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Neisseria meningitidis grown under iron-limiting conditions in vitro expresses additional iron-repressible
outer membrane proteins (FeRPs). To see which FeRPs were expressed and immunogenic in human infection,
we examined purified membranes from four meningococcal disease isolates with Western blotting of patient
sera. Convalescent serum from each patient contained immunoglobulin G (IgG) and IgM antibodies against the
homologous 70-kilodalton (kDa) FeRP and IgG antibody to the homologous 94-kDa FeRPs. Three other
immunoreactive FeRPs were identified in two or more strains. Neither acute-phase sera nor pooled normal
human sera contained appreciable levels of these antibodies. Antigenic cross-reactivity among FeRPs was
suggested by the observation that the convalescent sera of two patients contained IgG antibodies reactive with
the 70- and 94-kDa FeRPs and IgM antibodies reactive with the 70-kDa FeRPs from all four strains.
Additionally, rabbit antiserum against the 70-kDa FeRP from one of these disease isolates contained IgG and
IgM antibodies that reacted in Western blots with the 70-kDa FeRPs in all four strains. These results
demonstrate that meningococcal FeRPs are expressed and immunogenic in vivo and that certain of these
proteins are immunologically cross-reactive.

Neisseria meningitidis is second only to Haemophilus
influenzae as a cause of bacterial meningitis in the United
States and is a major human pathogen worldwide (6). Poly-
saccharide vaccines offer protection against infection by
organisms from the A, C, