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Abstract
Hierarchical (or multilevel) statistical models have become increasingly popular in psychology in
the last few years. We consider the application of multilevel modeling to the ex-Gaussian, a
popular model of response times. Single-level estimation is compared with hierarchical estimation
of parameters of the ex-Gaussian distribution. Additionally, for each approach maximum
likelihood (ML) estimation is compared with Bayesian estimation. A set of simulations and
analyses of parameter recovery show that although all methods perform adequately well,
hierarchical methods are better able to recover the parameters of the ex-Gaussian by reducing the
variability in recovered parameters. At each level, little overall difference was observed between
the ML and Bayesian methods.

Bayesian and maximum likelihood estimation of hierarchical response time
models

Given the importance of the dynamics of behavior to theories of cognition, it is unsurprising
that a number of methods have recently been developed to facilitate and simplify application
of mathematical models of response times (e.g., Cousineau, Brown, & Heathcote, 2004;
Vandekerckhove & Tuerlinckx, 2008; Wagenmakers, van der Maas, & Grasman, 2007).
Such models are capable of providing a much richer characterization of the effect(s) of some
experimental manipulation compared to an analysis of just central tendency (Andrews &
Heathcote, 2001). However, stable estimation of distribution parameters is often hindered by
the relatively small number of observations collected in psychology. In this context, one
important development has been the introduction, by Rouder and colleagues, of a
hierarchical Bayesian model to estimate the parameters of a response time (RT) model
(Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder, Sun, Speckman, Lu, & Zhou, 2003).
In this multilevel approach, parameters are estimated for individual participants, and these
parameters are themselves assumed to be drawn from distributions defining variation across
individuals. In the approach advocated by Rouder and colleagues, posterior probability
densities are estimated for individuals and populations in a Bayesian framework. Rouder et
al. (2005) demonstrated the wide applicability of their approach, and showed that their
Bayesian hierarchical method gave more accurate estimates of the parameters of individuals
than classical single-level (i.e., non-hierarchical) maximum likelihood (ML) estimates.
These benefits came from using population distributions as priors to constrain (or “shrink”)
more extreme estimates that would otherwise be obtained at the level of individuals,
particularly when the number of observations is relatively small.
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In recognition of the promise of the hierarchical approach to RT distribution estimation, our
aim was to compare the hierarchical Bayesian approach to multilevel ML estimation when
estimating parameters of a commonly used model for RT, the ex-Gaussian. We present
simulations to assess the accuracy of both approaches with respect to each other and in
comparison to single-level ML and Bayesian estimation. Finally, we discuss practical and
statistical issues in the application of each approach.

Bayesian and maximum likelihood multilevel models
In standard single-level approaches (e.g., Cousineau et al., 2004; Wixted & Rohrer, 1994;
Van Zandt, 2000), a set of parameters is obtained for each person by fitting a model to that
individual's data. The two well-known methods for single-level estimation are maximum
likelihood (here denoted CML, referring to classical maximum likelihood) and Bayesian
estimation (here referred to as SLB, for single-level Bayes). There exist a number of
philosophical differences between the two approaches, including whether statistics (i.e.,
probabilities) are treated as the expected outcome from a large number of independent trials
—the frequentist interpretation, usually associated with ML—or as a measure of subjective
belief as in the Bayesian framework (MacKay, 2003). For our purposes, two important
computational differences exist between Bayesian and ML estimation. As implied by the
name, CML is concerned with finding that set of parameter values θ that maximizes the
probability of observing the data y given those parameters, p(y|θ) ; in ML estimation, this is
usually rephrased as maximizing the likelihood of the parameters given the data, ℓ(θ|y). In
contrast, Bayesian estimation is concerned not merely with finding a single value for each
parameter, but rather with returning a posterior (i.e., after the data) probability distribution
for that parameter. That is, given some data have been observed, what is the new probability
associated with each possible parameter value (this being a posterior density for a
continuous distribution)? This concept of updating probabilities requires some probability
for the parameters to exist prior to data observation in the Bayesian approach, a second
computational difference between the Bayesian and maximum likelihood approaches. This
gives a formal description of Bayesian estimation:

(1)

where p(θ) gives the prior probabilities for parameter values. CML (e.g., Cousineau et al.,
2004; Heathcote, Brown, & Cousineau, 2004; Van Zandt, 2000) and variants (Heathcote,
Brown, & Mewhort, 2002) have been extensively applied in estimating response time
models, particularly in the case of the ex-Gaussian. In contrast, application of SLB to
response time distributions is rare (for a recent development, see Lee, Fuss, & Navarro,
2007), although the Bayesian perspective generally is gaining popularity in psychology (e.g.,
Lee, 2008, Rouder & Lu, 2005).

