼0

Pnhðl jmÞPseðlÞ

¼
X‘

n¼0

Xn

m¼0

Xm

l¼0

ln

n!
e�l

n

m

� 	
nmð1� nÞn�m 3 . . .

. . .
m

l

� 	
F l

2ð1� F2Þm�l xl : ðA5Þ

These sums can be done with result

x ¼ expf�lnF2ð1� xÞg: ðA6Þ

Substituting in for l and n, using F1F2 ¼ edtd�gtg and our
definitions of d9 and g9 allows us to reduce this to

x ¼ expf�edstd1gstgð1� xÞg; ðA7Þ

which is the probability that a mutant with growth rate
change s and death rate change s will go extinct if there
was exactly one mutant at time t ¼ 0 (Wahl and
Gerrish 2001). Next, we calculate the extinction
probability, V(t, s, s), of a mutant with a death rate
changed by s and a growth rate changed by s appearing
at time t , tg. Let g¼ F1exp[g9(tg� t)] be the expected
number of mutants after the first dilution. Then, using
the same logic as above, we have

V ðt; s;sÞ ¼
X‘

n¼0

gn

n!
e�g

Xn

m¼0

n

m

� 	
nmð1� nÞn�m 3 . . .

. . .
Xm

l¼0

m

l

� 	
F l

2ð1� F2Þm�l xl

¼ exp �gnF2ð1� xÞ½ �
¼ exp �e�g ð11sÞt edstd1gstgð1� xÞ

� �
; ðA8Þ

where x is the first real root of Equation A7. The
probability P(t, s, s) that a created mutant will survive
is then simply

Pðt; s;sÞ ¼ 1� V ðt; s;sÞ ¼ 1� exp logðxÞe�g ð11sÞt� �
:

ðA9Þ

Note that we assumed in the derivation that popula-
tion sizes and growth and decay times stay the same.
Strictly speaking, once a mutant with a different growth
or death rate is created, either the values for the initial
and final populations, i.e., N0, N1, N2, N3, or the growth
and death intervals, tg or td, need to be adjusted.

However, since we consider only small changes in either
growth rate or survival, and mutant strains are most likely
to go extinct when their overall numbers are small in
comparison to the entire culture, the adjusted growth or
death rate during these times is nearly identical to the
mutant-free culture and we can therefore assume the
remaining parameters to stay constant. Also note that
even though transmission mutations are important only
during the exponential decline in the fomite phase, they
are created during the exponential growth phase, just
like the growth mutations. This scenario should not be
confused with a previous study that showed that the
fixation probability is different for exponentially growing
or declining populations (Otto and Whitlock 1997).

To find the expected number of mutants, we need to
integrate L(s, s) (Equation 5) over all possible values of
s and s. This integral can be split into two parts, such
that Mtot ¼ Ms 1 Ms, representing the total number of
growth mutants (Ms) and transmission mutants (Ms).
To do this, let us first examine the function Q(s, s). In
general, we can write Q(s, s) as Q(s, s)¼Qs 1 Qs, where
Qs and Qs represent the contributions of the growth
mutations and transmission mutations, respectively. For
instance, we can write Qs as

Qsðs;sÞ ¼ msDðsÞQðsÞdðs 1 bssÞ: ðA10Þ

Note that we use the convention that the mutation is
always positive in the main trait (here growth rate), since
negative mutations lead to decreased fitness. This is
ensured by the Heaviside step function, which is unity
for positive arguments and zero otherwise. On the other
hand, we assume that the corresponding pleiotropic
effect is always negative or zero. Here, this is governed by
the Dirac delta function. Provided bs $ 0, s is negative
(or zero) for all positive s. We can now integrate L(s, s)
to find the expected number of growth mutants,

Ns ¼
ð‘

�‘

ds

ð‘

�‘

dsf ðs;sÞmsDðsÞQðsÞdðs 1 bssÞ

¼
ð‘

0
dsf ðs;�bssÞmsDðsÞ

¼ 2N0ðgtgÞ2
ms

as
1� rbs½ �; ðA11Þ

where we used, for convenience, f ðs;sÞ ¼ 2N0gtg

ðgtgs 1 dtdsÞ. Ms can be computed in a similar manner.
The results for the nonpleiotropic case are easily
derived by setting bs ¼ bs ¼ 0.
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