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ABSTRACT

Segregation distortion is a phenomenon that has been observed in many experimental systems. How
segregation distortion among markers arises and its impact on mapping studies are the focus of this work.
Segregation distortion of markers can be considered to arise from segregation distortion loci (SDL). I
develop a theory of segregation distortion and show that the presence of only a few SDL can cause the entire
chromosome to distort from Mendelian segregation. Segregation distortion is detrimental to the power of
detecting quantitative trait loci (QTL) with dominance effects, but it is not always a detriment to QTL
mapping for additive effects. When segregation distortion of a locus is a random event, the SDL is beneficial
to QTL mapping �44% of the time. If SDL are present and ignored, power loss can be substantial. A dense
marker map can be used to ameliorate the situation, and if dense marker information is incorporated,
power loss is minimal. However, other situations are less benign. A method that can simultaneously map
QTL and SDL is discussed, maximizing both use of mapping resources and use by agricultural and
evolutionary biologists.

SEGREGATION distortion, a common phenomenon
ingenomeanalysis, is thedeviationofthesegregation

ratio of a locus from the expected Mendelian ratio.
Depending on the type of population investigated, the
Mendelian segregation ratio can vary from 1 : 1 for
backcrosses to 1 : 2 : 1 for F2 and 1 : 1 : 1 : 1 for four-way
crosses. Segregation distortion observed for markers is a
phenomenon only because markers, by definition, have
no functions. If markers themselves cause segregation
distortion, they become candidate genes for viability
selection and thus are no longer neutral markers. The
actual causes of the observed segregation distortions for
markers are genes subject to gametic or zygotic selection.
These loci are called segregation distortion loci (SDL) or,
simply, segregation distorters. Just like quantitative trait
loci (QTL), they are hidden, but carry an important
function in evolution because they control the viability
of individuals bearing different genotypes of the locus.
The segregation of marker loci appears to be distorted as
a result of the linkage between the neutral markers and
the SDL.

So, even considered alone, segregation distortion loci
may be influential. Consequently, methods have been
developed to map these SDL using marker information
(Fu and Ritland 1994; Lorieux et al. 1995a,b; Vogl

and Xu 2000; Luo and Xu 2003; Luo et al. 2005; Wang

et al. 2005). The methods are similar to the methods of
QTL mapping (Lander and Botstein 1989). Most

scientists, however, are more interested in the effect of
SDL on the result of marker and QTL mapping than in
the SDL themselves. It is well understood that SDL will
affect the estimated recombination fractions between
marker loci (Wang et al. 2005). But it is less understood
how SDL affect the order of marker loci. And so com-
mon practice in marker mapping is to use Mendelian
marker loci to construct a marker map and then to
insert non-Mendelian markers in the existing map. The
recombination fractions between markers are then
reestimated after adjusting for the segregation distor-
tion (Wang et al. 2005). This approach increases the
marker coverage of the genome. Wang et al. (2005)
found that regions of the genome with severe segrega-
tion distortion are equally if not more likely to contain
QTL. If markers in these regions are deleted from the
map in QTL analysis, more QTL will be missed. Wang

et al. (2005) proposed to use the adjusted marker map
after inserting the distorted markers. This method will
recover QTL contained in the segregation-distorted
regions of the genome.

A theory of QTL mapping in the presence of SDL has
not been developed. Even if an adjusted marker map is
used for QTL mapping, we lack an explanation of
the ways in which the SDL affects the result of QTL
mapping. If the effect is significant, we need a method
to incorporate SDL in QTL mapping. If the effect is
negligible, distorted markers may be used effectively in
QTL mapping. In this study, I propose a theory of QTL
mapping in the presence of SDL and investigate the
consequence of SDL on the result of QTL mapping.1Author e-mail: shizhong.xu@genetics.ucr.edu
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RESULTS

Model of segregation distortion: SDL: Let A1A1, A1A2,
A2A1, and A2A2 be the four genotypes of an SDL in an F2

population derived from the cross of two inbred lines.
For some technical reasons, we separated the two phases
of the heterozygote, A1A2 and A2A1, although they are
not distinguishable. These four genotypes are ordered
according to the male and female derived gametes.
The linkage phase between markers and QTL will then
be incorporated. Let v1 ¼ PrðA1A1Þ, v2 ¼ PrðA1A2Þ,
v3 ¼ PrðA2A1Þ, and v4 ¼ PrðA2A2Þ be the proportions
of the four genotypes of the SDL, where v2 ¼ v3 andP4

k¼1 vk ¼ 1. The four proportions are collected in a
vector called v ¼ ½v1 v2 v3 v4 �T . Let

f ¼ ½f1 f2 f3 f4 �T ¼ ½ 14 1
4

1
4

1
4 �

T

be the Mendelian segregation ratio. The deviation of v

from f represents the severity of segregation distortion.
Assume that there is a QTL in the same chromosome
as the SDL but lSQ M away from the SDL. The recom-
bination fraction between the QTL and the SDL is
denoted by uSQ (see Haldane 1919 for the relationship
between lSQ and uSQ ). Let Q1Q1, Q1Q2, Q2Q1, and Q2Q2

be the four genotypes of the QTL and p1 ¼ PrðQ1Q1Þ,
p2 ¼ PrðQ1Q2Þ, p3 ¼ PrðQ2Q1Þ, and p4 ¼ PrðQ2Q2Þ be
their corresponding proportions in the F2 population,
where

P4
k¼1 pk ¼ 1 and p2 ¼ p3. Let us denote the

proportions of the four genotypes by a vector p ¼
½p1 p2 p3 p4 �T . The following relationship holds
between v and p,

p ¼ HQS v; ð1Þ

where HQS is a 4 3 4 transition matrix (see Xu 1998).
This matrix is symmetric and thus HSQ ¼ HQS . Another
property of the transition matrix is that when v2 ¼ v3 is
enforced, the constraint p2 ¼ p3 automatically holds.
The symmetry of the above transition matrix is the very
reason that we decide to deal with four genotypes rather
than three. It can be shown that limuQS /0p ¼ v and
limuQS /1=2p ¼ f. Therefore, deviation from the Men-
delian ratio for a QTL may be caused by linkage between
the QTL and an SDL. This deviation will eventually
affect the conditional probabilities of QTL genotypes
calculated on the basis of flanking marker information.

Let us assume that a QTL is flanked by two SDL with
the distances between two consecutive loci denoted by
lS1Q and lQS2

, which translates into recombination frac-
tions of uS1Q and uQS2

. Let v1 ¼ ½v11 v12 v13 v14 �T
and v2 ¼ ½v21 v22 v23 v24 �T be the segregation
ratios of the two SDL. The segregation ratio of the QTL
flanked by the two SDL is predicted using the equations

pk ¼
vT

1 HS1Q DðkÞHQS2 v2

vT
1 HS1Q HQS2 v2

; for k ¼ 1; . . . ; 4; ð2Þ

where DðkÞ is a 4 3 4 diagonal matrix with the kth
diagonal element being unity and zero elsewhere. It

can be shown that the relationship between a QTL and a
single SDL is a special case of the relationship between
a QTL and two flanking SDL.

Using Equations 1 and 2, we are able to compute
the genotype frequencies for all putative loci across the
genome if the number, the locations, and the sizes of
SDL are known.

Conditional probability of QTL genotype in the presence of
SDL: Recall that the four ordered genotypes for an SDL
are denoted by fA1A1; A1A2; A2A1; A2A2g. These four
genotypes are now numerically labeled as f1; 2; 3; 4g.
For example, if an SDL has a genotype of A1A1, we say
S ¼ 1; if the genotype is A2A1, we say S ¼ 3. Using similar
notation, we say Q ¼ 2 if the QTL has a genotype of
Q1Q2. The same notation also applies to marker loci. Let
M1ðM1 ¼ 1; 2; 3; 4Þ, M2 ðM2 ¼ 1; 2; 3; 4Þ, and Q ðQ ¼
1; 2; 3; 4Þ be the genotypes of the two flanking markers
and the QTL. We assume that the SDL overlaps with the
QTL (pleiotropy). We now provide the conditional
probability of Q ¼ k given M1 ¼ u and M2 ¼ v for
k;u; v ¼ 1; 2; 3; 4:

