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Abstract
Gaboxadol or 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP) is a selective agonist for the
δ-subunit containing extrasynaptic GABAA receptors that will soon enter the U.S. market as a sleep
aid (Winsky-Sommerer et al., 2007). Numerous studies have shown that systemic administration of
THIP reduces wakefulness and increases sleep both in humans and rats (Lancel and Langebartels,
2000; Walsh et al., 2007). However, it is yet unclear where in the brain THIP acts to promote sleep.
Since the perifornical lateral hypothalamus (PFH) contains orexin neurons and orexin neurons are
critical for maintenance of arousal (McCarley, 2007), we hypothesized that THIP may act on PFH
neurons to promote sleep. To test our hypothesis, we used reverse microdialysis to perfuse THIP
unilaterally into the PFH and studied its effects on sleep-wakefulness during the light period in freely
behaving rats.

Microdialysis perfusion of THIP (100 µM) into the PFH produced a significant reduction in
wakefulness with a concomitant increase in nonREM sleep as compared to ACSF perfusion. REM
sleep was unaffected.

This is the first study implicating the δ-subunit containing extrasynaptic GABAA receptors in PFH
in control of sleep-wakefulness in freely behaving rats.
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The γ-aminobutyric acid (GABA) system is closely linked with the regulation of sleep-
wakefulness. Thus, it is not surprising that pharmacological landscape for treatment of various
sleep disorders including insomnia have been dominated by agents that activate GABAA
receptors (Wafford and Ebert, 2006). Classical synaptic GABA transmission results in phasic
inhibition that is mainly mediated by γ2 subunits containing postsynaptic GABAA receptors
(Rudolph and Mohler, 2006; Ebert et al., 2006; Olsen et al., 2007), In contrast, tonic inhibition
is mainly mediated by δ subunit containing “extrasynaptic” GABAA receptors (Olsen et al.,
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2007). These "extrasynaptic” GABAA receptors have a higher affinity for GABA and slower
rates of desensitization and deactivation than do the classical synaptic receptors.

The GABAA agonist THIP selectively activates extrasynaptic GABAA receptors (Winsky-
Sommerer et al., 2007). Systemic administration of THIP induces sleep in rats and humans
(Faulhaber et al., 1997; Lancel, 1997). However it is yet unknown where in the brain does
THIP act to induce sleep.

There is strong evidence indicating that the PFH is critical for wakefulness. Although the PFH
contains several cell types, including the orexin/hypocretin and the melanin concentrating
hormone containing neurons, there is compelling and consistent evidence implicating the
orexins neurons in the control of wakefulness (McCarley, 2007). For example, local
administration of orexin in various brain regions produced wakefulness (Bourgin et al.,
2000; Thakkar et al., 2001; Xi et al., 2001; Methippara et al., 2000). In contrast, a deficiency
or reduction of orexinergic neurotransmission resulted in a reduction in wakefulness and
cataplexy like episodes in rodents (Lin et al., 1999; Chen et al., 2006; Gerashchenko et al.,
2001; Chemelli et al., 1999; Thakkar et al., 1999) and narcolepsy in humans (Thannickal et
al., 2000; Mignot, 2004). Single unit recording studies suggest that the orexin neurons exhibited
the Wake-On/REM –Off discharge pattern (W>nonREM<REM) (Alam et al., 2002; Lee et al.,
2005; Mileykovskiy et al., 2005). The δ-subunit-containing GABAA receptors are present in
the PFH (Pirker et al., 2000) and the role of PFH GABAA receptors in sleep induction has been
previously shown (Alam et al., 2004). However, it is yet unclear whether extrasynaptic
GABAA receptors in the PFH have any role in control of sleep-wakefulness. To evaluate the
role of δ-subunit containing extrasynaptic GABAA receptors in the PFH and its influences on
sleep-wakefulness, we examined the effects of THIP locally administered into the PFH on
spontaneous bouts of sleep-wakefulness in freely behaving, naturally sleeping rats.

METHODS
Animals & Surgery

Adult male Sprague-Dawley rats were housed under constant temperature, with ad libitum
access to food and water, and with 12 h light (0700h to 1900h) and dark (1900h to 0700h) cycle
at least 10 days before surgery.

Under sterile conditions and using the standard surgical protocol (for details see Thakkar et
al., 2001. Thakkar et al, 2008), the animals were implanted with electrodes for recording
electroencephalogram and electromyogram for determination of behavioral state. Intracerebral
guide cannulas (CMA/Microdialysis, Acton, MA; for lateral insertion of the microdialysis
probes) were implanted at 90 degree angle above the target site in the orexinergic zone of the
PFH. The target coordinates (Paxinos and Watson, 1998) for the tip of the microdialysis probe
were: AP −3.3, ML ± 1.5, DV −8.5, relative to bregma and skull surface at bregma. Every
effort was made to minimize animal suffering and to reduce the number of animals used. All
animals were treated in accordance with the American Association for Accreditation of
Laboratory Animal Care’s policy on care and use of laboratory animals. All experiments were
conducted in accordance with the Guide for the Care and Use of Laboratory Animals and
approved by the Animal Research Committee of the Boston VA Healthcare System.

