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Abstract
Tracer enrichment data are fitted by multicompartmental models to estimate rate constants and fluxes
or transport rates. In apolipoprotein turnover studies, mass measurements are also available, e.g.,
apolipoprotein B (apoB) levels in VLDL, IDL and LDL, and are often essential to calculate some of
the rate constants. The usual method to use mass measurements is to estimate pool masses along with
rate constants. A systematic alternative approach is developed to use flux balances around pools to
express some rate constants in terms of the other rate constants and the measured masses. The
resulting reduction in the number of parameters to be estimated makes the modeling more efficient.
In models that would be unidentifiable without mass measurements, the usual approach and the
proposed approach yield identical results. In a simple two-pool model, the number of unknown
parameters is reduced from four to two. In a published 5-pool model for apoB kinetics with three
mass measurements, the number of parameters is reduced from 12 to 9. With m mass measurements,
the number of responses to be fitted and the number of parameters to be estimated are each reduced
by m, a simplification by 1/4 to 1/3 in a typical pool model. Besides a proportionate reduction in
computational effort, there is a further benefit since the dimensionality of the problem is also
decreased significantly, which means ease of convergence and a smaller likelihood of suboptimal
solutions. While our approach is conceptually straightforward, the dependencies get considerably
more complex with increasing model size. To generate dependency definitions automatically, a web-
accessible program is available at http://biomath.info/poolfit/constraints.
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1. Introduction
Multicompartmental models are used to fit tracer enrichment data to estimate metabolic
parameters. A model typically has stationary, linear differential equations to describe the time
behavior of tracer enrichments in the different pools in terms of rate constants, which are
estimated by fitting the tracer enrichment data with the solutions to the differential equations.
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The model also has algebraic equations, stemming from material balances on total amounts
(tracer plus the unlabeled tracee); these involve pool masses and the rate constants.
Compartmental modeling is used to determine rates of secretion, interconversion, and
fractional clearance of apolipoproteins in order to better understand plasma lipoproteins. An
aspect of apolipoprotein metabolism is that lipoprotein fractions have plasma as their space of
distribution, either in toto or as a significant part. This means that in turnover studies, plasma
concentrations of apolipoproteins in different lipoprotein fractions (e.g., apoB in VLDL, IDL
and LDL) are measured along with tracer enrichments in those fractions. The concentration or
mass measurements are used to calculate certain direct removal rate constants that would not
be a priori identifiable with tracer enrichment data alone, and sometimes to provide additional
information on rate constants that are a priori identifiable otherwise. The goal of this paper is
to develop a method to make optimal use of these mass measurements.

In early metabolic studies of drugs [1] or of molecules such as calcium, glucose or cholesterol
whose equilibration outside the circulation is rapid with respect to sampling times [2–4], at
best one mass measurement, e.g., total plasma concentration, was available. If only one mass
is known, the algebraic equations from material balances can be used to calculate all the other
pool masses in terms of the known pool mass and the rate constants estimated from fitting
enrichment data [5]. Fluxes such as synthesis rates and other transport rates are calculated
readily by multiplying the appropriate masses and rate constants. Modeling programs such as
SAAM II routinely make these calculations [6,7].

As noted above, a distinctive aspect of apolipoprotein metabolism is that concentrations of an
apolipoprotein in multiple lipoprotein fractions can be measured. For instance, VLDL, IDL
and LDL levels of apolipoprotein B (apoB) are measured in most studies of apoB metabolism
[8–10]. Indeed, Zheng et al. [11] have measured apoB in 21 subfractions based on apoE and
apoC-III content. Since the systems are generally assumed to be in steady state, each mass is
fairly accurate, being the average of several measurements. For instance, Packard and
coworkers [12,13], Schaefer and colleagues [14–16], and Sacks and coworkers [11,17,18]
routinely measure subfraction apoB levels from 4 to more than 10 times in the course of a
turnover study.

The question arises, therefore, as to how mass measurements can be utilized. The most common
approach in the literature, though seldom articulated [12,19–21], is (1) to calculate pool masses
from rate constants using the abovementioned method developed in early studies when only
one pool mass was known; (2) to compare the calculated values with the mass measurements;
and (3) to adjust rate constants to fit the mass measurements and the enrichment data
simultaneously. While this approach has the virtue of making use of preexisting features of
modeling software, it does not make best use of the data.