PrðQ ¼ k jM1 ¼ u;M2 ¼ vÞ

¼ PrðQ ¼ kÞPrðM1 ¼ u jQ ¼ kÞPrðM2 ¼ v jQ ¼ kÞP4
k9¼1 PrðQ ¼ k9ÞPrðM1 ¼ u jQ ¼ k9ÞPrðM2 ¼ v jQ ¼ k9Þ :

ð3Þ
Let HQM1

ðk; uÞ be the kth row and the uth column of
matrix HQM1

. Similarly, HQM2
ðk; vÞ denotes the kth row

and the vth column of matrix HQM2
. The above equation

is rewritten as

PrðQ ¼ k jM1 ¼ u;M2 ¼ vÞ

¼ pkHM1Q ðu; kÞHQM2ðk; vÞP4
k9¼1 pk9HM1Q ðu; k9ÞHQM2ðk9; vÞ : ð4Þ

The conditional probability used in the classical QTL
mapping procedure (Lander and Botstein 1989) is
simply a special case of this equation with pk replaced
by fk.

Because the two phases of the heterozygote are not
distinguishable, when a marker is heterozygous, Equa-
tion 4 is confusing because it involves missing values. We
now modify the above equation so that it can handle
missing values (phases). Let us define DðpkÞ ¼ pkDðkÞ,
where DðkÞ is a 4 3 4 matrix with the kth diagonal ele-
ment being unity and zero elsewhere. Let us also define
a diagonal matrix, DðpÞ ¼

P4
k¼1 pkDðkÞ ¼

P4
k¼1 DðpkÞ.

The matrix version of Equation 4 is

PrðQ ¼ k jM1;M2Þ ¼
J T
1 HM1Q DðpkÞHQM2 J2

J T
1 HM1Q DðpÞHQM2 J2

; ð5Þ

where J1 and J2 are vector representations of the geno-
types of the two flanking markers. For example, the
actual observed three genotypes of the left marker (A1A1,
A1A2, and A2A2) are represented by J1 ¼ ½ 1 0 0 0 �T,
J1 ¼ ½ 0 1 1 0 �T , and J1 ¼ ½ 0 0 0 1 �T , respec-
tively, where the heterozygote A1A2 actually contains
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two phase-specific configurations (A1A2 and A2A1). Vector
J2 is defined similarly, but for the second marker genotype.
If a marker has a missing genotype, its genotype is repre-
sented by J1 ¼ ½ 1 1 1 1 �T or J2 ¼ ½ 1 1 1 1 �T.
It can be shown easily that when both flanking markers
have missing genotypes, i.e., J1 ¼ J2 ¼ ½ 1 1 1 1 �T , we
have PrðQ ¼ k j M1;M2Þ ¼ pk . Recall that segregation
distortion of a QTL is most likely caused by an SDL
nearby. If the size of the SDL and the relative distance
between the SDL and the QTL is known, we can calculate
p from v and then use p as the prior information to
compute the conditional probability of the QTL.

We now examine the conditional probability of QTL
genotype in a situation where the SDL does not overlap
with the QTL, but is located in the same marker interval
as the QTL. Let us assume that the order of the four
loci is fM1;Q ; S;M2g; i.e., the SDL is located between
the QTL and the marker in the right-hand side. Let
HM1Q ; HQS ; and HSM2

be the three transition matrices
between consecutive loci. The conditional probability
of Q ¼ k is

PrðQ ¼ k jM1;M2Þ ¼
J T
1 HM1Q DðkÞHQSDðvÞHSM2 J2

J T
1 HM1Q HQSDðvÞHSM2 J2

; ð6Þ

where DðvÞ ¼
P4

k¼1 vkDðkÞ is a diagonal matrix and
vk ¼ PrðS ¼ kÞ. This conditional probability may be
calculated in two steps. First, we calculate p using
Equation 1; i.e., p ¼ HQS v. Second, we calculate PrðQ ¼
k jM1;M2Þ using Equation 5.

When the SDL is located outside the marker interval,
it has no effect on the conditional probability of QTL
genotype due to the Markov chain property. The effect
will be blocked by the marker that separates the QTL
and the SDL.