These single-level approaches to response time estimation can be extended by assuming a
random-effects model for latencies (Rouder et al., 2003, 2005). Specifically, we can assume
a multilevel model in which the parameters of individuals are assumed to be randomly
distributed in the population according to some parent distributions. Figure 1 illustrates such
a sampling scheme for the ex-Gaussian distribution. The ex-Gaussian is a popular and
commonly used model for response times (e.g., Hockley, 1984; Hohle, 1965; Kieffaber et
al., 2006; Ratcliff, 1979; Spieler, Balota, & Faust, 2000; Schmiedek, Oberauer, Wilhelm,
Süss, & Wittmann, 2007). This distribution is obtained when each RT is assumed to be the
sum of a random variate drawn from a Gaussian distribution and an another, independent
variate drawn from an exponential distribution. The Gaussian component is taken to reflect
encoding and motor processes, and is parameterized by the parameters μ and σ . The
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exponential component is taken to reflect information-processing or attentional processes
(e.g., Rohrer & Wixted, 1994; Schmiedek et al., 2007), and is captured by the single
parameter τ . Accordingly, single-level modeling would return an estimate of μi ,σi and τi
for each individual i based only on that person's data. However, in multilevel models we
assume the parameters of individuals are randomly distributed in the population according to
some parent distributions, where each parent distribution is itself defined by a set of
parameters. Thus, the parent distributions (top) specify how μ, σ, and τ are distributed
across individuals in the population, and a sample of individuals is effectively a set of
random draws from these parent distributions.

The benefit of assuming such a sampling scheme is that variability within participants can
be estimated separately from variability between participants. Rouder and colleagues
assumed such a random-effects model for the Weibull distribution (Rouder et al., 2005,
2003), and employed Bayesian parameter estimation to derive marginal posterior densities
for the parameters of interest, both at the individual level and at the population level. In a
number of simulations, Rouder and colleagues showed that their Weibull hierarchical
Bayesian (HB) procedure produced more accurate estimates of the parameters of individuals
than classical single-level maximum likelihood (CML) estimation (Rouder et al., 2003,
2005). This advantage mostly came from a reduction in the variability of estimates, with the
CML estimates being overdispersed compared to both the known parameter values used to
generate data in the simulations, and the estimates obtained from the HB procedure. The
“shrinkage” in the Bayesian hierarchical model arises from information in the priors
provided by the parent distributions, which are themselves informed by the estimates for all
individuals, and higher-level priors placed on the parameters of these parent distributions.

The multilevel model is usefully employed in a Bayesian framework because the assumed
parent distributions serve as priors for the estimation of posterior parameter densities of
participants, but where those priors themselves are essentially informed by the data
(Gelman, Carlin, Stern, & Rubin, 2004; Rouder & Lu, 2005). However, there also exist
techniques for multilevel modeling using maximum likelihood estimation, an approach
which has not been considered for response times. Hierarchical (or multilevel) maximum
likelihood (HML) modeling is generally carried out with linear (e.g., Raudenbush & Bryk,
2002) and non-linear (e.g., Pinheiro & Bates, 2000) regression models. In psychology,
multilevel ML models have been applied to such diverse areas as autobiographical memory
(Wright, 1998); sentence processing (Blozis & Traxler, 2007); the speed-accuracy tradeoff
(Hoffman & Rovine, 2007); serial and temporal recognition (Farrell & McLaughlin, 2007);
and interference in working memory (Oberauer & Kliegl, 2006). The differences between
Bayesian and ML multilevel modeling mirror those for estimation at a single level.
Specifically, Bayesian parameter estimation aims to obtain a joint posterior probability
density for the parameters given the observed data, while the HML approach gives modal
estimates of the population-level parameters that maximize the likelihood of the model
given the data.