An alternative approach would be to fix pool sizes at their measured values so that the model
is simpler and there are fewer parameters to esimate. Publications on modeling methodology
for lipoprotein kinetics [6,7,20–26] do not offer a method of procedure to do this. In what
follows, we show how the algebraic equations relating masses and rate constants can be used
to decrease the number of rate constants to be estimated and thus improve the efficiency and
reliability of the parameter estimates.

2. Methods
The methods used in this paper are mathematical. While a few differential equations and
matrices are used, the reader is not expected to know the theory of differential equations or to
manipulate matrices. The methods used are those of basic algebra, pertaining to the solution
of linear equations. The system under study is assumed to be in a steady state (the usual
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assumption in turnover studies), meaning that the total (tracer+tracee) pool masses and fluxes
in and out of pools do not change during the study.

Concentrations or mass measurements correspond to sizes or masses of single or multiple pools
in a multicompartmental model, and allow the calculation of fluxes and other transport rates
from fractional catabolic rates (FCR) and other rate constants estimated from fitting the model
to enrichment data. The calculations are trivial, equating each flux to the product of the
appropriate mass and rate constant. But the fluxes must also satisfy material balances. Thus,
for each pool, the total of all the individual fluxes into that pool must equal the total flux out
of that pool and, in turn, the total of all the individual fluxes from that pool. The flux balances
impose constraints in the form of relationships - sometimes simple and sometimes quite
complex - among rate constants and pool masses. Some constraints involve one or more rate
constants that would be a priori identifiable only from the constraints and the mass
measurements. We will term these “identifying constraints.” Other constraints involve only
rate constants that are a priori identifiable even without any mass measurements; these will be
termed “nonidentifying constraints.” The approach proposed here will be shown to be of
particular use with models containing identifying constraints.

The method is illustrated first with a simple model for the VLDL-IDL cascade, showing both
types of constraints. The equivalence of the usual and proposed methods for models with only
identifying constraints is shown with a numerical example. The problem is then stated for a
general pool model, along with a systematic method of handling constraints that can be
automated in modeling programs. An illustration is provided for a complex
multicompartmental model for apoB kinetics.

A web-based system is presented that implements this automation using artificial intelligence
techniques to solve algebraic equations symbolically. The software is written in C++ and the
web interface in PHP. The C++ program contains about 2,500 lines of code but the executable
is quite compact at 75 KB.

3. Results
3.1 A Very Simple Model for apoB in VLDL and IDL

Figure 1A shows a model for apoB in VLDL and IDL that is very simple - a single pool each
for VLDL and IDL, some VLDL being removed directly besides becoming IDL, and VLDL
the sole source of IDL. The precursor, P, is shown by a square, instead of the usual circle for
a pool, to indicate that it is used as a forcing function [7] known from precursor enrichment
data, and that it is not necessarily a single pool. Rate constants are defined in the usual way
[27] as fluxes divided by the source pool mass, and denoted by k with the first subscript
indicating the destination and the second the source of the pathway (however, the term kii is
used to designate the total flux into or out of the i-th pool divided by the mass of that pool).
Thus, the fractional catabolic rate (FCR) of IDL apoB is k02, the rate constant into 0 (outside)
from 2, and is equal to the removal flux out of 2 (IDL) divided by Q2, the mass of the source
pool 2 (IDL). An extension of the usual notation [27] used here is that, when describing
synthesis or other entry from outside, the second subscript is zero or P, and the division is by
the destination pool mass. Thus, k1P is the VLDL apoB fractional synthesis rate (FSR), which
equals the synthetic flux into 1 divided by Q1, the mass of pool 1 (VLDL).

Differential equations (also called state equations) can be written for the changes with time of
q1 and q2, the tracer quantities in VLDL and IDL apoB, respectively:

(1)
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(2)

The symbol (t) denotes that the concerned quantity (q1, q2, or w in the equations above) varies
with time, and will be omitted when there is no ambiguity. The precursor enrichment, w(t), is
the forcing function, and is multiplied by the synthetic rate k1PQ1 (or equivalently by k11Q1
since there is no other flux into pool 1) to obtain the rate of tracer entry into VLDL. The direct
removal rate constant for VLDL is given by k01=k11–k21. The initial conditions for the state
equations are that q1(0) and q2(0) are both zero. If the injected tracer were not a precursor but
radiolabeled VLDL, there would be no “w” in the state equations and q1(0) would equal the
initial activity in VLDL.

Enrichments in the two pools, y1(t)=q1(t)/Q1 and y2(t)=q2(t)/Q2, are observed along with Q1
and Q2 at a number of time points.

