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Mechanisms Underlying the Transformation of Disparity
Signals from V1 to V2 in the Macaque

Seiji Tanabe and Bruce G. Cumming
Laboratory of Sensorimotor Research, National Eye Institute–National Institutes of Health, Bethesda, Maryland 20892

Stereo vision relies on cortical signals that encode binocular disparity. In V1, the disparity energy model explains many features of
binocular interaction, but it overestimates the responses to anticorrelated images. Combining the outputs of two, or more, energy
model-like subunits [two-subunit (2SU) model] can resolve this discrepancy and provides an alternative explanation for disparity signals
previously thought to indicate phase disparity between the receptive fields (RFs) of each eye. The 2SU model naturally explains how
“near/far” (odd-symmetric) tuning becomes dominant in extrastriate cortex. To compare the energy and the 2SU models, we used a
broadband compound grating and applied a common interocular phase difference to all spatial frequency components (a stimulus phase
disparity), combined with a common spatial displacement (a stimulus position disparity). This produces binocular images that never
occur in natural viewing, for which the 2SU model and the energy model make distinctively different predictions. Responses of neurons
recorded from both V1 and V2 of awake rhesus macaques systematically deviated from the predictions of the energy model, in accordance
with the 2SU model. These deviations correlated with the symmetry of the tuning curve, indicating that the 2SU mechanism is exploited
to produce odd symmetry. Nonetheless, individual subunits also contain RF phase disparity that contributes to odd symmetry. The
results suggest that neurons in V2 probably inherit phase disparity signals from V1 neurons, but systematically combine input from V1
neurons with different position disparities, in a way that elaborates odd-symmetric tuning and extends the range of disparities encoded
by single neurons.
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Introduction
Understanding how the brain turns external stimuli into sensa-
tion requires an account of the mechanisms that generate sensory
signals. Considerable progress has been made in this direction for
stereo vision, in which the disparity energy model provides a
successful basis for models of disparity signals in the striate cortex
(V1) (Ohzawa et al., 1990; Cumming and DeAngelis, 2001). In
the energy model, the symmetry of disparity tuning is determined
by the phase relationship between receptive fields (RFs) in the left
and right eyes (DeAngelis et al., 1991). The RFs of the model with
odd-symmetric tuning are related by applying the same shift in
phase angle (RF phase disparity) to all of the Fourier components
of the RF in one eye. If the RF phase disparity is zero, even sym-
metry results. This simple model explains the range of tuning
curve shapes that have been described in V1.

This elegant account leads to several puzzles for extrastriate
cortex, in which odd symmetry is more common than in striate
cortex (Cumming and DeAngelis, 2001; DeAngelis and Uka,
2003). In the context of the energy model, the additional odd-

symmetric responses are constructed by combining monocular
signals within the extrastriate cortex. Given the paucity of mon-
ocular responses observed in extrastriate cortex, this seems un-
likely, although not impossible (DeAngelis and Uka, 2003). In
addition, neurons with RF phase disparity are optimally driven
by stimuli that never occur in natural viewing (Haefner and
Cumming, 2008). Although such signals may help eliminate
“ghost matches” from the stereo correspondence process (Read
and Cumming, 2007), it is hard to understand why such unnat-
ural signals should become more common in extrastriate cortex.

Recently, Haefner and Cumming (2008) proposed an alterna-
tive model of odd-symmetric disparity tuning. This model com-
prises two or more energy model-like cells as subunits [two sub-
units (2SUs)], neither of which need have phase disparity. By
adjusting the RF position disparity of the subunits, the model can
exhibit odd-symmetric tuning. However, their data do not ex-
clude the possibility that the subunits have RF phase disparity,
leaving the significance of phase disparity in shaping disparity
signals unclear. Here, we used a broadband stimulus (containing
many frequency components) to test the new model and to clarify
the role of phase disparities. Disparity in this stimulus was ap-
plied in two ways, by adding a common interocular phase differ-
ence to each component (stimulus phase disparity) and by add-
ing a common spatial displacement to each component (stimulus
position disparity). The 2SU model makes distinctive predictions
about the responses to such disparity combinations. First, the
shape of an envelope encompassing all responses shows a char-
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acteristic asymmetry. Second, phase disparities within the sub-
units produce response peaks when the stimulus phase disparity
matches that of the subunit RFs. We examined responses to such
stimuli in V1 and V2 of awake monkeys, with three major objec-
tives: to test the predictions of the 2SU model, to estimate the
contribution of RF phase disparities in shaping disparity signals,
and to quantify the role of multiple subunits in developing odd-
symmetric tuning in extrastriate cortex.

Materials and Methods
Surgery and task. Two male rhesus macaques were used in the experi-
ments. General procedures have been described in detail previously
(Cumming and Parker, 1999; Read and Cumming, 2003b). Briefly, mon-
keys were implanted with a head-restraining post, scleral search coils in
both eyes, and a recording chamber over the operculum of V1. The
surgery was done under general anesthesia and sterile conditions. They
perched in a primate chair and performed a fixation task for fluid reward.
All protocols were approved by the Institutional Animal Care and Use
Committee and complied with Public Health Service policy on the hu-
mane care and use of laboratory animals.

The monkeys viewed two Eizo Flexscan F980 monitors, one with each
eye, through a Wheatstone haploscope. Stimuli were generated on a Sil-
icon Graphics Octane workstation. The mean luminance was 42 cd/m 2,
contrast was 99%, and frame rate was 96 Hz. The monitors subtended
23.5 � 18.8 deg 2 in each eye at a viewing distance of 89 cm. The images
were antialiased so that their effective resolution was higher than the
1280 � 1024 pixelation of the monitor. Gamma correction was adjusted
to produce a linear luminance response. The positions of both eyes were
measured with a magnetic search coil system (C-N-C Engineering) and
sampled at 800 Hz. A white fixation marker (0.2 � 0.2 deg) was presented
binocularly at the center of the monitor on a gray background. If the
monkey maintained fixation within an electronic window of 0.8 � 0.8
deg for 2.1 s, while the visual stimulus was presented in the parafoveal
visual field, it earned a fluid reward. During a trial, as soon as the mean
position of the two eyes moved out of the window, the trial was aborted
with no reward.

Single-unit recording. A tungsten-in-glass electrode (typically 1.0 M�
at 1 kHz; Alpha Omega) was lowered through the dura each day with a
custom-built microdrive. The voltage signals were amplified (Bak Elec-
tronics), bandpass filtered (0.2–5 kHz), sampled at 32 kHz, and stored
(Datawave Discovery System). Extracellular spikes were identified on-
line, but the voltage signals were always reexamined off-line using
custom-made software to ensure good single-unit isolation.