More formally, in the Bayesian method we wish to obtain p(θ,B|y), where B and θ are
vectors of parameters characterizing the individual- and population-level distributions,
respectively. Although obtaining the joint posterior probability of parameters at different
levels in the HB procedure may seem daunting, our job is made easier by the fact that θ only
affects the data via B (see Figure 1); accordingly, the joint posterior can be obtained from (is
proportional to):

(2)
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where the first term is the joint prior probability ofθ and B (Gelman et al.., 2004). In
contrast, rather than estimating B, ML estimation accounts for the non-observable variation
in B by integrating it out (Pinheiro & Bates, 1995, 2000):

(3)

where ℓ(θ|y) is the likelihood of the parameters given the data. We are then concerned only
with obtaining estimates of the population-level parameters inθ . Having obtained these, we
can determine values of individuals' parameters in B by finding ML estimates for
individuals given the estimated population-level parameters and the data.

Given classic maximum likelihood methods have been utilized successfully for many types
of multilevel models, we wished to determine the applicability of the HML method to
response time data. We were concerned with its ease of application, and with its
performance compared to both HB and CML, the two methods that have thus far been given
the majority of attention for response time modeling. We also examined the performance of
single-level Bayesian estimation. Examining SLB will assist in determining whether the
virtues of HB arise from its multilevel structure or from the use of Bayesian estimation (or
both). For the simulations reported below, we focus on the ex-Gaussian distribution given its
popularity in psychology. In the discussion, we return to consider the applicability of these
methods to other distributions.

Statistical modeling of response times
All four approaches (CML, SLB, HML and HB) assume the same ex-Gaussian distribution
function at the level of individual participants. For individual i the probability density
function of response time on trial j, yij, is given by

(4)

where Φ is the cumulative Gaussian function, μi and σi are the mean and standard deviation
of the Gaussian, and τi is the scale of the exponential. To estimate the ex-Gaussian in the
hierarchical approaches it is useful to re-express this in terms of precision (i.e., inverse
variance) rather than variance:

(5)

where φi = 1/σ2 and λi = 1/τ. This formulation was used in all the modeling below; results
are reported forσ and τ as these are the parameters generally reported in the literature.

We now turn to how individuals' parameters are estimated or predicted under single-level
and multi-level, Bayesian and maximum likelihood methods.

Classical maximum likelihood (CML)
CML estimation proceeds by assuming Equation 5 as a likelihood function, and finding
those parameter values (μi, φi and λi) that maximize the likelihood of the parameters given
the data (Cousineau et al., 2004; Van Zandt, 2000) for each individual i,
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(6)

Equation 6 presents two useful relations. The first is that the likelihood of the parameters
given the model is given by the same function that gives the probability density; however, in
the case of the likelihood the data yi are fixed and the parameters vary, whereas for the
probability density function the parameters are fixed and yi varies. The second useful
relation in Equation 6 is that the joint likelihood for a set of observations is simply the
product of the likelihoods for the individual observations (assuming the observations are
independent).

Single-level Bayesian (SLB)
In the single-level Bayesian model, we wish to obtain the posterior probability density for
μi, φi and λi for the data of each participant i, yi, given by

(7)

The first factor in the numerator is the joint probability , and the following
three factors are the prior densities for μi, φi and λi (which we assume to be independent
here). We assumed the following priors for μi, φi and λi:

(8)

(9)

(10)

where N and Gamma respectively denote the normal density function (with mean and
inverse variance, or precision, as parameters) and the Gamma density function. The
denominator in Equation 7 is the probability of observing the data; although this component
is useful for model comparison as it can be treated as the evidence for the model being fit
(MacKay, 2003), we ignore it here as we are only concerned with the posterior density of
the parameters given the ex-Gaussian model. An important role of p(yi) in parameter
estimation is to ensure that the posterior density integrates to 1; the procedures we use below
perform this normalization without explicitly calculating p(yi).

For estimation in the Bayesian methods we used Gibbs sampling, a procedure in which
samples are iteratively drawn from the posterior density of one parameter given the current
values of all other parameters (and the data), to obtain the posterior densities for each
parameter (see, e.g., Rouder & Lu, 2005, for more details). The posterior densities for each
parameter are given in the Appendix, along with further details for the SLB.