The constraints arise from flux balances around the two pools. The balance around pool 1 is
already reflected in equation (1) by the use of k11Q1 instead of k1PQ1 multiplying the input
enrichment w(t). The flux balance around pool 2 yields an algebraic relationship:

(3)

The popular software SAAM II, which has a built-in facility to use this equation to solve for
Q2 as equal to k21Q1/k02, estimates four parameters (k11, k21, k02, Q1) by simultaneously fitting
the tracer enrichment data (by model-predicted enrichment curves) and the mass measurements
(by Q1obs=Q1, and Q2obs=k21Q1/k02). We term this the usual approach.

Our proposed approach is to use the actual mass measurements Q1obs and Q2obs in equation
(3) to solve for k21 as equal to k02 Q2obs /Q1obs, and rewrite equation (2):

(4)

with equation (1) remaining unchanged. The mass ratio in equation (4) is set to the measured
ratio of the masses and the enrichment data fitted to estimate two parameters, k11 and k02. The
other rate constant k21 and the fluxes are easily calculated.

Thus, the proposed approach changes a problem of estimating four parameters (three rate
constants and a mass) from four responses (two enrichments and two masses) to one of
estimating two parameters (two rate constants) from two responses (two enrichments). This
simple model illustrates how mass measurements can be used to simplify the estimation of
kinetic parameters.

3.2 Identifying Constraints
The first question would be whether the two approaches yield the same values for the model
parameters. The answer to the question depends on whether the constraint in equation (3) is of
the identifying type. An identifying constraint is one with a rate constant that is unidentifiable
without using that constraint. As the two rate constants in equation (3), k21 and k02, both appear
in the differential equation (2), it is not immediately obvious whether equation (3) is an
identifying constraint. It is necessary to look at the solution to the differential equations.
Without loss of generality, we will assume a primed constant infusion study where w(t) is
constant at c. It can be verified that the tracer enrichments in the two pools are given by:

(5)
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(6)

These two equations can be fitted to the enrichment data to estimate c, k11 and k02. Interestingly,
k21, and the masses as well, do not appear in the solutions, which means k21 cannot be estimated
from the enrichment data alone. It has to be calculated from the constraint in equation (3),
which makes it an identifying constraint as the constraint makes k21 a priori identifiable. In
other words, k21 is identifiable only with mass measurements.

In this case, the usual and proposed approaches will yield the same parameter estimates. With
either approach, the enrichment data lead to estimates for c, k11 and k02. Then, with our
approach, the mass measurements Q1obs and Q2obs lead to

(7)

With the usual approach of fitting the mass measurements along with enrichments, since Q1,
Q2 and k21 affect only the mass measurements, the modeling program will fit the mass
measurements exactly by estimating Q1 as Q1obs and k21 as k02 Q2obs /Q1obs, regardless of the
relative weights given to mass versus enrichment data. This means the result will be the same
as with the approach proposed here. The approach proposed here is superior since it involves
fitting fewer responses and estimating fewer parameters.

3.3 Numerical Example of Equivalence of Usual and Proposed Approaches
A simple numerical illustration can be constructed with the model in Figure 1A and a primed
constant infusion. For ease of presentation, instead of working discrete enrichment data, we
assume that the enrichment data are best fitted by sums of exponentials:

(8)

(9)

where time t is in days. Instead of estimating the model parameters by fitting the experimental
data, we can equivalently fit the sums of exponentials. We also assume that the true pool masses
are 10 and 5 mg/dL, respectively. The numbers are similar to literature values for VLDL and
IDL apoB kinetics [28]. We consider five cases – one in which pool masses are measured with
no error, and others in which each mass is measured with a significant error of +20% or −20%.

The proposed approach is first to calculate k11 and k02 by equating equation (5) to equation (8)
and equation (6) to equation (9), so that k11=4 and k02=3 pools/day (mass and rate constant
units are omitted below for clarity); and then to calculate k21 and k01 from equations (7). Table
1 shows the calculated values for the five cases. The first line shows that, with no error,
Q2obs /Q1obs is 0.5, and that equations (7) lead to 1.5 for k21 and 2.5 for k01. The subsequent
lines show the effects of substantial errors in the two mass measurements. The errors, if in
opposite directions, lead to significant errors in k21 and k01.