On successful isolation of a single unit, we characterized the RF pre-
ferred orientation, spatial frequency, and ocular dominance using sinu-
soidal luminance gratings. We then measured the minimum response
field using narrow strips of gratings presented to the dominant eye (Read
and Cumming, 2003a). To screen for disparity-tuned cells, we next tested
the disparity tuning along the axis perpendicular to the preferred orien-
tation using a square patch of a random-dot stereogram (RDS). The RDS
consisted of an equal number of dark and bright dots (0.05 � 0.05 deg 2;
99% contrast; 50% density). The pattern of random dots was renewed
every frame. A background pattern of zero disparity (4 � 4 deg 2) sur-
rounded the foreground pattern (3 � 3 deg 2) such that the disparity in
the foreground did not produce any changes in location in the monocu-
lar images. After this initial characterization, we moved on to the main
experiment with the compound grating (see below). For all of the data
reported here, four stimuli were presented in a single fixation trial, each
stimulus lasting 420 ms, followed by a 100 ms blank.

To record from area V2, we advanced the electrode through V1 until it
entered white matter, identified by a characteristic change in activity. We
further advanced the electrode until it reached a second region of gray
matter. If the RFs of the cells in this gray matter were larger and more
eccentric than the RFs of the cells in the previous gray matter, we identi-
fied the recording site as V2. Additional confirmation of our distinction
between V1 and V2 was provided by examining the retinotopic relation-
ship between RFs across recording sites, for both areas.

Visual stimulus. After the initial characterization of the RF, and if the

neuron showed disparity selectivity to RDS, we proceeded to the main
purpose of this study. We constructed the stimulus by summing 47 sinu-
soidal gratings with different spatial frequencies but the same orienta-
tion. The components were a harmonic series with a fundamental fre-
quency of 0.25 cpd, and the spatial phase of each component was set
randomly and independently on each video frame. For almost all neu-
rons in V1, this stimulus contains many components that are in the
spatial passband, so the same frequency series could be used for testing all
cells. Disparity was applied in two ways. A “stimulus position disparity”
(similar to the disparities typically produced by natural viewing) was
applied by shifting all the components between the eyes by a common
visual angle (Fig. 1). A “stimulus phase disparity” was applied by shifting
the phase of all the components by a common phase angle (i.e., all com-
ponents have the same interocular phase difference). Note that these
phase disparities in broadband stimuli do not occur in natural vision
(Haefner and Cumming, 2008). These two types of disparity can also be
combined together. We tested at least 52 combinations (13 position dis-
parities � 4 phase disparities). On some stable recordings, we completed
as many as 120 combinations (15 position disparities � 8 phase dispar-
ities). We also interleaved left and right monocular images, a pair of
binocularly uncorrelated compound images (the phase of each compo-
nent was set independently in each eye), as well as a blank screen. In some
cells, some combinations were repeated more times than other combi-

Figure 1. Synthesizing binocular compound images. For simplicity, only cross sections of the
images are illustrated, and only three harmonics are shown. A pair of harmonic series was built
for the left (solid) and right (dotted) eyes, respectively. To create a pair of compound images
with a position disparity of 0.4 deg, all the components were shifted by 0.4 deg between the
eyes, and then summed. To create one with a phase disparity of �/2 rad, all the components
were shifted by an interocular phase difference of �/2 rad, and then summed. Phase disparity
could be combined with any position disparity. For combinations with zero phase disparity, the
paired compound images were related by a translation (i.e., the binocular image had natural
disparity). Other phase disparities produce image pairs that do not occur during natural binoc-
ular viewing.
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nations in the final data, because we adjusted the combinations as we
proceeded from one block to the next, to better characterize the cell.

The peak-to-peak contrast of images constructed in this way depends
on the phase relationship of the components. In cases in which the peaks
(or troughs) of the components are aligned, the contrast is higher than in
cases in which the peaks (or troughs) of the components are evenly
spread out. To present high-contrast images, and reduce variations in
overall contrast, we normalized each image so that the luminance range
was as wide as permitted on our display. The peak-to-peak contrast of
these images was typically 98%. On each frame, a new image was dynam-
ically created by randomly shuffling the phase of every component in one
eye. The phase of each component in the other eye was determined by the
combination of this shuffled phase, position disparity, and phase dispar-
ity. The length of the square patch was equal to the fundamental period
(i.e., the patch size was 4.0 � 4.0°), large enough that the edges of the
patch were outside the minimum response field of all the cells recorded.

For our compound grating, the set of stimuli with a phase disparity of
zero characterize disparity tuning in a way that is equivalent to a conven-
tional disparity-tuning curve, performed by displacing image regions
between the eyes. Notice also that the set of stimuli with a phase disparity
of � corresponded to a disparity-tuning curve with an anticorrelated
stimulus (the two eyes images are related by a translation and contrast
reversal). Despite this equivalence, these compound gratings differed
from RDS in two important ways: First, a random-dot pattern is noise in
two dimensions, whereas the compound grating was noise in only one
dimension. Second, the amplitude spectrum of an RDS has random fluc-
tuations in shape, whereas it was always flat in our compound gratings.
Because of the differences in the image properties, it was an empirical
question whether the subset of responses we find with compound grat-
ings were directly comparable with previous studies comparing corre-
lated and anticorrelated RDS. We therefore also tested a subset of neu-
rons with such RDSs.

Measures for characterizing traditional tuning. The response measure
used for all analyses was simply the mean firing rate over the duration of
the stimulus, shifted by 50 ms to account for the response latency. One of
our aims was to understand the construction of odd-symmetric disparity
tuning. To quantify the extent to which a set of responses was even or odd
symmetric, we calculated a symmetry index [modified from the study by
Read and Cumming (2004)]. We denote the response (mean firing rate)
to any one stimulus as r(x, �), where x indicates the position disparity,
and � indicates the phase disparity. The set of responses with no phase
disparity, r(x, 0), is equivalent to a traditional disparity-tuning curve, so
it is the symmetry of these data that we measured. The symmetry was
defined not simply relative to 0 disparity, but relative to the center of the
response range of the neuron. We estimated this using the centroid of the
tuning function:

xcentr���r�x,0� � runcorr��x dx/��r�x,0� � runcorr�dx,

where runcorr is the response to the uncorrelated condition. The disparity-
tuning function was then expressed relative to this centroid as follows:

r0� x� � r� x � xcentr,0)�runcorr. (1)

The firing rates are all expressed relative to the response to the uncorre-
lated condition, to isolate the part of the response that is caused by
disparity. This response can therefore be positive or negative, and the
extent to which it is even or odd symmetric can be determined from the
Fourier transform of r0(x). We calculated the sum, Sevn of the cosine
(even) functions across all frequency components and the sum Sodd of
the sine (odd) functions. Finally, we estimated the symmetry of the tun-
ing curve with the angular phase of the vector (Sevn, Sodd). A symmetry
phase of zero indicates a function that it perfectly even symmetric about
its centroid, whereas a symmetry phase of ��/2 indicates a perfectly
odd-symmetric function. A symmetry phase of � indicates a perfectly
even-symmetric response, but one that is dominated by a trough, rather
than a peak.

Modeling. This study combined stimuli differing in position dispar-
ity, traditionally used to characterize tuning, with various phase dis-
parities. Quantitative models give predictions of responses to all such

stimuli. For the disparity energy model, odd symmetry in the
disparity-tuning curve indicates that the left and right RFs are related
by a phase disparity. When tested with combinations of position and
phase disparity, such a model has a striking characteristic: the maxi-
mum response is to a stimulus containing a phase disparity that
matches that of the RFs. If the monocular RFs are Gabor functions
differing only in position and phase, this model predicts that the
response to a set of stimulus position disparities should also be a
Gabor function, described as follows:

genrg(x,�) � �A � e
�

� x�x0�2

2�2

� cos{2�f�x � x0� � � � �} � y0� 	

�
, (2)

where x and � are the position disparity and the phase disparity of the
stimulus, x0 and � are the position and phase disparity of the RF. � and f
are the SD and carrier frequency of the Gabor function. The function �.�	
is a half-wave rectifier. The function genrg(x, �) reaches maximum when
(x, 
) � (x0, �). As the stimulus phase disparity changes, only the phase
of the carrier should change, by a value equal to the change in stimulus
phase disparity (Haefner and Cumming, 2008).

The second model subtracted the output of one disparity energy model
from another. We call this model the “two-subunit” (2SU) model. Here,
the term “subunit” refers to the disparity-energy models that feed into
the full model. The term subunit is sometimes applied to the model
simple cells that feed into an energy model complex cell, a slightly differ-
ent usage. However, because all of our modeling and analyses ignore the
absolute phase of the stimulus components, our “subunits” could also be
simple cells (for additional discussion, see Haefner and Cumming, 2008).
The two SUs in our model differed in only one parameter: x0 (position
disparity), and the other six parameters were identical in the two sub-
units. We also added a coefficient w that represents the relative weight of
the inhibitory SU. The full description of the function was therefore as
follows:

g2SU(x,�) � �A � e
�

� x�x0�2

2�2

� cos{2�f(x � x0exc)	���}	y0�	

	

�w � �A � e
�

(x � x0inh)2

2�2

�cos{2�f(x � x0inh)	���}	y0� 	

�
, (3)

where the subscripts “exc” and “inh,” denote excitatory and inhibitory
subunits, respectively. Note that excitation and inhibition refer to the
sign in which the outputs are combined. They do not refer to conven-
tional classes of disparity tuning. Also, although we use only two SUs
(because this is sufficient to explain the data), more than two SUs can be
combined in this way.

Measures for testing model predictions. If the peak disparity is dif-
ferent for the two SUs, then the difference of the responses will define
an odd-symmetric curve (see Fig. 2). These two schemes for generat-
ing odd symmetry (phase disparity vs 2SU) can be differentiated by
examining the responses to combinations of phase and position dis-
parity. In particular, the envelope of a set of tuning curves across all
phase disparities should reveal the contributions of the two SUs (see
modeling results). We estimated the upward envelope, hup(x), simply
by taking the maximum response to any phase disparity for each
position disparity [and used the minimum to estimate the downward
envelope hdwn(x)] as follows:

hup(x) � max
�

[r�x,�� � runcorr]

hdwn(x) � min
�

[r�x,�� � runcorr]. (4)

Then, the position, �up, and width, �up, for the upward envelope were
given by the centroid and the SD as follows:

�up���hup(x)��x dx/��hup(x)�dx

�up
2 ���hup(x)��(x��up)2dx/��hup(x��dx, (5)
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respectively. The position, �dwn, and width, �dwn, of the downward en-
velope were calculated similarly (see Fig. 4). Differences between �up and
�dwn will tend to result in odd-symmetric disparity tuning. The size of
this effect also depends on the envelope width, so we calculate a normal-
ized offset as follows:


� � ��up��dwn)/�(�up
2 	�dwn

2 )/2. (6)

This normalization allows tuning curves of different spatial scales to be
compared. It also ensures that, if an envelope is poorly defined (hence has
a large �), the normalized offset is close to zero. Unless otherwise stated,
all measures of envelope offset use this normalized value.

Model fitting. Although we relied on these model-free measures to
characterize the basis of odd symmetry, we needed to use model fits to
explore how the 2SU model explains the effects of anticorrelation, using
Equations 2 and 3. We fit the full tuning function (52–120 data points)
with seven parameters of Equation 2. Six parameters characterized the
Gabor function (A, x0, �, f, �, y0), and one parameter, 	, implemented an

output nonlinearity at the final stage with an
exponent. The total number of parameters in
the 2SU model of Equation 3 was nine. The
functions genrg(x, �) and g2SU(x, �) were fitted
to the mean firing rate data r(x,�). To minimize
the dependence of the response variance on the
response mean, we first converted the functions
and the data to their square-root values (Prince
et al., 2002a). Then, the summed-square errors
of the functions were calculated. We searched
for the parameter combination that minimized
the summed-square error using fminsearch in
Matlab.

Correlation coefficients with circular variables.
Many of our analyses involved measuring cor-
relations between variables, at least one of
which was circular (typically a measure of
phases). For the correlation between a circular
variable, �, and a linear variable, x, we used the
circular-linear correlation Rx� (Mardia and
Jupp, 1999). It is related to Pearson’s correla-
tion coefficient as follows:

Rx�
2 �


xc
2 � 
xs

2 � 2
xc
xs
cs

1 � 
cs
2 , (7)

where 
xc � corr(x, cos�), 
xs � corr(x, sin�),
and 
cs � corr(cos�, sin�). The function corr(.)
denotes the Pearson’s correlation coefficient.
For N observations, the value �N � 3�Rx�

2 ��1
� Rx�

2 � follows an F distribution with degrees
of freedom (2, N � 3). In cases in which the two
variables are both circular, we use the circular–
circular correlation as follows:

R�
 �
�sin(�i � ��) � sin(
i � 
� )

��sin2(�i � ��) � sin2(
i � 
� )
,

(8)

where �� is the angular phase of (¥cos�i,¥sin�i).
For N observations, the value �R�
�NL1L2/L3�
follows a two-tailed normal distribution, where
L1 � ¥sin2(�i � ��)�N, L2 � ¥sin2(
i

� 
� )�N, and L3 � ¥�sin2(�i � ���
� sin2(
i � 
� �]�N.

Results
Model predictions
In the disparity energy model, linear sum-
mation in monocular receptive fields is
followed by addition and a squaring out-
put nonlinearity (Fig. 2A, top row). A

phase difference between monocular RFs (“RF phase disparity”)
is reflected in the symmetry of the disparity-tuning function with
no phase disparity in the stimulus (Fig. 2A, bottom row, red
curve). When a stimulus phase disparity was added, the phase of
the disparity-tuning function shifted accordingly. Previous stud-
ies of disparity selectivity have used stimuli equivalent to our
condition with zero phase disparity, in which the images in the
left and right eyes are related by a simple translation. This resem-
bles the disparities produced by natural viewing conditions.
Stimulus phase disparities in broadband images are not produced
by natural viewing, and we refer to these as unnatural disparities.
The peak response across all conditions occurred when both the
stimulus phase disparity matched the RF phase disparity and the
stimulus position disparity matched the RF position disparity

Figure 2. Model predictions. A, The disparity energy model of a simple cell is illustrated. The RFs had pure phase disparity. The
predicted responses to a broadband compound grating are shown as a set of tuning functions for position disparity. The stimulus
phase disparity is color coded (see color bar). The dashed curves indicate the envelopes. B, Two disparity energy models were
linearly combined. The RFs of the subunits had pure position disparity. One subunit fed an excitatory drive, and the other fed an
inhibitory drive. C, The output of a disparity energy model was passed through an additional nonlinearity. The model predicts
perfect symmetry of the envelope about a vertical axis. D, The outputs of the 2SUs were passed through additional nonlinearity
before combining the signals. The 2SU model predicts an offset between the upward and downward envelopes (no symmetry
about a vertical axis).
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(Fig. 2A, bottom row, peak of the purple curve). For a stimulus
phase disparity of � (anticorrelation), the tuning curve was in-
verted (Fig. 2A, bottom row, cyan curve). Figure 2A, dotted lines,
shows the envelope encompassing all responses. If the model had
a different RF phase disparity, the curves in Figure 2A would be
associated with a shifted value of stimulus phase disparity. That
is, the colors of the individual lines would change, but the enve-
lope of the responses is unaffected. Note that these envelopes
were symmetrical both about a horizontal axis and a vertical axis.
The width of the envelope reflects the envelope of the monocular
RFs.

Linearly combining two disparity energy models, which differ
only in RF position disparity, produced results very similar to the
disparity energy model, with an envelope that is symmetrical
about both vertical and horizontal axes. Note that the energy
model simulation in Figure 2A produced odd symmetry by
means of a phase disparity, whereas the odd symmetry in Figure
2B was produced by two subunits, each of which had an even-
symmetric response to disparity.

Incorporating an additional output nonlinearity at the fi-
nal stage of the energy model produced a characteristic pattern
(Fig. 2C). The nonlinearity accentuated the peak response and
hence broke the symmetry of the standard model about the
horizontal axis. This kind of asymmetry in the envelope pro-
vides a simple way to estimate the output nonlinearity re-
quired to best describe real neuronal responses with the energy
model. The symmetry of the envelope about a vertical axis was
preserved. Consequently, it remained true that the peak re-
sponse occurred when the stimulus contained a phase dispar-
ity matching that of the RFs, and the envelope peak still iden-
tified the RF position disparity. Note that the model in Figure
2 A was just a special case of this general model, with a final
output exponent of one.

The additional output exponent changed the shape of the
disparity-tuning curve (red line), so that, although the RF
phase disparity was �/2, the tuning curve was no longer ex-
actly odd symmetric. Thus, attempts to infer phase disparity
from the shape of the disparity tuning of real cells will have
systematic errors that depend on the output nonlinearity. Our
manipulation of phase disparity in the stimulus allowed us to
identify the RF phase disparity in a way that is not affected by
any output nonlinearity, because the stimulus phase disparity
that matched the RF phase disparity elicited the highest re-
sponse in all cases.

In the final model (Fig. 2D), we used the same two subunits, as
shown in Figure 2B, but passed the output of each through the
same expansive nonlinearity, before combining the two signals.
The individual subunits responded maximally to certain position
disparities. This property of the subunits derives from their RF
position disparities. As phase disparity was added to the stimulus,
the amplitude of the tuning curve of each subunit is reduced. The
additional nonlinearity is responsible for this reduction, so that
in each subunit, the response magnitude for anticorrelated stim-
uli is lower than for correlated stimuli. This remains true after
subtracting the output of one subunit from the other. The com-
bined response to correlated stimuli is odd symmetric, because
the response of the added subunit dominates at near disparities,
whereas the response of the subtracted subunit dominates at far
disparities. This broke the symmetry around the vertical axis seen
in the other three models. The overall positive peak of the upward
envelope approximately corresponds to the position disparity of
one subunit, whereas the minimum in the downward envelope
corresponds to the position disparity of the second subunit. This

lack of symmetry about a vertical axis cannot be produced by
variants of just a single energy model. Thus, envelope asymmetry
about a vertical axis provides an empirical signature of contribu-
tions from more than one subunit.

The responses to natural disparities (zero stimulus phase dis-
parity, red curve) are very similar in Figure 2, A–D. It is only by
comparing responses across a range of stimulus phase disparities
that the difference between the two mechanisms becomes appar-
ent. This comparison yields four important pieces of informa-
tion. First, the effect of an output exponent can clearly be visual-
ized because of a difference in the size of upward and downward
envelopes (Fig. 2C). Second, for the energy model, the stimulus
phase disparity that produces the maximum response matches
the RF phase disparity, regardless of any output nonlinearity.
Third, even for a 2SU model, the optimal stimulus phase dispar-
ity is close to the RF phase disparity of the excitatory subunit (a
measurement that is not affected by the output nonlinearity).
Fourth, the positions of the extrema in the envelope lie close to
the position disparities of the two SUs. The last point is informa-
tive only if the RF position disparities of the SUs are offset. Oth-
erwise, the test cannot differentiate the 2SU mechanism from a
single energy mechanism. The number of detected 2SU mecha-
nisms in the population of recorded cells therefore provides only
a lower limit of the true number.

Neuronal data
We recorded from 116 cells in V1 and 121 cells in V2 (this is not
an unbiased sample; many cells that did not show evidence of
disparity selectivity in our initial screening using an RDS are not
included in these figures). We selected cells for this study based
on three criteria. First, the median number of repetitions across
all the combinations of position disparity and phase disparity had
to be at least eight (mean, 20 for the analyzed cells). Second, the
maximum of the mean firing rates across all combinations had to
be 
10 spikes/s. Third, the square root of the firing rates across all
conditions had to show a significant effect of disparity condition
(one-way ANOVA, p � 0.01). Sixty-seven cells from V1 and 66
cells from V2 met these criteria. In a small number of cells, the
modulation was sufficiently weak that no systematic relationship
was clear between responses for the two different kinds of dispar-
ity. We therefore also required a significant interaction between
position disparity and phase disparity on a two-way ANOVA
( p � 0.01), which left us with a sample of 64 cells from V1 (duf
37; ruf 27) and 61 cells from V2 (duf 30; ruf 31). Note that the
recording chamber allowed us access to large regions of V1 on the
operculum that did not lie over V2. This allowed us to collect data
from neurons in V1 and V2 with RFs over similar eccentricity
ranges (mean, 5.2 deg; SD, 1.3 deg in V1; mean, 4.9 deg; SD, 1.3
deg in V2).