Hierarchical maximum likelihood (HML)
In the HML procedure, we do not directly estimate individuals' parameters, but instead
estimate parameters at the population level. As for SLB, we assumed a normal population
distribution for μi, and a Gamma distribution parent for φi and λi (for convenience, we also
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use the same parameter labels). A joint likelihood ℓ(γ1,γ2,δ1,δ2,ε1,ε2|yi) can then be defined
for the parent distribution parameters γ1, γ2, δ1, δ2, ε1, and ε2:

(11)

where yi is the vector of latencies for participant i and P is the number of participants, and
p(yi|μ,φ,λ) is given by Equation 6. Accordingly, we do not estimate parameters for
individual participants, but only estimate parameters for the parent distributions by
maximizing Equation 11.

Once those parameters have been estimated in the HML procedure, the parameters for
individuals (μi,φi,λi) can be predicted on the basis of these estimates. Following the
literature on random effects (e.g., Pinheiro & Bates, 2000, p. 71), we obtain these predictors
by finding modal (i.e., ML) estimates conditional on the parent distribution estimates.
Specifically, for the model implemented here we calculate:

(12)

where Bi is the parameter vector [μi, φi, λi].

One computational consideration is the calculation of the integrals in Equation 11. These
integrals were calculated using fourth-order Gauss-Lobatto quadrature, with 20 points along
each parameter, and integration limits at the .01 and .99 quantiles of each parent distribution.
We minimized the negative log-likelihood (i.e., summing across participants in Equation 12)
using the SIMPLEX algorithm (Nelder & Mead, 1965).

Hierarchical Bayesian (HB)
In the HB method, we wish to obtain marginal posterior density estimates for all parameters
of interest. These parameters include those defining the parent distributions, and also include
the parameters of individuals themselves (i.e., μi, φi, λi). Following Rouder and Lu (2005)
and Rouder et al. (2005), and as for SLB, we use Gibbs sampling to obtain these posteriors
(e.g., Gelfand, Hills, Racine-Poon, & Smith, 1990; Gelman et al.., 2004). This requires
defining conditional posterior densities or distributions for the parameters of individuals,
and those parameters defining the parent distributions. As for HML, we assumed a normal
parent distribution (i.e., prior) for the μi, and Gamma parents for φi and λi following
standard treatment in Bayesian analysis (e.g., Gelman et al., 2004; Rouder & Lu, 2005). By
assuming the same densities for the prior distributions in SLB and the parent distributions in
HB, we can use the equations for posterior densities from the SLB procedure in HB.
Additionally, we need to specify posterior densities for the parameters of the parent
distributions, based on priors for these parameters. The full ex-Gaussian HB model,
including specification of priors on the hyperparameters and the full set of conditional
posteriors, is presented in the Appendix.

Simulations
In each simulation “observed” latencies were generated from a “true” sampling regime (e.g.,
Figure 1), and parameter estimation was then conducted on these generated latencies using
the four approaches. The parent distributions from which the ex-Gaussian parameters were
sampled and used to generate the data had parameters μμ = 0.9 s, σμ = 0.2 s, αφ = 7, βφ =
60, αλ = 20, and βλ = 0.5. For σ and τ this gave means of .052 s and 0.11 s, and standard
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deviations of .011 s and .025 s. The means approximated those used by Cousineau et al.
(2004).

A number of different types of experiments were simulated. To reflect standard psychology
experiments, three simulations were run that assumed 20 participants were tested, with the
number of observations per participant being set at 20, 80, or 500. We also examined two
cases typical in specific experimental domains. To reflect research in more low-level
domains such as visual psychophysics or oculomotor physiology, where typically few
participants are tested extensively, we assumed 5 participants generated a large number of
responses (500). To reflect research using an individual differences approach, we assumed
80 participants, who each generated a small number of responses (20). For each simulation,
200 such data sets were generated and subjected to parameter estimation, with results being
collected across runs within each simulation. For the Bayesian methods, which return an
estimate of the full posterior distribution, parameter estimates were obtained by averaging
across samples to obtain an expected value (see Appendix).