With the usual approach, k11, k21, k02, and Q1 are estimated by fitting the enrichment data and
mass measurements simultaneously by equation (5), equation (6), and the relationship
Q2=k21Q1/k02. It is easily verified that the best estimates with the usual approach are identical
to those with the proposed approach:

(10)

These estimates lead to model-predicted enrichment curves given by equation (8) and equation
(9), which best fit the enrichment data, and an exact fit to the observed pool masses.
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Equations (10) are not just for the case with perfect mass data; they hold as well with mass
measurement errors. Altering relative weights for the mass and enrichment data will not affect
the estimates as the estimates in (10) provide the best fit to the enrichment data and fit the mass
measurements exactly.

Thus, with either approach, errors in mass measurements lead to estimation errors in k21, k01,
and all the fluxes; the enrichment data cannot compensate for mass errors. The numerical
illustration shows how the two approaches yield identical parameter estimates in a model with
identifying constraints.

3.4 Nonidentifying Constraints
There are, however, two situations where the two approaches may give different results. One
is if a model constraint is nonidentifying. Consider the model in Figure 1B, a simplification of
the model in Figure 1A, with no direct removal of VLDL (k01=0). Then, k21= k11, and is a
priori identifiable from the enrichment data, without the need for mass measurements. Now
the constraint in equation (3) is nonidentifying, providing an additional relationship between
k21 and k02 in terms of the mass ratio. In this case, the two approaches may yield different
parameter estimates, especially if the mass measurements are considered imprecise compared
to enrichment data and given low weight.

The other exception is if the k21 calculated from the constraint in equation (3) is larger than
k11, which would make k01=k11–k21 negative, an impossibility. The best estimates, then, would
make k21= k11, which is the simpler model in Figure 1B with no direct removal of VLDL and
a nonidentifiying constraint.

Thus, a nonidentifying constraint can lead to the usual and proposed approaches giving
different parameter estimates. Otherwise, there should be no difference in the parameter
estimates, whether the mass measurements are fitted along with the enrichment data or used
to simplify the estimation process by decreasing the number of fitted responses and estimated
parameters.

3.5 A General Pool Model
We now derive constraint equations for a general pool model. More complex models than that
in Figure 1A are best analyzed using matrices and vectors. Matrix-vector notation is introduced
by rewriting equation (1) and equation (2) for the simple model in Figure 1A:

(11)

where the square brackets denote vectors and a matrix.

The general n-pool model is:

(12)

where q(t) is the n-long tracer activity vector in units of concentration times mass (e.g.,
fractional enrichment multiplied by mass units), K is the nxn system matrix of rate constants
(Kii = −kii is the negative of the total flux out of pool i divided by the mass of that pool, Kij =
kij is the flux from pool j to pool i divided by the mass of pool j), Si is the direct labeled synthetic
flux into pool i, w(t) is the precursor tracer enrichment function, z(t) is the vector of observed
enrichments, and C is the observation matrix specifying the combination of pools that each
observed variable represents. The model is assumed to be a priori identifiable [29].
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For the general n-pool model,

(13)

By definition,

(14)

Si, the labeled synthetic flux into pool i, is given by Si=ki0Qi if all the flux into that pool is
labeled. Some flux into pool i may be unlabeled, with unlabeled synthetic pathways or flux
from pools that turn over too slowly to be traced; if so, Si will be smaller than ki0Qi, possibly
zero. If zi is the enrichment in pool j, the i-th row of the observation matrix C has the value of
1/Qj in the j-th position and zero elsewhere. If zi is the enrichment in a combination of pools,
as happens when an observed lipoprotein fraction is modeled by multiple pools, then the
corresponding elements of the i-th row of C each equals the inverse of the total mass of those
pools, with zeros elsewhere. This verbal description is perhaps simpler than the formal
mathematical definition:

(15)

If zi is the enrichment in a single pool, the definition above simplifies to:

(16)

For the two-pool model in Figure 1A (equations (11)),

(17)

Equations (17) can be seen as a special case of equation (13) to equation (15) by noting that,
since there is no path from pool 2 (IDL) to pool 1 (VLDL) in the simple model, k12 is zero so
that k22 = k02. Also, C is simple since each observed variable is the enrichment in just one pool.