Example cells
Figure 3, A and B, shows the responses of V1 cells with substantial
odd-symmetric components in the disparity tuning for a phase
disparity of zero (red curves). Looking at the responses across all
conditions, it is clear that the upward envelope peaks at a differ-
ent disparity from the downward envelope. Figure 4 illustrates
how this shift was quantified, by calculating the centroid for each
one-half of the envelope. The significance of any envelope offset
was determined by bootstrap resampling and was highly signifi-
cant for the examples in Figure 3, A and B ( p � 0.001). Thus,
these two neurons show clear evidence of contributions from
more than one energy model SU.

Figure 3, C and D, shows the responses of two V1 neurons with
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responses to natural disparity (red curve) that are nearly even
symmetrical. Figure 3D shows an example that is nearly symmet-
rical about both vertical and horizontal axes, behaving almost
exactly as predicted by the energy model. Figure 3C shows an
example in which the effect of an additional output exponent (or
a thresholding) is clearly visible. This is so marked that the down-
ward envelope is poorly defined, and it is difficult to know
whether there is an offset between the upward and downward
envelopes. Consequently, these data are compatible with an en-

ergy model with additional threshold. Be-
cause our measurement of the envelope
offset takes into account the width of the
envelope (see Materials and Methods), the
offset for these data are small, and was not
significant on resampling ( p 
 0.05). It is
important to note that these two examples
of neurons that are well described by an
energy model could equally well be de-
scribed by a 2SU model, but there is no
feature in the data that requires us to in-
voke the 2SU model.

Cells recorded in V2 shared many of
their features with the cells in V1. For ex-
ample, V2 cells with an odd-symmetric
disparity tuning to natural disparities had
envelopes that were offset (Fig. 5A,B). The
V2 cells had stronger odd-symmetric com-
ponents and had clearer offsets than the
V1 cells shown in Figure 3, A and B. We
also found V2 cells with even-symmetric
disparity tuning. The envelopes of some of
these cells were symmetrical about a hori-
zontal axis (Fig. 5C, closely matching the
energy model), whereas the downward en-
velopes of other cells were greatly com-
pressed (Fig. 5D). Although the features
relevant for testing the underlying mecha-
nism were qualitatively similar between
the two areas, note that the range of dis-
parities spanned by the responses was
larger in the V2 cells than in the V1 cells.

This can be seen in the different scales of the abscissa between
Figures 3 and 5.

Population data
If combining inputs from more than one subunit plays an impor-
tant role in the generation of odd-symmetric disparity tuning,
then there should be a systematic relationship between two of our
measures: the envelope offset (which combines information from
all stimulus phase disparities), and the symmetry phase of re-
sponses to stimuli with zero phase disparity. The relationship
between the two variables in V1 neurons is shown in Figure 6A, in
which there is a strong correlation (Rx� � 0.63; p � 7.2 � 10�12).
In this plot, values of symmetry phase less than ��/2 are reflected
about ��/2, so that perfect even symmetry (symmetry phase of 0
or �) is plotted in the center, whereas perfect odd symmetry is
plotted at the left (for “near” cells) or right (“far” cells) extreme of
the abscissa. In the 2SU model, cells with a strong odd-symmetric
component in the disparity tuning should have a large offset
between the upward and downward envelopes, in the appropriate
direction. This yields points in either the top right or bottom left
quadrants. (Note that they need not lie along the identity line.
Exactly where model neurons fall depends on several of the
model parameters, such as the output nonlinearity.) Energy
model neurons should all lie along the horizontal axis, with zero
envelope offset. One-third (21 of 64) of the V1 cells had signifi-
cant envelope offsets, and only 2 of 21 of these fell in the wrong
quadrants. Note that, for neurons with even-symmetric tuning
curves, even if there were multiple subunits, this need not result
in an envelope offset. So the fraction of neurons showing signif-
icant offsets is a lower bound on the fraction that is constructed

Figure 3. Example cells from V1. A, B, Two cells are shown with an odd-symmetric component in the tuning for natural
disparity (red curve). Position disparity and phase disparity were combined in the stimulus. The abscissa indicates the position
disparity, and the line color indicates the phase disparity. The upward envelopes were offset from the downward envelopes. The
error bars indicate SE. C, D, Two cells are shown with mostly even-symmetric tuning for natural disparity. The envelopes showed
no offset (D) or a poorly defined offset (C).

Figure 4. Estimating offset between upward and downward envelopes. The light gray area
is the upward envelope of a set of tuning curves for eight different phase disparities. The dark
gray area is the downward envelope. The boundary of the two areas is the response to an
uncorrelated stimulus. The vertical solid lines indicate the estimated position (center of mass),
and the horizontal dashed lines indicate the estimated width (SD) of the envelopes. The small
horizontal lines at the end of the vertical lines indicate the 95% confidence interval for the
position estimate. This example is the same cell shown in Figure 3A.
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from two or more subunits. The remain-
ing V1 cells lay close to the horizontal line
in agreement with the energy model.

In V2, there was a strong correlation
between the reflected symmetry phase and
the normalized offset (Rx� � 0.80; p � 0)
(Fig. 6B). The correlation was significantly
stronger than we saw in V1 ( p � 0.020).
Of the 61 V2 cells, 27 (44%) showed signif-
icant envelope offsets. Furthermore, all of
the neurons with significant offsets fell in
the predicted quadrants. V2 also shows
fewer neurons with odd symmetry but lit-
tle envelope offset (that is, fewer cells in
which a single energy model using phase
disparity can account for the data). All of
these features can be explained by suggest-
ing that the increase in odd symmetry in
V2 (more values of reflected symmetry
phase close to ��/2) is in part explained
by combining inputs from V1 that have
different position disparities.

The demonstration of significant enve-
lope offsets in both V1 and V2 provides
statistical evidence that the traditional en-
ergy model does not completely capture
the responses of these neurons. Some in-
sight into the magnitude of these devia-
tions can be gained by comparing the up-
ward and downward envelope positions
for each cell. In the energy model, the two
envelope positions coincide (Fig. 2), so these data should lie along
the identity line. The data from V1 lie close to the identity line (rS

� 0.65; p � 1.3 � 10�8) (Fig. 7A), indicating a good deal of
agreement with the energy model. In contrast, the upward and
downward envelopes of the V2 cells were uncorrelated (rS �
�0.07; p � 0.60) (Fig. 7B). The difference between the correla-
tion coefficients for V1 and V2 was highly significant ( p � 1.9 �
10�6). Thus, these deviations from the energy model are substan-
tially larger in V2 than in V1.