Table 1 summarizes the performance of the four approaches by showing the root mean
squared deviation (RMSD) between the estimates and generated values. The two
hierarchical methods gave more accurate estimates for the simulated participants, although
this advantage is mostly restricted to small or medium numbers of observations (N=20 or
N=80). There was little noticeable difference between the two single-level methods (CML
and SLB), though SLB had a tendency to be more accurate for a small number of
observations, while CML was slightly more accurate for larger N (particularly in the P=20,
N=80 condition). Similarly, the HML and HB procedures performed equally well on
average, with some slight differences according to the parameter and condition being
examined.

Table 2 breaks these results down in more detail, by presenting the mean bias (the average
deviation between each parameter estimate and the true value) and the standard deviation of
the estimates, for μ ,σ and τ. The values have been multiplied by 100 in the table to enhance
readability. An unbiased estimate will return a bias of 0, and the standard deviation of the
estimates should ideally match that of the true values (for reference, these are 20, 1.1 and 2.5
when multiplied by 100). Table 2 shows that the hierarchical procedures show substantially
less bias for small to medium N (N=20 and N=80). The hierarchical procedures also give
less variable estimates, replicating Rouder et al.'s (2005) observation of “shrinkage” in their
HB procedure for the Weibull distribution. The estimates from the HML procedure appear
to be somewhat underdispersed for small N (cf. HB estimates), and are less biased than
those from the HB procedure; there is little difference between the two procedures for
medium and large N, except for a slight tendency to under-dispersement in HML. For small
N, the SLB procedure is biased when compared to CML, but does give a reduction in
variance. For medium N, SLB estimates tend to be more biased and slightly more variable;
little difference is evident for large N.

Finally, Table 3 shows the mean correlation between the true parameter values and those
obtained from the four procedures. Strikingly, for μ the correlation is near-perfect for all
models, irrespective of N and P. For σ and τ, correlations increase with N, and are also
slightly larger with the increase in P between the P=20, N=20 and P=80, N=20 simulations.
Overall, there is little difference between the approaches in the correlations for σ, with the
exception that these correlations are somewhat smaller for CML. For τ, a small increase in
correlations is witnessed when moving from SLB to HML or HB.

As a summary of the differences in estimation obtained from the differences in procedures,
Figure 2 presents scatterplots of estimates from the four procedures against the true values
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for an instance from the P=80, N=20 simulations. For μ, all the procedures provide very
accurate results. The advantages of hierarchical modeling are clearly seen for σ and τ, with
the parameter estimates from both HML and HB less variable than those for CML and, to a
slightly lesser extent, SLB, illustrating the “shrinkage” obtained from hierarchical methods.

Discussion
The results show that although the methods all perform considerably well, HML and HB
give a comparable improvement over single-level methods (CML and SLB) when estimating
parameters of the ex-Gaussian distribution. This benefit comes both from a reduction in the
bias of estimates, and from a reduction in variability of the estimates, with fewer extreme
estimates (“shrinkage”). Although there were some differences between the maximum
likelihood and Bayesian estimates at the single level (CML vs SLB) and in the hierarchical
models (HML vs HB), the Bayesian and ML methods performed almost equally well (Table
1).

These results lead to the obvious question: when is it appropriate to use each of the methods
investigated? Hierarchical modeling is arguably always more appropriate as it will more
accurately reflect the sampling regime that holds in typical experiments, where individual
differences will usually be random effects. In practice, if we are just concerned with
estimation, there is generally little to discriminate hierarchical and non-hierarchical methods
with large numbers of observations per participant, as is sometimes the case (e.g., Carpenter
& Williams, 1995; Ratcliff & Rouder, 1998). For small number of observations, hierarchical
models give an appreciable benefit and can be recommended.

The choice between HML and HB (and, indeed, between CML and SLB) seems to be partly
dictated by the choice of inferential framework, and partly by computational concerns. A
major difference between the approaches is their underlying philosophy. Bayesian modeling
is concerned with delivering posterior densities by updating priors with likelihoods, while
ML is concerned with point estimates of likelihoods. In terms of the inferential framework
HB thus makes explicit, and estimates, the uncertainty of the model parameters, which is
ignored when obtaining point estimates by averaging across distributions. Another
difference is HB's requirement that priors be set on parameters of the parent distributions.
The setting of priors generally is not arbitrary and requires some experience with the models
being employed, and with Bayesian analysis. In the hierarchical case there is an added
complication that we must consider the potential effects of the priors both on the parent
distributions, and the downstream effects on the posterior densities at the level of
individuals. This involves examining marginal prior distributions at the individual level, an
additional step that is not required in HML. On the other hand, these priors give us the
freedom to incorporate information about the latency domain into our models, an arguable
benefit of Bayesian analysis (see, e.g., Rouder et al., 2005).