With these definitions in hand, we can study the constraints imposed by flux balances around
each pool. One set of balances arises from setting the total flux out of each pool equal to the
sum of the fluxes from that pool to all other pools as well as to the outside. Equation (14)
ensures that these flux balances are always satisfied. Multiplying equation (14) throughout by
Qi results in the following:

Total flux out of pool  = Total flux from pool i to everywhere
(18)
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A second set of balances arises from setting the total flux into each pool (from every other pool
as well as from the outside) equal to the total flux out of that pool. Thus,

(19)

The constraints (18) and (19) may be written in a more compact form, noting that, by the model
definition in equation (13), the diagonal elements of K equal -kii and the off-diagonal elements
equal kij, as follows:

(20)

(21)

While the constraint equations may appear complex, they express two very simple
requirements: Equations (20) state that each column of the system matrix K must add up to the
fractional rate of removal from that pool to the outside; equations (21) state that the elements
of each row, weighted by the corresponding pool masses, must add up to the flux into that pool
from the outside.

If none of the masses are known, these constraints pose no difficulty. Tracer enrichment data
can be fitted to estimate the rate constants, and equations (21) used to deduce relationships
among the unknown masses. However, if some masses are measured, the constraints in (21)
can be used to introduce the measured masses into the model equations in equations (13).

3.6 An Illustration from VLDL-IDL-LDL ApoB Kinetics
As an illustration, which will show the complex relationships generated by the constraints, we
consider the model used by our group to study apoB turnover [28], shown in Figure 2. The
system matrix is below:

(22)

The K matrix has been augmented by a column on the left to indicate pathways from the outside,
and by a row at the top to indicate pathways to the outside. Pools 1, 2 and 3 constitute VLDL,
pool 4 is IDL, and pool 5 is LDL. ApoB enrichments in VLDL, IDL and LDL are observed,
as are the apoB masses in the three lipoproteins (MV is the VLDL mass). We begin with the
most upstream pools, 1 and 2, and apply the row and column constraints, deriving relationships
for some of the parameters in terms of the others, working downstream to pool 5:
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(23)

These eleven are dependent parameters, replaced in the model by the expressions in equations
(23), while the remaining seven rate constants (k31, k20, k02, k32, k42, k52, k50) and two masses
(Q2, Q3) are independent parameters to be estimated from the enrichment data.

3.7 General Principles in Incorporating Mass Measurements
The illustrative model helps to state some general concepts for combining mass measurements
with tracer enrichment data:

1. Balances for fluxes around pools with measured masses result in equations to be
satisfied by rate constants and pool masses;

2. These equations can be used to make some rate constants in the model dependent,
i.e., to express them in terms of other rate constants and masses, thus introducing
measured masses into the model equations;

3. Solving the model equations containing rate constants and measured masses to fit
enrichment data results in parameter estimates that fit the enrichment data best while
utilizing all the information in the mass measurements;

4. The dependent parameter definitions are unique and noncircular. There is a single
equation for each dependent parameter, expressing it in terms of independent
parameters and previously defined dependent parameters; thus, it is possible to begin
with values for the independent parameters and evaluate equations (23) in sequence
to get the values of all the dependent parameters. For example, k44 is expressed in
terms of the independent parameters k42 and Q2 and the measured pool mass Q4, while
k11 is expressed in terms of the independent parameter k31 and the just-defined
dependent parameter k21. If care is not taken in choosing dependent parameters,
circularity can happen. For instance, if the dependent parameters were k42 instead of
k22 in the first equation and k52 instead of k55 in the penultimate equation (flux to 5),
then there would be circularity in the first, eighth, ninth and tenth equations (k52 to
k42 to k44 to k54 to k52), making it impossible to evaluate the dependent parameters.

3.8 Automation Considerations
The simple two-pool model in Figure 1A has a single constraint equation while the five-pool
model in Figure 2 has eleven constraint equations defining eleven dependent parameters. With
increasing model size, the number and complexity of the constraint equations increase. Care
is also required to ensure noncircularity. Even someone comfortable with algebra has to be
concerned with making mistakes and also with the effort required with each new model. It is
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desirable, therefore, to have the modeling program generate dependent parameter definitions
automatically. The algorithm must satisfy the properties noted above for equations (23) – a
unique definition for each dependent parameter, and noncircularity ensured by ordering of the
definitions so that each uses only dependents already defined and independents. Some
provision should be made for the user to guide the process: an investigator may wish to choose
the parameters to be made dependent - for instance, to facilitate convergence of the iteration
process, or to exclude from the dependent set any parameter that may be zero in a particular
study.