An important feature of Figure 7 is that the marginal distribu-
tions of envelope positions were similar in V1 and V2, both for
upward (mean, 0.01 � 0.17° in V1; 0.01 � 0.14° in V2) and
downward envelopes (mean, 0.02 � 0.12° for V1; 0.02 � 0.12° for
V2). However, because of the different correlation, the scatter in
the difference between trough and peak locations was signifi-
cantly larger for V2 than for V1 (SD, 0.10 in V1; SD, 0.17 in V2; F
test, p � 10�4). All of these features follow if the output of V1
neurons (themselves close to the energy model) with different
position disparities are combined to generate odd symmetry in
V2 neurons. This could also provide a mechanism by which the
overall range spanned by individual disparity-tuning curves in
V2 might be wider than in V1 (Poggio et al., 1988), explaining
observed differences in “disparity frequency” (Cumming and
DeAngelis, 2001; Parker, 2007).

Phase disparity of RFs
The 2SU model provides a scheme in which it is possible to de-
scribe the form of responses to natural disparity without invoking
phase disparity, because differences in position disparity between
the subunits can generate tuning curves with a range of shapes.
Our data indicate that such a mechanism plays an important role
in V1 and in V2. This does not imply that phase disparity plays no

role. It is possible that the subunits themselves (constructed with
the traditional disparity energy model) contain phase disparities.
One of the advantages of the new stimulus we describe [with
many spatial components, unlike that of Haefner and Cumming
(2008)] is that a phase disparity within the subunits has a mea-
surable effect on the tuning. A striking feature of the energy
model is that the largest response across all conditions occurs in

Figure 5. Example cells from V2. A, B, Two cells are shown with a strong odd-symmetric component in the tuning for natural
disparity. The upward envelope was offset from the downward envelope. Plotting conventions are the same as in Figure 3. C, D,
Two cells are shown with mostly even-symmetric tuning for natural disparity. The envelopes were not offset or not well defined.

Figure 6. Relationship between symmetry phase and envelope offset. A, The offset was
correlated with the symmetry in the V1 population. The symmetry phase was reflected at
��/2, so that odd symmetry increased monotonically toward the ends of the abscissa. The
offset of the envelope was normalized by the width. The shape of the symbols indicates monkey
identity. The filled symbols represent cells with significant envelope offsets (bootstrap resam-
pling, p � 0.05). The labeled arrows indicate the example cells shown in Figure 3. B, The offset
was strongly correlated with the symmetry in the V2 population. All the cells with significant
offsets lay in the correct quadrant predicted by the 2SU model. The labeled arrows indicate the
example cells shown in Figure 5.
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the presence of a stimulus phase disparity (Fig. 5B) that matches
the RF phase disparity. If the subunits used in the 2SU model have
phase disparity, again the largest overall response will occur when
the stimulus has this phase disparity. Thus, simply estimating the
stimulus phase disparity associated with the largest overall re-
sponse provides a model-free way to demonstrate RF phase dis-
parity, even for the 2SU model. For each phase disparity, we
found the largest response, rpeak(�), elicited across position dis-
parity. We then used spline interpolation to estimate the phase
disparity producing the largest response. We ensured that the
interpolated function had properties of a real periodic function
(i.e., the two ends connect smoothly). This analysis of our full
data set allows phase disparity to be estimated directly, regardless
of the symmetry in disparity tuning. To examine whether these
phase disparities also play a systematic role in determining the
shape of the disparity-tuning curve, we examined the relation-
ship between symmetry phase and the optimal stimulus phase
disparity. The significant correlation between these values in V1
(R�
 � 0.35; p � 0.01) (Fig. 8A) indicates that phase disparity
does indeed play a significant role in constructing odd-symmetric

disparity selectivity. In fact, 14 of 64 (22%) of the cells had an
optimal phase disparity significantly deviated from zero (boot-
strap resampling, p � 0.05). Neurons from V2 showed a similar
pattern (R�
 � 0.58; p � 7.0 � 10�4), with 13 of 61 (21%) of the
cells having significant phase disparities (bootstrap resampling,
p � 0.05) (Fig. 8B). These results support previous studies sug-
gesting that a component of odd symmetry in the disparity tun-
ing of both simple and complex cells can be explained by phase
disparity in the RFs. Importantly, the range of optimal stimulus
phase disparities is similar in V1 and V2. This suggests that these
RF phase disparities could be inherited from disparity-selective
neurons in V1, without the need to combine monocular inputs
from scratch in V2. These phase disparities in V2 are correlated
with the envelope offset (Rx� � 0.51; p � 2.0 � 10�6), suggesting
that the two mechanisms work together to produce odd symme-
try. In V1, these two measures were not significantly correlated
(Rx� � 0.18; p � 0.13).

This demonstration of RF phase disparity is unsurprising for
V1 simple cells, where phase disparity can be clearly demon-
strated by comparing monocular receptive field maps (Freeman
and Ohzawa, 1990; Anzai et al., 1999a). But for complex cells,
especially cells in extrastriate cortex, the evidence that phase dis-
parity plays a role has been much more indirect, based on the
shape of the response to disparity (Ohzawa et al., 1997; Anzai et
al., 1999c; Prince et al., 2002b; DeAngelis and Uka, 2003). We
classified cells as simple or complex on the basis of the modula-
tion [F1/F0 ratio (Skottun et al., 1991)] in firing rate to a monoc-
ular grating at the preferred orientation and spatial frequency.
The distribution of phase disparities was similar in simple and
complex cells. Thus, this result produces the strongest evidence to
date that phase disparity plays an important role in shaping the
disparity selectivity of complex cells.

Previous studies of phase disparity in the cat reported a rela-
tionship between phase disparity and orientation. In simple cells,
neurons with vertically oriented RFs tend to have a wider range of
phase disparity (DeAngelis et al., 1991; Ohzawa et al., 1996; Anzai
et al., 1999b). In complex cells, a weak correlation was observed
in the opposite direction (Ohzawa et al., 1997; Anzai et al.,
1999c). However, the complex cell studies inferred phase dispar-
ity from the symmetry of the disparity response. Using our more
direct measure (the optimal stimulus phase disparity), we found
no evidence that cells preferring horizontal orientation (within
20 deg of horizontal) have less phase disparity than cells prefer-
ring vertical orientation (within 20 deg of vertical) in either V1 or
V2 (F test, p � 0.12 for V1 and p � 0.27 for V2). We also saw no
differences when looking at simple or complex cells separately.