Another issue in considering the application of any of these methods is the ease with which
they are implemented and carried out. CML is clearly the simplest and easiest of the four
methods, requiring only a function for the latency distribution (e.g., Equation 4) and a
minimization routine (these can be found in most statistical and mathematical packages).
HML is surprisingly straightforward to program; the only technical difficulties are the
integration in Equation 11, for which any number of numerical integration methods could be
used, and that Equation 11 can return values outside the range of the double data type on
computers when fitting large amounts of data per participant; we have found it useful to
return a large dummy number to the minimization routine (e.g., 100000) when encountering
this problem. We found the two Bayesian methods slightly more demanding; although the
general algorithm is straightforward and useful introductions to Bayesian modeling and
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Gibbs sampling exist (e.g., Gelman et al., 2004; Rouder & Lu, 2005), some of the sampling
from posterior densities required sampling from some log-densities using adaptive rejection
sampling, which we then needed to compile into our own code for our log-density functions.
Additionally, we encountered problems with small numbers of data, where the log-density
function is relatively flat and a careful choice of upper and lower limits for the envelope for
sampling from this function is required. Having done this, the SLB is effectively subsumed
under HB which saved some time in implementation.1 Generally, as researchers having
some experience with likelihood estimation we found the Bayesian methods most
challenging to implement (particularly, the selection of priors and the technical challenges
already detailed).

A final factor that should be mentioned is HML's limitations in the face of data-dependent
bounds. Bounded distributions such as the log-normal and the Weibull (e.g., Heathcote et
al.., 2004, ), which are undefined for latencies ≤ 0, often incorporate a parameter equivalent
to μ that shifts the distribution away from 0. Estimation of this parameter is not
straightforward in HML: for each participant, this shift parameter cannot exceed the shortest
observed latency for that person. This means that integration across a common set of
parameter bounds for all participants in Equation 3 is not possible. In simulations assuming
a constant shift for all participants, we have found HML to perform poorly compared to
CML and HB in estimating parameters of the Weibull distribution. 2 Modifications might
exist for HML, such as introducing a Gaussian contaminant distribution to remove the
effective bound on parameter estimates; nevertheless, HB has the advantage that such fixes
are not required as we can sample from the posteriors for individual participants regardless
of whether the prior is dependent on the estimates for individual participants. In the case of
the ex-Gaussian distribution, where the Gaussian is explicitly incorporated into our latency
model, we are able to integrate across all parent distributions in HML (Equation 11) and
obtain accurate estimates; there is little to distinguish between HML and HB in this case.
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Appendix

Single-level and hierarchical Bayesian method for the ex-Gaussian
distribution
Single-level Bayes

Given a normal prior (parent) distribution on μi, and Gamma distributions on φi and λi, the
conditional posteriors (with constant of proportionality excluded) are :3

1A related factor not discussed is the time taken to run these analyses. Unsurprisingly, CML runs much faster than the other methods.
SLB and HB differ little in their speed, as they have a great deal of overlap in the required number of samples. The HML procedure as
programmed was the slowest procedure, especially for a large number of observations. However, after running the simulations we
realized that our adoption of quite conservative convergence criteria for the minimization routine for HML may have excessively
lengthened the convergence time.
2Heathcote et al. (2004) have noted additional problems when using CML to estimate the parameters of bounded distributions such as
the log-normal.
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(A1)

(A2)

(A3)

The parameters for the prior distributions were set to vaguely informative values of γ1 = 0.2,
γ2 = 2.6, δ1 = 0.1, δ2 = 0.001, ε1 = 0.1, and ε2 = 0.001.

Hierarchical Bayes
Second-level priors on the parameters of the parent distributions were specified as follows:

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

We chose values for the parameters of the second-level priors that were relatively non-
informative, and gave acceptable marginal priors at the individual level; these values were
a1 = 0.2, b1 = 2.0, a2 = 0.5, b2 = 0.5, c1=1, c2 = 0.1, d2 = 0.1, e1 = 1, e2 = 0.1, f2 = 0.1.