We have incorporated a module to do this automatically for our modeling program Poolfit
[28], with provisions for the user to guide the dependency selection partially or totally.
Noteworthy features are: (1) The module generates flux balances as algebraic equations in
symbolic terms; (2) it analyzes each equation in turn and applies a series of heuristics to choose
the rate constant or mass to be made dependent from that equation; (3) its heuristics include
making multiple initial passes over the balances in an effort to guide the later constraint
construction; (4) it applies symbolic manipulation techniques to solve each flux balance
equation for the corresponding dependent parameter symbolically; (5) it reorders the
dependency equations to avoid circularity; and (6) if circularity cannot be avoided with the
chosen dependency set, it repeats the whole process with different heuristics until there is no
circularity, though the repetition is seldom necessary due to the logic built into the heuristics.
The goal is to replicate what an experienced modeler might do.

For the benefit of users of other programs, the module is available as a stand-alone program
accessed over the worldwide web at http://biomath.info/poolfit/constraints. When the user
specifies the model pathways or connectivity of the pools, the program will generate a set of
dependent parameters and an equation for each. It is possible to instruct the program to make
one or more specific parameters dependent. The program output can be used to provide
dependent parameter definitions to the user’s modeling program. To make it easier to learn to
use the program, the models in Figure 1A and Figure 2 are available as illustrations at the
website.

4. Discussion
We have used matrix-vector formulations to analyze general pool models for tracer
enrichments. Matrix theory has long been used to study pool model properties. Closed form
solutions are available from the eigenvalues and eigenvectors of the system matrix [30–32].
Berman and Schoenfeld [33] used matrix transformations to study invariants of pool models,
their method applied later to the study of equivalent model structures [34,35], and extended to
exhaustive modeling [36,37]. Basic theorems on net flux, mean residence time, etc., have been
proved using matrix theory [38–43]. DiStefano and colleagues have used matrix theory to
derive relationships among rate constants and also for pool sizes and fluxes [29,44], though
the results are only for a catenary or mammillary pool model with a single input, a single
observed pool, and no mass measurements.

We have shown here how mass measurements can be incorporated into a pool model used to
fit enrichment data. This is done by writing two flux balances around each pool, one for the
fluxes in and the other for the fluxes out. The mass balances cause some rate constants and
unobserved masses to be expressed in terms of the other rate constants and the measured
masses. The result is a model with fewer parameters to be estimated from the enrichment data.

With very simple models, this can be done manually. As model size increases, the number of
dependencies increases rapidly and so does the complexity of the equations. It is useful for the
modeling program to generate dependencies automatically. We have made available a web-
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accessible program to help investigators by generating dependency equations for use in their
modeling programs.

4.1 Considerations in Choosing Parameters to be Constrained
A necessary requirement is that the constraint equations not be circular. That still leaves
considerable room in choosing which parameters to make dependent. There are a few
considerations that can go into the choice:

1. For a model to be physically realizable, the parameters must clearly be nonnegative.
The rate constant for any pathway must be positive or zero. Modeling programs
generally allow the user to specify limits for the parameters. However, some
programs, including SAAM II, have no provision to set limits on derived or dependent
parameters. Users of such programs, if possible, should make dependent only those
parameters that can be expected to be positive in all studies. For instance, in the
constraint equations (23) for the model in Figure 2, all the expressions except for the
one for k21 involve no subtractions and so will always evaluate to nonnegative values.
The expression for k21 does involve a subtraction but is unlikely to approach zero
since that would imply that pool 1 is redundant. It can be verified that, for this model,
every choice leads to at least one subtraction.

2. As a corollary, the rate constant for a pathway that may not be present in some subjects
is best kept as a parameter to be estimated. In the model in Figure 2, direct synthesis
into pools 2 and 5 and irreversible removal from pool 2 are pathways that may be
absent in some studies. In equations (23), these parameters are kept as independent
parameters.

3. Speed or efficiency of convergence can be a consideration in choosing parameters to
be constrained. If differential equations in a pool model are solved analytically or in
closed form, the enrichments in different pools are given by sums of exponentials
whose intercepts are complicated functions of the rate constants but, in the case of
models with no reverse fluxes (that is, a molecule that leaves a pool can never re-enter
it), the exponential rate constants equal some of the model rate constants. For instance,
for the model in Figure 2, the exponential constants are k11, k22, k33, k44 and k55. The
exponential constants are most directly estimated from the tracer data (analogous to
slopes on semi-log plots or graphical peel-off methods) and so estimating model rate
constants that equal exponential rate constants can improve convergence. For the
model in Figure 2, the equations in (23) for k11, k22, k33, k44 and k55 can be replaced
by equations for k31, k32, k42, k02 and k50:

(24)

The independent parameters are k11, k22, k33, k44, k55, k20, k52, Q2, and Q3.