QTL mapping in the presence of SDL: Let pjk ¼ PrðQ ¼
k jM1;M2Þ be the conditional probability of QTL genotype
given marker information for individual j ( j ¼ 1; . . . ;n),
where n is the sample size. The QTL model for the
phenotypic value of individual j is

yj ¼ m 1 xj b 1 ej ; ð7Þ

where m is the intercept, b is the QTL effect, and ej is the
residual error with an assumed N ð0;s2Þ distribution.
The x variable is defined as

xj ¼
1 1 for Q1Q1

0 for Q1Q2 or Q2Q1

�1 for Q2Q2:

8<
: ð8Þ

We have ignored the dominance effect in the model
because the additive model is sufficient to demonstrate
the effect of segregation distortion on the results of QTL
mapping. Although the correct method for interval
mapping of QTL is the mixture model maximum-
likelihood method of Lander and Botstein (1989),
the simple regression method of Haley and Knott

(1992) is a good approximation of the maximum
likelihood (ML). Therefore, we use Haley and Knott’s
method to demonstrate the result of QTL mapping
under SDL. The simple regression method simply
substitutes the missing xj by ~xj ¼ EðxjÞ, the conditional
expectation of xj given flanking marker information,
which is ~xj ¼ EðxjÞ ¼ pj1 � pj4. Therefore, Haley and
Knott’s estimation of parameters is asymptotically equal
to b̃ ¼ var�1ð~xÞcovð~x; yÞ, m̃ ¼ EðyÞ � Eð~xÞb̃, and s̃2 ¼
varðyÞ � b̃

2
varð~xÞ.

We now examine the properties of these asymp-
totic estimates. The covariance between ~x and y is
covð~x; yÞ ¼ covð~x; m 1 xb 1 eÞ ¼ covð~x; xÞb. This leads
to b̃ ¼ var�1ð~xÞcovð~x; xÞb ¼ b, because covð~x; xÞ ¼
varð~xÞ. Therefore, properly incorporating segregation
distortion into the QTL mapping model leads to
unbiased estimation for the QTL effect. For the in-
tercept, we have

m̃ ¼ Eðm 1 xb 1 eÞ � Eð~xÞb ¼ m 1 EðxÞb� Eð~xÞb ¼ m;

which is due to EðxÞ ¼ Eð~xÞ. Finally, the residual vari-
ance is

s̃2 ¼ varðyÞ � b2varðxÞ
� �

1 b2 varðxÞ � varð~xÞ½ �:

Since s2 ¼ varðyÞ � b2varðxÞ, we have

s̃2 ¼ s2 1 b2 varðxÞ � varð~xÞ½ �:

Therefore, the residual variance estimate is biased.
When segregation distortion is present but ignored in

the QTL mapping, the conditional expectation of QTL
genotype is denoted by x̂j ¼ EðxjÞ, which is calculated
using the same formula as for ~xj except that v is replaced
by f. It is shown that Eðx̂Þ 6¼ EðxÞ and covðx̂; xÞ 6¼ varðx̂Þ.
Therefore, in the presence of SDL, all parameter
estimates are biased if SDL are ignored. The QTL effect
is b̂ ¼ var�1ðx̂Þcovðx̂; xÞb ¼ bxjx̂b, which is biased by a
factor bxjx̂. The regression coefficient of x on x̂ is not
necessarily ,1. Therefore, the bias can be either down-
ward or upward. The bias in the intercept can be seen in
the equation m̂ ¼ m 1 EðxÞ � Eðx̂Þ½ �b. Finally, the re-
sidual error variance is also biased, as demonstrated by
ŝ2 ¼ s2 1 b2 varðxÞ � varðx̂Þ½ �.

Statistical power of QTL detection: Let b̃ be the estimate
of b̃ and thus of b (due to the unbiased nature of b̃).
The F-test statistic is approximated by

l ¼ b̃ 2

varðb̃ Þ ¼ n varð~xÞb̃
2

s̃2 : ð9Þ

Under the null hypothesis that H0 : b ¼ 0, l will follow
approximately an F-distribution with 1 numerator d.f.
and n denominator d.f., assuming that n is relatively
large. Under the alternative hypothesis that HA : b 6¼ 0,
l will follow approximately a noncentral F-distribution
with a noncentrality parameter of
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d̃ ¼ n varð~xÞb
2

s̃2 ð10Þ

(Xu and Vogl 2000). Given a type I error rate of
a ¼ 0:05, the statistical power is computable for a given
set of parameters. Let 1� a ¼ F ðl1�a; 1;n; 0Þ be the
F-distribution function with degrees of freedom 1 and n
and noncentrality parameter 0 (central F-distribution).
The inverse relationship is l1�a ¼ F �1ð1� a; 1;n; 0Þ,
which is the ð1� aÞ3 100th percentileof theF-distribution.
The statistical power is defined as g̃ ¼ 1� F ðl1�a; 1;n; d̃Þ.