The resulting posteriors at the second level are:

(A10)

where

(A11)

and

3The hyperparameters here are expressed for latencies measured in units of seconds.
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(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

For the simulations reported below (for both HB and SLB), we used a “burn-in” of 2500
iterations in the Gibbs sampling, and then estimated posteriors from a further 2500
iterations. This was found to give fairly stable results. Only a single Markov chain was run
per simulated sample; prior testing showed that the burn-in and estimation iterations
generally gave acceptable results in testing using multiple chains, in that autocorrelations
decreases fairly quickly with lag (<0.1 within 10 lags), and the Gelman-Rubin statistic was
close to 1 (Gelman & Rubin, 1992). In cases where the procedure returned wildly
implausible estimates (specifically, where σ >1, which was associated with a τ close to 0),
further chains were run to provide a more reasonable solution, as would be done in practice.
The first four priors listed above are conjugate with their respective likelihoods, meaning we
can sample from standard distributions in the Gibbs sampling. For all other functions, we
sampled posterior values using adaptive rejection sampling with a Metropolis step (ARMS;
Gilks, Best, & Tan, 1995), using code obtained from the website of W. Gilks. 4 We used
ARMS rather than an alternative without the Metropolis step (ARS; Gilks & Wild, 1992)
because the equations for the posterior of φi and λi are not log concave for δ1 < 1 and ε1 <
1, respectively, and because we found ARMS to be more stable than ARS: densities that are
log-concave still sometimes failed using the ARS code, but not the ARMS code. The same
envelope values for ARMS were used on each iteration (within each conditional density).
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Figure 1.
A typical multilevel model for a response time experiment with a single condition.
Parameters of response time distributions (here, ex-Gaussian) for individuals are sampled
from population-level distributions, and these then determine the sampling of individual
observations for each individual.
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Figure 2.
Scatterplots for a typical simulation run for P=80, N=20, plotting the “true” parameter
values against the estimates obtained from the CML (top row), SLB (second row), HML
(third row) and HB (fourth row) procedures. The three columns correspond to the three
estimated parameters μ, σ and τ.
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Table 1

Root mean squared deviations (RMSDs;×100) in seconds between observed parameter estimates of
individuals, and those estimated or predicted from the three model estimates. P is the number of simulated
participants, and N is the number of observations per participant.

μ σ τ

CML 4.34 2.97 4.78

P=20, N=20 SLB 3.80 2.72 4.10

HML 3.15 1.15 2.45

HB 2.44 1.84 2.63

CML 1.69 1.24 2.02

P=20, N=80 SLB 2.01 1.34 2.30

HML 1.29 0.80 1.47

HB 1.32 0.83 1.58

CML 0.62 0.46 0.75

P=20, N=500 SLB 0.73 0.48 0.84

HML 0.59 0.42 0.71

HB 0.60 0.42 0.72

CML 4.27 2.97 4.72

P=80, N=20 SLB 3.76 2.68 4.04

HML 2.25 1.01 2.03

HB 2.44 1.12 2.29

CML 0.60 0.45 0.72

P=5, N=500 SLB 0.64 0.46 0.76

HML 0.58 0.41 0.70

HB 0.60 0.43 0.72
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Table 3

Correlations between true parameter values and estimates from the four procedures (averaged across
replications).

μ σ τ

CML 0.98 0.3 0.43

P=20, N=20 SLB 0.99 0.38 0.47

HML 0.98 0.39 0.55

HB 0.99 0.39 0.55

CML 1.00 0.64 0.76

P=20, N=80 SLB 1.00 0.64 0.73

HML 1.00 0.67 0.8

HB 1.00 0.67 0.79

CML 1.00 0.91 0.95

P=20, N=500 SLB 1.00 0.91 0.95

HML 1.00 0.92 0.96

HB 1.00 0.92 0.96

CML 0.98 0.33 0.46

P=80, N=20 SLB 0.99 0.4 0.51

HML 0.99 0.44 0.6

HB 0.99 0.43 0.58

CML 1.00 0.87 0.94

P=5, N=500 SLB 1.00 0.86 0.93

HML 1.00 0.87 0.94

HB 1.00 0.87 0.94
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