This approach is not helpful if parameters such as k02 and k50 can be zero since convergence
may be slow for a dataset if the best estimate of a dependent parameter is zero. The approach
is also not helpful to SAAM II users since SAAM II does not allow diagonal elements kii to
be independent parameters.
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4.2 Generating Constraint Equations for SAAM II
Berman and coworkers [5,42] have shown that the K matrix can be inverted to relate the pool
masses to the fluxes into the system in equations (21). Proceeding thus, SAAM II, the most
popular software used in lipoprotein kinetic modeling, has a built-in facility that uses this
approach to calculate the masses of all pools but one from numerical values for one pool mass
and all the rate constants. The calculation is done not symbolically but arithmetically for
specific numerical values.

Welty et al. [19] describe one clever work-around, explained in greater detail by Pont et al.
[20]. The idea is to treat one mass measurement as error-free (LDL apoB in their example);
utilize SAAM II’s built-in facility to calculate, at each iterative step in fitting the data, all other
pool sizes in terms of the error-free mass and rate constants; and fit the other mass
measurements along with enrichment data, using different data weights for masses. Other
investigators [11,21] fit all the mass measurements, as illustrated here in Section 3.3 for the
simple model in Figure 1A. These are two approaches to handle a SAAM II limitation. We
have seen that, with identifying constraints, corresponding mass measurements are fitted
exactly. It is not readily apparent if SAAM II can use more than one mass measurement to
develop constraints on some rate constants as done here.

The method developed here can be used to generate constraint equations to be used with SAAM
II. Our webpage has a SAAM option that produces equations specially for SAAM II, in
particular taking into account that SAAM II always expresses the i-th diagonal element as the
sum of all other elements in the i-th column. For instance, the second illustration on the
webpage, corresponding to Figure 2 here, produces the following equations with the SAAM
option:

SAAM II produces correct results when our webpage equations are entered into the Attributes
box of the corresponding pathways, though it still refrains from calculating unobserved masses
because it assumes that steady state is violated; there may be a work-around by using parameter
names other than Q’s.

4.3 Improvement in Estimation Efficiency and Reliability
The method developed here will result in far fewer parameters and as many fewer responses
to be fitted as there are measured masses, compared to a method that fits the mass measurements
along with the enrichment data. We saw that, for the model in Figure 1A, with two pool masses
being measured, four parameters estimated by fitting four responses was changed to two
parameters estimated by fitting two responses. In general, if m is the number of masses
measured, the number of responses is decreased by m and the number of parameters to be
estimated is decreased by m as well, which is typically one-fourth to one-third the number of
model parameters. For instance, for the model in Figure 2 with 3 mass measurements, the
number of responses is reduced by 3 and the number of parameters by 3. In studies that involve
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more measured masses, the differences are larger - e.g., Zheng et al. [11] measured 21
subfraction masses, which means the approach developed here can be used to reduce the
number of responses fitted by 21 and the number of estimated parameters by 21.

With any modeling program, estimation of parameters in a pool model involves a trial-and-
error iterative scheme where the measured responses are fitted with the solutions to the model
using the initial parameter guesses, the parameter guesses modified based on the fits, the
measured responses refitted using the modified parameters, and so on until the fits cannot be
improved. The process gets more complex as the number of parameters and the number of
responses increase. The dimensionality of the problem is set by the number of parameters and
so decreasing the number of parameters has a significant impact on the convergence
characteristics of the estimation process. On the other hand, increasing the number of
parameters not only slows down the convergence; it also increases the likelihood of converging
to a local solution instead of to the best fit.

4.4 CheckingValidity of Parameter Estimates
One reason given for fitting mass measurements along with enrichment data is that masses are
not known error-free; the errors could be due to imprecise assays, differential recoveries in
different subfractions, differing assay sensitivities in different subfractions, or due to ignoring
the extravascular part of a volume of distribution. However, we have seen, even with the simple
two-pool model in Figure 1A and the numerical illustration in section 3.3, that if a model is
unidentifiable without the mass measurements, that is, if all constraints are of the identifying
type, it makes no difference whether the mass data are treated as error-free or inaccurate. The
modeling program must fit the mass measurements exactly, regardless of the weights assigned.
If the mass fits are not exact, it is likely to be due to convergence or other problems specific
to the modeling program.