THIP-hydrochloride—4,5,6,7-tetrahydroisoxazolo-pyridin-3-ol, a selective agonist for δ-
subunit-containing extrasynaptic GABAA receptors (Winsky-Sommerer et al., 2007) was
purchased from Tocris Biosciences Ellisville, Missouri and dissolved in artificial cerebrospinal
fluid (ACSF = NaCl 147 mM, KCl 3 mM, CaCl2 1.2 mM, MgCl2 1.0 mM, pH 7.2) to make
a stock solution of 1 mM. Three concentrations, (1, 10 and 100 µM) were used in this study to
provide an effective concentration of 0.1, 1 and 10 µM at the probe tip (Thakkar at et. 1998).
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Post-operative Recovery, habituation and sleep-wakefulness recordings of sleep-
wakefulness

Experiments were conducted in sound-attenuated chambers with food and water available ad
libitum and lights on from 0700 to 1900 hr; After 3 days of post-operative recovery, the rats
were tethered to a light weight recording cable and habituated to the recording setup for at least
7 days before the experiment was begun. The animals remained tethered until the end of the
experiment except during probe insertion.

Unilateral microdialysis perfusion of THIP coupled with sleep-W recordings in freely
behaving rats

A unilateral microdialysis probe was implanted. The following protocol for probe insertion
was used: The rat was disconnected from the recording cable and gently swaddled in a towel.
After removing the stylus, a microdialysis probe (CMA 11, 1 mm membrane length, 0.24 mm
O.D; CMA/Microdialysis, Acton, MA) was gently inserted into the guide cannula. The flow
was checked and the rat was reconnected. After allowing 12 hr for recovery from probe-
insertion and for equilibrium at the probe tip, the experiment was begun. The experimental
protocol is described in Table 1. ACSF and/or THIP were perfused @ 2 µl/min. Most previous
studies have performed systemic administration of THIP during the light (inactive) period
(Lancel and Faulhaber, 1996;Vyazovskiy et al., 2005;Winsky-Sommerer et al., 2007) and
found subsequent effects on sleep. Since a key purpose of this study was to define brain region
where THIP might its sleep inducing effects in rats; in this initial study, we decided to perform
microdialysis perfusion of THIP during the light period.

Localization of the injection site
On completion of the experiment, the animals were euthanized under deep Phenobarbital
anesthesia and perfused with 0.9% saline followed by perfusion of 10% formalin. The brains
were isolated, blocked and processed for orexin-A immunohistochemistry (Chen et. al.,
2006) to localize the injection site in the PFH.

Analysis of Behavioral States
Behavioral state data was acquired and digitized using the Harmonie software (Stellate
Systems, Montreal, Canada and sleep-wakefulness was visually scored in 10 sec epochs as (1)
Wakefulness, (which included both active and quiet wakefulness) determined by the presence
of low amplitude, high frequency desynchronized EEG with the concomitant presence of active
muscle tone; (2) non-REM sleep; determined by the presence of low frequency, high amplitude,
synchronized EEG with low EMG tone; and (3) REM sleep, determined by complete absence
of muscle tone along with desynchronized EEG (Thakkar et al, 2003). The effect of THIP on
the sleep-wakefulness was analyzed by repeated measure ANOVA followed by Bonferoni’s
test (EZAnalyze Ver 3.0. http://www.ezanalyze.com).

RESULTS
Only those animals with microdialysis probe tips (N=7) in the PFH as revealed by orexin-A
immunohistochemistry were included in data analysis. A representative photomicrograph
illustrating the perfusion site in the midst of orexin neurons is shown in Figure 1

The behavioral state data during two ACSF perfusions were comparable. Therefore behavioral
state data during ACSF perfusion were pooled together. As described in Table 2 and illustrated
in Figure 2, there was significant decrease in wakefulness ([F=3.25; DF=27; p<0.05, N=7, One
way RM ANOVA] with a concomitant increase in nonREM sleep [F= 3.54; DF=27; p<0.05,
N=7, One way RM ANOVA] during three hours of unilateral THIP perfusion into the PFH as
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compared with during ACSF perfusion. Post-hoc Bonferroni tests revealed that the 100 µM
dose of THIP significantly reduced wakefulness (Mean T=3.9; p<0.05) and increased nonREM
sleep (T=4.1; p<0.05). Although REM sleep was decreased during THIP perfusion, the effect
did not reach significance [F=0.71; DF=27; p=0.559, N=7, One way RM ANOVA] (see Table
2 and Figure 2). The changes in the behavioral states returned to baseline during 90 min of
post-THIP ACSF perfusion (data not shown)

DISCUSSION
Local unilateral administration of THIP, a selective agonist for δ-subunit containing
extrasynaptic GABAA receptors in the PFH produced a significant increase in nonREM sleep
with a concomitant reduction in wakefulness during the light period in freely behaving rats.
To our knowledge, this report is the first implicating the δ-subunit containing extrasynaptic
GABAA receptors in the PFH in the regulation of sleep-wakefulness in freely behaving rats.