When segregation distortion is present but ignored,
the power is calculated in the same way as above but the
noncentrality parameter becomes

d̂ ¼ n varðx̂Þb̂
2

ŝ2 ¼ n varðx̂Þb2
xjx̂

b2

ŝ2 : ð11Þ

The statistical power is ĝ ¼ 1� F ðl1�a; 1;n; d̂Þ.
Numerical evaluation: Assume that one QTL is

bracketed by two markers in a chromosome. Present is
an SDL that either overlaps with the QTL (pleiotropic
effect) or is positioned close to the QTL in the same
marker interval (linkage). When the locations of the
QTL and the SDL are known, properties of variable ~x or
x̂ are computable numerically without having to resort
to Monte Carlo simulation.

The SDL leads to distorted markers: We assume that
there is an SDL in the middle of a 300-cM chromosome
(the exact location of the SDL is 150 cM). Let v ¼
½ 0:25 0:125 0:125 0:50 �T be the segregation ratio
of the SDL; i.e., PrðA1A1Þ ¼ 0:25, PrðA1A2Þ ¼
0:125 1 0:125 ¼ 0:25, and PrðA2A2Þ ¼ 0:50. We now
predict p ¼ ½p1 p2 p3 p4 �T for every position of the
genome using Equations 1 and 2. Note that PrðA1A1Þ ¼ p1,
PrðA1A2Þ ¼ p2 1 p3, and PrðA2A2Þ ¼ p4. The proportions
of the three genotypes are plotted in Figure 1 (middle plot)
across all positions of the genome. We can see that the locus
close to the SDL (150 cM) has a segregation ratio close to v.
As the locus travels away from the SDL, its segregation ratio
progressively approaches f.

For the same chromosome, we now assume that there
are two SDL, one located at position 80 cM and the other
at position 220 cM. The first SDL has a segregation ratio
of v1 ¼ ½ 0:50 0:125 0:125 0:25 �T and the second
one has a ratio of v2 ¼ ½ 0:25 0:125 0:125 0:50 �T .
Using Equation 2, we predict the segregation ratio of
every locus of the entire genome. The plots of the three
genotype frequencies are shown in Figure 1 (bottom).
The top plot in Figure 1 is the control, showing the
genotypic frequencies in the absence of segregation
distortion.

Pleiotropic effect: We now examine the properties of
QTL mapping when the QTL itself is also an SDL, a
phenomenon called pleiotropy, a single locus control-
ling both the variation of a quantitative trait and
segregation distortion. We assume that the QTL is in

the middle of a 20-cM marker interval (the QTL is 10 cM
away from either marker). Assume that the QTL
contributes h2 ¼ 0:05 of the total phenotypic variance
in a Mendelian F2 population. If s2 ¼ 1, this h2 converts
into a QTL effect of b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2=ð1� h2Þ

p
¼ 0:3244. The

sample size is assumed to be n ¼ 300. First, we examine
the pattern and strength of SDL on the result of QTL
mapping. In one scenario, we fix the heterozygote

Figure 1.—Genomewide segregation distortion caused by
segregation distortion loci (SDL). Top: genotype frequencies
across the genome when there is no SDL. Middle: distorted
genotype frequencies caused by a single SDL (at 150 cM). Bot-
tom: distorted genotype frequencies caused by two SDL (at
80 and 220 cM). Areas with cross-hatched lines represent
homozygotes and the area with parallel lines represents the
heterozygote.
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frequency at p2 1 p3 ¼ 0:5, but vary the frequencies of
the homozygote under the constraint p1 1 p4 ¼ 0:5:

p1

p2

p3

p4

2
664

3
775 ¼

0:00
0:25
0:25
0:50

2
664

3
775/

0:50
0:25
0:25
0:00

2
664

3
775:

The extreme case finds that one of the two types of
homozygote is completely knocked out. As the pro-
portion of the homozygote varies from one extreme to
another, the power (g̃) starts at�40%, increases to 70%
in the middle, and drops back to 40% at the other end
(Figure 2). When segregation distortion is ignored, the
power (ĝ) profile shows a similar pattern of change, but
slightly less than the power (g̃) when the segregation
distortion is properly incorporated. The power reaches
its maximum value of 70% where no segregation
distortion is present.