Attenuated tuning for anticorrelated stimuli
The 2SU model, like neurons in V1 and V2, exhibited an attenu-
ated disparity tuning for a phase disparity of � compared with the
disparity tuning for a phase disparity of zero. Notice that, when a
phase disparity of � is applied to our compound grating, the
result is an anticorrelated stereogram, so this result replicates
previous studies using RDSs (Cumming and Parker, 1997) and
bars (Ohzawa et al., 1990; Ohzawa, 1998). Even the energy model,
with a final output exponent, can produce some such attenuation
(Lippert and Wagner, 2001), at least for tuning curves that are not
odd symmetric (Read et al., 2002). The 2SU model allows a much
wider range of tuning curves and attenuation magnitudes to be
explained. To examine whether the 2SU model accounts for the
observed effects of anticorrelation, we fit the energy model and
the 2SU model to the entire data set for each cell (an example is
shown in Fig. 9) and examined the fitted responses to anticorre-

Figure 7. Relationship between the positions of the upward and downward envelopes. A, In
the V1 population, the two positions were highly correlated. The points lay close to the identity
line (dashed), in broad agreement with the energy model. The positions of the envelopes were
not normalized by their widths. The filled symbols represent cells with significant offsets as in
Figure 6 (bootstrap resampling, p � 0.05). B, In the V2 population, the two positions were not
correlated, indicating much larger deviations from the energy model.

Figure 8. Relationship between symmetry phase and optimal phase disparity. A, The opti-
mal phase disparity (stimulus phase disparity producing the maximum spike rate) was corre-
lated with the symmetry phase in the V1 population. The standard energy model predicts points
that lie along the diagonal. The filled symbols represent cells with significant optimal phase
disparity (bootstrap resampling, p � 0.05). The shape of the symbols indicates monkey iden-
tity. B, A similar correlation was found in the V2 population. Cells in both V1 and V2 seem to use
RF phase disparity to build odd-symmetric tuning. Note that, in this plot (unlike Fig. 6), the
symmetry phase is not reflected at��/2. Because both variables are circular, the full range can
be used.
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lation. This is the first data analysis to use
Equations 2 and 3 in their explicit forms.
We use the ratio of the amplitudes of re-
sponses to anticorrelated and correlated
stimuli to quantify this attenuation. For
the energy model fits, the amplitude ratio
(median, 0.86 in V1; median, 0.93 in V2) is
significantly larger than for the fits with
the 2SU model (median, 0.41 in V1; differ-
ence Wilcoxon’s test, p � 1.2 � 10�6; me-
dian, 0.40 in V2; difference Wilcoxon’s
test, p � 1.7 � 10�7). We compared these
model results to a purely descriptive mea-
sure of the attenuation based on fitting Ga-
bor functions of different amplitudes to
the correlated and anticorrelated data,
with no constraints on the fitted amplitude
ratio (Cumming and Parker, 1997;
Haefner and Cumming, 2008). The ratio
estimated this way (median, 0.44 in V1;
0.41 in V2) is very similar to that produced
by the 2SU fits (0.41 and 0.40, respectively;
neither different by Wilcoxon’s test). This
suggests that the summation of two energy
model-like subunits provides an adequate
explanation for the observed response at-
tenuation for anticorrelated stimuli.

Note that the effects of anticorrelation
on neuronal responses are similar in both
areas, and the 2SU model fits these better
than the energy model. The similarity be-
tween V1 and V2 may seem surprising
given the differences we demonstrate be-
tween V1 and V2 above. However, the pri-
mary difference is that V2 neurons appear
to have larger differences in position dis-
parity between subunits. This need not
have a substantial impact on responses to
anticorrelation; it is possible that the attenu-
ated responses to anticorrelation in V1 neu-
rons are produced by summing two sub-
units, but with similar position disparities.

These conclusions depend on the as-
sumption that attenuation observed using
these compound gratings is similar to that
observed with RDS. We were able to exam-
ine this in a subset of neurons for which we
obtained responses with both RDS and com-
pound gratings. Many cases showed strik-
ingly similar responses (Fig. 10), and the amplitude ratio for RDS
was very similar to that for compound gratings both in V1 (rS �0.73;
p � 0.006; n � 19) and in V2 (rS � 0.76; p � 0.009; n � 11) (Fig. 11).
Thus, the 2SU mechanism can explain the effect of anticorrelation in
both RDS and compound gratings. Interestingly, a similar compar-
ison of RDS with compound gratings containing only two compo-
nents found that attenuation in the compound gratings was signifi-
cantly smaller (Haefner and Cumming, 2008). This suggests that
including a range of frequency components improves the character-
ization of the two subunits.

Discussion
We describe the effects of a new kind of disparity manipulation
on the activity of disparity-selective neurons in areas V1 and V2.

This manipulation involves applying the same interocular phase
shift to all of the Fourier components of an image (stimulus phase
disparity). When combined with traditional disparity (stimulus
position disparity), this reveals new features of the mechanism by
which signals about disparity are constructed in V1 and V2. First,
it confirms the predictions of a new model (Haefner and Cum-
ming, 2008) suggesting that the responses of many neurons
(about one-third) represent the summation of responses from
two (or more) subunits that behave like the disparity energy
model (the 2SU model). Second, these subunits are more strongly
related to the presence of odd symmetry in V2 than in V1, pre-
sumably reflecting a systematic transformation in the projection
from V1 to V2. Third, we show that phase disparities are present
within the subunits, and these phase disparities also play an im-

Figure 9. Fitting a set of tuning curves with two different models. A, The energy model fit failed to capture important features
of the data from an example V1 cell. B, The 2SU model provided a good fit to the same example cell. Error bars indicate SE.

Figure 10. Similarity with responses to correlated and anticorrelated RDSs. A, From the various combinations of position
disparity and phase disparity of a compound image, the disparity combinations with a phase disparity of zero or of � were
extracted from the data of an example V1 cell. The smooth curves are Gabor functions fitted to the data. The two functions shared
all their parameters, but the amplitude and the phase. B, The neuron produces very similar responses to binocularly correlated and
anticorrelated RDSs. C, Same as in A, but a cell recorded in V2. D, This V2 cell exhibited higher responses to an RDS; otherwise, the
pattern of results is very similar. Error bars indicate SE.
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portant role in generating odd-symmetric tuning, both in V1 and
in V2. This is the first demonstration that phase disparities are
represented in the extrastriate cortex.

The geometry of binocular projection means that small areas
of the image are very similar in the two eyes, up to a translation
(i.e., it produces stimulus position disparities). The 2SU model
was originally developed to explain how neurons are able to ded-
icate their dynamic range to these naturally occurring disparities
(Haefner and Cumming, 2008), and the distinction was demon-
strated in responses to gratings with just two frequency compo-
nents. However, for any given pair of spatial frequencies, situa-
tions might occasionally occur in which by chance two
frequencies exhibit the same interocular phase difference. In con-
trast, situations in which many frequency components all share
the same phase disparity are vanishingly rare (hence we refer to
these as “unnatural”). For this reason, the observation (Fig. 8)
that many neurons show their strongest response to stimuli with
such phase disparity in our broadband stimulus, and the correla-
tion between this phase disparity and odd-symmetric tuning, is a
powerful vindication the role of phase disparity. For V1 complex
cells, and for cells in extrastriate cortex, this is the most direct
evidence to date for a role of phase disparity. Haefner and Cum-
ming did not rule out a contribution from phase disparities.