The use of a microdialysis probe to apply drugs locally in specific regions of the brain provides
precise control over the concentration and duration of the drug administration and offers several
advantages over other techniques including the ability to deliver low and constant
concentrations of drugs without disturbing the animal (Thakkar et al., 1998). In addition, the
drug delivered through microdialysis probe does not diffuse more than 1 mm from the probe
membrane (Hocht et al., 2007; Westerink and De Vries, 2001). One limitations associated with
reverse microdialysis is that the brain concentration of the delivered drug needs to be estimated
from in vitro probe experiments. Previous studies done in our lab suggest that ~10% of the
drug diffuses out of the probe (Portas et al., 1996). Thus, perfusion of 100 µM of THIP will
deliver 10 µM concentration of THIP outside the probe.

Numerous studies have shown that THIP selectively activates the δ-subunit containing
extrasynaptic GABAA receptors in the brain (Krogsgaard-Larsen et al., 2004; Winsky-
Sommerer et al., 2007; Wafford and Ebert, 2006) and systemic administration of THIP, in rats
and humans, increases nonREM sleep and reduces wakefulness without affecting REM sleep
(Lancel and Faulhaber, 1996; Lancel and Langebartels, 2000). Although, in vitro studies
conducted in mice suggest that the ventrobasal thalamus may be critical for THIP induced sleep
promotion (Belelli et al., 2005; Jia et al., 2005), recent in vivo studies have shown that systemic
THIP administration does not promote sleep in mice (Vyazovskiy et al., 2005; Winsky-
Sommerer et al., 2007).

Our study suggests that unilateral administration of 100 µM THIP into the PFH increased
nonREM sleep and reduced wakefulness as compared to ACSF perfusion. This effect may be
due to THIP induced inhibition of orexin neurons because Alam et al. (2005) have shown that
orexinergic neurons are under GABAergic control during sleep although, THIP induced
inhibition of other no-orexinergic neurons cannot be ruled out.

Unilateral perfusion of THIP in the PFH did not produce any significant effect on REM sleep,
most likely because the critical REM sleep promoting neurons are in the brainstem (Datta,
2007).

In conclusion, while further studies especially bilateral infusion of THIP in the PFH and other
wakefulness centers (Datta and Maclean, 2007) and monitoring the effects of THIP during the
dark period are necessary; our initial study suggests that unilateral perfusion of THIP, a
selective extrasynaptic GABAA receptor agonist, into the orexinergic PFH increased nonREM
sleep and reduced wakefulness during the light period in freely behaving, naturally sleeping
rats. This is the first study to implicate extrasynaptic GABAA receptors in the orexinergic PFH
in the control of sleep-wakefulness and the first to localize the effects of THIP to a specific
brain region in freely behaving rats.
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Figure 1.
A representative photomicrograph illustrating the localization of the microdialysis probe tip
(black arrow) in the midst of orexin neurons (black arrowheads) in the orexinergic PFH is
shown. All the probe tips (N=7) were localized within the orexinergic PFH. Abbreviations: mt
= mammillothalamic tract. Calibration bar = 50 µm
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Figure 2.
Unilateral microdialysis perfusion (3 hr) of 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol
(THIP; also known as Gaboxadol), a selective agonist for δ-subunit containing extrasynaptic
GABAA, into the orexin-rich perifornical hypothalamus increased the amount of time (Mean
± SEM; N=7) spent in nonREM and decreased the amount of time spent in wakefulness during
light period compared to ACSF perfusion. REM sleep was not affected. One way repeated
measures ANOVA followed by Bonferroni’s post hoc test revealed that the maximum effect
was produced by the highest (100 µM; effective concentration at the probe tip = 10 µM) dose
of THIP. * = p < 0.05; level of significance (see text for details).
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Table 1
Experimental Protocol.

ACSF perfusion Day 1 ACSF perfusion begins at 09.30 – 15.30 hr with two syringe changes to match syringe changes on THIP
perfusion days

THIP (1 µM) Perfusion Day 2 ACSF perfusion:-09.30 to 11.00 ; THIP perfusion (1 µM):-11.00 to 14.00 ACSF: - 14.00 to 15.30 hr.
ACSF perfusion Day 3 Same as described for Day 1
THIP (10 µM) Perfusion Day 4 Same as described for Day 2 except 10 µM of THIP will be used
ACSF perfusion Day 5 Same as described for Day 1
THIP (100 µM) Perfusion Day 6 Same as described for Day 2 except 100 µM of THIP will be used
ACSF perfusion Day 7 Same as described for Day 1
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Table 2
Percent time (Mean ± SEM, N=7) spent in during 3 hr of THIP perfusion.

THIP
ACSF 1uM 10uM 100uM

Wakefulness 53.51 ± 2.9 47.21 ± 3.2 46.20 ± 2.8 42.87 ± 5.4
nonREM 41.83 ± 2.5 47.54 ± 3.1 48.21 ± 2.6 52.69 ± 4.9

REM 4.84 ± 0.7 5.43 ± 1.2 5.78 ± 0.7 4.63 ± 1.1
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