In another scenario, we let p1 ¼ p4 (of course p2 is
always the same as p3) and vary the relative proportion
of the homozygote to the heterozygote. We start with a
population that has lost almost all of the homozygote
(p1 1 p4 ¼ 0:02) and end with a population nearly
fixed for the homozygote (p1 1 p4 ¼ 0:98),

p1

p2

p3

p4

2
664

3
775 ¼

0:01
0:49
0:49
0:01

2
664

3
775/

0:49
0:01
0:01
0:49

2
664

3
775:

The power profile is shown in Figure 3. When the
homozygote frequency is very low, the method has no
power (close to zero). The power starts to increase as the
homozygote frequency increases and reaches 100%

when the population is fixed for the homozygote. When
there is no segregation distortion, the power is �70%.
Therefore, segregation distortion does not necessarily
have a negative effect in QTL mapping. It can increase
the statistical power as long as varðxÞ. 1

2 , where 1
2 is the

variance of variable x in the absence of segregation
distortion.

Again, we let the marker interval size be fixed at
20 cM, but now vary the QTL position from one end of
the interval to the other end:

M1Q M2 / M1 QM2:

Other parameters are fixed at values described before;
i.e., h2 ¼ 0:05, b ¼ 0:3244, s2 ¼ 1:0, n ¼ 300, and p ¼
½ 0:25 0:125 0:125 0:50 �T . Under this value of p, the
variance of x is varðxÞ ¼ ðp1 1 p4Þ � ðp1 � p4Þ2 ¼
0:75� ð�0:25Þ2 ¼ 0:6875 . 1

2 . Therefore, we expect that
QTL mapping will benefit from segregation distortion.
The power profiles are shown in Figure 4. The solid line
depicts the power when segregation distortion is absent,
which is much lower than the lines that illustrate
segregation distortion as present. Again, incorporating
information from segregation distortion can increase the
power slightly relative to the situation where the SDL is
present but ignored. The power reaches its minimum
when the QTL is in the middle of the interval.

With all parameters (except the size of the marker
interval) fixed at previous values, we place the QTL in
the middle of an interval and progressively increase the
marker interval from 0 to 40 cM. When the interval size
is 40 cM, the QTL is in the position of 20 cM. The
change of interval size is

M1QM2 / M1 Q M2:

Figure 2.—Changes of statistical power caused by segrega-
tion distortion. An SDL overlaps with a QTL in the middle of a
marker interval of 20 cM in length. Change of v11 from 0.0 to
0.5 is shown under the restriction that v11 1 v22 ¼ 0:5 while
v12 ¼ 0:5 (heterozygote) remains.

Figure 3.—Changes of statistical power caused by segrega-
tion distortion. An SDL overlaps with a QTL in the middle of a
marker interval of 20 cM in length. Change of v12 (heterozy-
gote) from 0.98 to 0.02 is shown under the restriction that
v11 ¼ v22 ¼ ð1� v12Þ=2. The power reaches it maximum
value when v11 ¼ v22 ¼ 0:5.
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When the interval size is zero (the two markers and
the QTL occupy the same location of the genome), the
power is maximum (90%). The power decreases as the
interval size increases. QTL mapping still benefits from
segregation distortion because the solid line where
segregation distortion is absent is lower than the lines
that reflect segregation distortion as present (Figure 5).

Linkage between QTL and SDL: When the QTL does
not overlap with the SDL, segregation distortion of QTL
remains, not due to pleiotropy but due to linkage. We
assume that the SDL is in the same marker interval as
the QTL. Again the length of the marker interval is
20 cM. The QTL position is fixed in the middle of the
interval but the SDL varies from one end of the interval
to the other end. All other parameters remain the same
as described before. The change of SDL position can be
demonstrated as

M1S Q M2 / M1 Q SM2:

The power profile is shown in Figure 6. The power
reaches its maximum value of 86% where the SDL
overlaps with the QTL. Again, taking into account
segregation distortion when it is present can increase
the power relative to the situation where it is ignored.