In addition to demonstrating the importance of RF phase dis-
parity, these data also demonstrate the operation of an additional
mechanism [as suggested by Haefner and Cumming (2008)] that
generates odd-symmetric disparity tuning: combining the out-
puts of two energy model neurons that have different position
disparities. The fact that the envelope of all responses is not sym-
metrical around a vertical axis (illustrated in Fig. 2) is a distinctive
prediction of the 2SU model, and is one that can be seen directly
in such plots. In the past, a number of modifications to the energy
model have been proposed to account for quantitative discrep-
ancies with real data, including modified output nonlinearities
(Lippert and Wagner, 2001), normalization (Ohzawa et al.,
1997), and nonlinearities before binocular summation (Read et
al., 2002). None of these previous suggestions accounts for the
pattern of results demonstrated here. Indeed, it is hard to see how
any model using just one pair of binocular filters in quadrature
could explain this kind of asymmetry. Thus, these new data pro-
vide powerful support for the 2SU model of Haefner and Cum-
ming (2008), who only explored responses to gratings with two
components. We show here that this model makes a distinctive
prediction about responses to broadband patterns and that neu-
rons in V1 and V2 behave as predicted.

If the two subunits do not have phase disparities, the entire
dynamic range of a 2SU model is spanned by naturally occurring
disparities. This may be one reason why the 2SU mechanism is
used by real neurons (Haefner and Cumming, 2008). The model
achieves this in two stages. In the first stage, nonlinearity at the
output of a traditional energy model enhances the peak re-
sponses. If this peak response occurs for a pure position disparity,
the resulting enhancement for natural disparities is greater than
suppression by unnatural disparities. In the second stage, the
response of a second such unit, with a different peak location, is
subtracted. The result is that both extrema now occur for natural
disparities. This subtraction is similar to summation of two sub-
units, provided the second subunit produces a pronounced min-
imum response for some natural disparity. Such responses are
characteristic of the “tuned inhibitory” cells, which are uncommon
outside V1. This suggests that one important function of tuned in-
hibitory neurons is that they form building blocks for odd-
symmetric disparity-tuning curves early in the visual hierarchy.

Because the 2SU model explains how the dynamic range is
concentrated on naturally occurring disparities, it can also ex-
plain why a related manipulation (anticorrelation) reduces re-
sponse magnitudes in disparity-selective neurons (Cumming
and Parker, 1997; Ohzawa, 1998). In anticorrelated RDS one
eyes’ image is contrast reversed. This corresponds to applying a
stimulus phase disparity of �. When this manipulation was ex-
plored in compound gratings with only two components, the
attenuation observed was systematically weaker than that ob-
served for RDS (Haefner and Cumming, 2008). Here, we show
that in a compound grating with many components, the attenu-
ation observed is very similar to that in response to RDS. This
increase in attenuation as spatial components are added is pre-
dicted by the 2SU model. Importantly, the good agreement we
find between attenuation for RDS and compound gratings is not
inevitable, because there are two important differences between
these two stimuli. First, the compound grating is a one-
dimensional noise pattern, whereas RDS are two-dimensional.
Perceptually, anticorrelation is more disruptive in two-
dimensional noise than in one-dimensional noise (Read and Ea-
gle, 2000). That these stimuli have similar effects in early visual
cortex reinforces the view that processing downstream of V1/V2
is required to explain the perceptual effects of anticorrelation
(Janssen et al., 2003). Second, RDS patterns have random varia-
tion in the power at individual spatial frequencies (although on
average the spectrum is flat), whereas our compound gratings
have flat power spectra in every frame. These fluctuations do not
play an important role in the attenuation produced by
anticorrelation.

In the case of extrastriate cortex, the use of a 2SU model seems
natural; it is easy to imagine that several disparity-selective neu-
rons from V1 converge onto a single disparity selective neuron in
V2. If those V1 afferents have different position disparities, this
provides a mechanism for generating odd-symmetric disparity
tuning in area V2. The strong relationship between our estimate
of subunit offset and the degree of odd symmetry in V2 (Fig. 6)
indicates that such a mechanism does indeed play an important
role. It seems likely that a similar mechanism in subsequent pro-
jections contributes to the increasing tendency toward odd-
symmetric tuning as the visual hierarchy is ascended (Cumming
and DeAngelis, 2001).

The same proposal, that V2 neurons receive input from V1
neurons with different disparity selectivity, accounts for another
property of V2 neurons, their response to edges defined only by
disparity in RDS (von der Heydt et al., 2000; Bredfeldt and Cum-

Figure 11. Similar attenuation of responses to anticorrelated stimuli across the two image
classes. For each stimulus class (i.e., compound gratings and random dots), we calculated the
ratio of disparity-tuning amplitude with anticorrelated stimuli over the amplitude with correlated
stimuli. No difference was observed in the ratio between the image classes, in either V1 or V2.
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ming, 2006). The model proposed by Bredfeldt and Cumming
(2006) requires in addition that the RF locations of the V1 inputs
differ somewhat. Note that, because the disparity applied in the
current study was uniform over a region of 4°x4°, the RF displace-
ments proposed by Bredfeldt and Cumming (2006) would not
have altered the observations we report here. Consequently, a
single model in which V2 neurons receive input from at least two
V1 neurons, which differ both in their disparity selectivity and
their RF location, is able to explain all of the data presented here
and the data of Bredfeldt and Cumming (2006). Combining in-
puts from V1 subunits with different disparity preferences has
also been used to explain differences between V1 and V2 in sig-
naling relative disparity (Thomas et al., 2002). Once again, it
seems plausible that a similar process occurs in subsequent pro-
jections, and this might explain how responses to more complex
surfaces are generated in MT (Nguyenkim and DeAngelis, 2003)
or IT (Janssen et al., 2001).

The energy model provides a simple account of many proper-
ties of initial disparity coding. Phase disparities of RFs make cells
maximally responsive to unnatural stimuli, a striking property
that we demonstrated in some V1 and V2 neurons. Although
these signals may serve useful functions when determining stereo
correspondence (Read and Cumming, 2007), it seems wasteful to
replicate these signals higher in the visual pathway. We showed
that in V1, and particularly in V2, signals from neurons with
different RF position disparities are combined to produce odd-
symmetric tuning by a mechanism different from RF phase dis-
parity. This mechanism ensures that each cell devotes more of its
dynamic range to signaling naturally occurring stimuli. The ma-
nipulation we described can be applied to any image, and so can
readily be adapted to see whether this is a general property of
projections in the extrastriate cortex.
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