The concept of identifying and nonidentifying constraints developed here can be used to check
the validity of the results from a modeling program that fits mass measurements along with
enrichment data. If a measured pool mass is not fitted exactly by the model, there must be a
nonidentifying constraint involving a flux into that pool, for instance, that there is no direct
removal from that pool or from a pool that feeds directly to that pool. The model in Figure 1B
with no direct removal from pool 1 (k01=0), as described in Section 3.4, would be an
illustration.

However, if the model is a priori identifiable without the mass measurements, as in Figure 1B
with no direct removal from VLDL (either postulated or found to be so for a particular study),
the mass measurements do not provide essential information to estimate parameter values. In
that case, it may be preferable, depending on the relative accuracy of mass versus enrichment
data, to fit masses and enrichments simultaneously. However, the more likely scenario is that
the model being used has pathways whose rate constants cannot be estimated without mass
measurements, as in Figure 1A and Figure 2. In reviewing the literature, models for apoB
kinetics typically have direct removal from the various VLDL and IDL pools [7,12,13,26,45–
48], which means the models are not a priori identifiable without mass measurements. The
recent model of Zheng et al, with 21 pools is an illustration – every subfraction pool has a direct
removal pathway, which is identifiable only because subfraction masses were measured.

Investigators who find that mass measurements are not very accurate and fit the masses
simultaneously with the enrichment data [11,12,20,21,49–52] should find the method
developed here to be of use in generating good initial guesses by fixing the masses at the
measured values and fitting just the enrichment data. Zheng et al. [11] measured apoB
enrichments and masses in 21 subfractions. The apoB portion of their model has roughly 80
parameters to be estimated from fitting the 42 responses. By fixing the masses at the measured
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values and using equations generated from our webpage to constrain 21 rate constants, they
can simplify the problem to estimating roughly 60 parameters from fitting 21 responses. The
estimated parameters can then be used as initial guesses to fit the mass measurements along
with the enrichments to estimate the 80-plus parameters. This two-step process should be much
more efficient. Further, if it should turn out that all the constraints are of the identifying type,
as when direct removal rate constants are nonzero, there would be no need for the second step.

To conclude, the formal description of the problem and the systematic approach presented here,
as well as the webpage to generate constraint equations
(http://biomath.info/poolfit/constraints), should be of use in fitting pool models to tracer data
when mass measurements are also available and a steady state is assumed in the usual fashion.

Abbreviations
FCR, fractional catabolic rate
FSR, fractional synthetic rate
k, rate constant
K, system matrix of rate constants
Q, total (tracer+tracee) mass
q, tracer mass or activity
S, synthetic fluxes
t, time
w, precursor enrichment
y, tracer enrichment or specific activity
z, measured tracer enrichment
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Figure 1.
An extremely simple model for apoB turnover in VLDL and IDL with a labeled amino acid
precursor as tracer. The square P denotes the precursor system, consisting of one or more pools.
Pool 1 is for VLDL apoB and pool 2 for IDL apoB. The k symbols denote rate constants for
the pathways, defined as fluxes divided by the source pool mass, with the first subscript
indicating the destination and the second the source of the pathway. Thus, k02 is IDL apoB
FCR, the rate constant into 0 from 2, equal to the mass flux to the outside from 2 (IDL) divided
by Q2, the mass of the source pool 2 (IDL). The extension to this definition is that, when
describing synthesis or entry from the outside, the second subscript is zero or P, and the division
is by the destination pool mass. Thus, the FSR of VLDL apoB is k1P, the flux into 1 (VLDL)
from P (the precursor) divided by Q1, the mass of the destination pool. A: The model has a
direct removal pathway from VLDL (k01), making the relationship between the two masses an
identifying constraint. B: The model has no direct removal pathway from VLDL (k01=0),
making the relationship between the two masses a nonidentifying constraint.
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Figure 2.
A five-pool model for apoB turnover, used in Nagashima et al. [28]. Pools 1, 2 and 3 constitute
VLDL apoB, pool 4 is IDL apoB, and pool 5 is LDL apoB. The k symbols are as defined in
Figure 1.
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Table 1
Effects of Mass Measurement Errors on Model Parameter Estimates

Error in Q1 Error in Q2 Q2obs /Q1obs k21 = k02 Q2obs /Q1obs (pools/day) k01=k11-k21 (pools/day)
0 0 0.5 1.5 2.5

+20% +20% 0.5 1.5 2.5
−20% −20% 0.5 1.5 2.5
+20% −20% 0.333 1.0 3.0
−20% +20% 0.75 2.25 1.75
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