DISCUSSION

Our theoretical investigation shows that because SDL
can decrease as well as increase the statistical power of
QTL mapping, the presence of SDL is not necessarily
detrimental to QTL mapping. Recall that the statistical
power (or the noncentrality parameter) of QTL map-
ping is proportional to the variance of the independent
variable x. In the absence of segregation distortion, the
variance of x is 1

2 under our scale of the defined x. SDL

will cause this variance to deviate from 1
2 . The deviation

can be in either direction. If varðxÞ, 1
2 , the SDL is

detrimental to QTL mapping. However, if varðxÞ. 1
2 ,

the SDL is beneficial to QTL mapping. The domain that
the SDL is beneficial is

ðv1 1 v4Þ � ðv1 � v4Þ2 .
1

2
ð12Þ

under the restriction that v1 1 v4 # 1. The area that this
condition holds is shown in the shaded half circle in
Figure 7. If segregation distortion is a random event
(uniform distribution of v1 and v4 within v1 1 v4 # 1),
the SDL is beneficial to QTL mapping 44% of the time;
i.e., the half circle accounts for 44% of the triangle.

Figure 4.—Changes of statistical power as QTL (also SDL)
position changes from one end to the other end of a marker
interval (20 cM long). The SDL overlaps with the QTL. The
genotype frequency array is v ¼ ½ 0:25 0:125 0:125 0:50 �.

Figure 5.—Changes of statistical power as the size of the
marker interval changes from 0 to 40 cM. The QTL (also
SDL) position is in the middle of the marker interval. The
genotype frequency array is v ¼ ½ 0:25 0:125 0:125 0:50 �.

Figure 6.—Changes of statistical power as the SDL position
changes from one end to the other end of a marker interval of
20 cM in length. The QTL position is fixed in the middle
of the interval (at position 10 cM). The genotype frequency
array is v ¼ ½ 0:25 0:125 0:125 0:50 �.
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The effect of SDL on QTL mapping is analogous to
that of selective genotyping. Under the additive genetic
model, choosing both extreme phenotypes for QTL
mapping is equivalent to eliminating some of the het-
erozygote and thus increases the power of additive QTL
detection. Choosing one tail of the extreme pheno-
types, in contrast, is equivalent to eliminating part of
the homozygote and thus decreases the power of QTL
detection. Contrary to the common belief that the SDL
is always harmful to QTL mapping, QTL mapping can
potentially but not necessarily benefit from SDL. What is
the consequence of SDL on the detection of dominance
QTL? The effect is negative; i.e., the SDL is detrimental
to the power of dominance QTL detection. Let y ¼
m 1 xb 1 zd 1 e be the QTL model that includes the
dominance effect, where variable z is defined as an
indicator variable for the heterozygote (1 for heterozy-
gote and –1 for homozygote) and d is the dominance
effect. Under Mendelian segregation, varðzÞ ¼ 1, which
is already at its maximum value. Any deviation from
Mendelian segregation will lead to varðzÞ, 1.

Selective genotyping is a cost-effective approach to
QTL mapping. Mapping QTL using regular QTL
mapping procedures on a selected population (two
extreme phenotypes) will increase the power relative to
that using an unselected population. If for some reason
we know a priori that an F2 population is Mendelian
(before selective genotyping), and if some loci are
distorted in a selected subset of the F2 population (after
selective genotyping), we may conclude that these

distorted loci are QTL for the trait whose phenotype is
being selected. Therefore, SDL mapping using a selec-
tively genotyped population may serve as an alternative
QTL mapping strategy. Because significance of either
QTL or SDL implies the presence of QTL, combining
both QTL and SDL mapping on a selectively genotyped
population can further improve the statistical power of
QTL detection. Phenotype selection acts on all QTL
controlling the trait. If SDL mapping is used on a
selected population as a tool to map QTL, we will detect
multiple SDL because any quantitative trait is expected
to be controlled by more than one QTL. The SDL
model developed applies only to a single SDL of a
chromosome. How can we detect multiple SDL? The
question is exactly the same as this: How can interval
mapping (a single-QTL model) detect multiple QTL?
Both questions can be answered by the use of genome
scanning, in which we evaluate the numbers of signifi-
cant peaks occurring in the test statistic profiles to infer
the number of QTL.

The effect of SDL on the segregation ratio of QTL
also applies to the segregation ratio of a linked marker.
In fact, this statement should be more appropriately
rephrased as the effect of SDL on the segregation ratio
of a linked locus (either a QTL or a marker). Figure 1
presents the actual segregation of markers because no
QTL is implied in that figure. SDL may cause linked
markers to distort, but the conditional probability of
QTL genotype given flanking marker genotype has not
taken into account distorted markers. In fact, the same
formula (conditional probability) applies to both dis-
torted markers and undistorted markers, because once
the genotype of a marker is observed, the effect of SDL
becomes irrelevant.

If the SDL is present but ignored when QTL mapping
is conducted, the power will be decreased but only
slightly. If the marker map is dense, the power loss is
negligible. Therefore, one can safely use the classical
method of QTL mapping without concern for the pres-
ence of SDL. A dense marker map is less prone to SDL
because the distorted proportions of QTL genotypes
affect only the prior probability of QTL genotype. The
prior probability plays a lesser role in calculating the
conditional probability given marker information. In
the extreme case where the QTL overlaps with a marker,
the QTL genotype is completely determined by the
marker genotype, rendering irrelevant the prior prob-
ability. If the marker map is sparse, incorporating SDL
into QTL mapping can increase the power. This in-
crease, although small, is worthy of consideration. The
regression method may help us to understand the effect
of SDL on QTL mapping, but it is not the actual QTL
mapping method we can use because the SDL param-
eters are assumed to be known. The actual method
should be the maximum-likelihood or the Bayesian
method because these methods facilitate algorithms to
estimate the distorted segregation ratio. The difference

Figure 7.—The fitness zone [v1 1 v4 � ðv1 � v4Þ2 . 0:5]
where SDL can increase the statistical power of QTL detec-
tion. The half circle represents the domain that varðxÞ ¼
v1 1 v4 � ðv1 � v4Þ2 . 0:5 under v1 1 v4 , 1:0.
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between the classical method and the method that
incorporates SDL occurs only in the calculation of the
posterior probability of QTL genotype. Here, we cannot
calculate the QTL genotype probability given flanking
marker information first and then use this probability to
update the ultimate posterior probability. The posterior
probability of QTL genotype must be calculated in a single
step conditioned on both the markers and the phenotype.
For example, given the phenotype y and the flanking
markers M1 and M2, the posterior probability of Q ¼ k is

PrðQ ¼ k jM1 ¼ u; M2 ¼ v; yÞ

¼ pkHM1Q ðu; kÞHQM2ðk; vÞpðy; Q ¼ kÞP4
k9¼1 pk9HM1Q ðu; k9ÞHQM2ðk9; vÞpðy; Q ¼ k9Þ ;

ð13Þ

where pðy; Q ¼ kÞ is a normal density when the QTL
genotype is k. Let pjk ¼ PrðQ ¼ k jM1;M2; yÞ be the
posterior probability of QTL genotype for individual j.
The proportion of QTL genotype k in the population is
estimated by

pk ¼
1

n

Xn

j¼1

pjk : ð14Þ

Therefore, incorporating SDL into QTL mapping
requires only modifying the posterior probability and
estimating the distorted segregation ratio. The addi-
tional effort is negligible, and so there is little reason to
ignore SDL in QTL mapping. We have incorporated
segregation distortion into our QTL mapping software
package, PROC QTL. To perform QTL mapping under
segregation distortion, users must enable the DISTOR-
TION option under the ML method. When this option
is not enabled, Mendelian segregation is assumed.

As mentioned, ignoring SDL in QTL mapping results
in only a slight power loss. Why, then, do we even bother
to incorporate SDL in QTL mapping? Our argument is
that because the incorporation is technically trivial, it is
a one-stone-kills-two-birds scenario to do so. A single
analysis of the QTL mapping data can map both QTL
and SDL. Agricultural biologists are interested in QTL

controlling the variation of agronomy traits, while
evolutionary biologists also explore genes for viability
selection. It may be beneficial, then, to modify existing
QTL mapping software packages to map QTL and SDL
jointly, resulting in extracting a greater amount of
information from the same amount of resources.
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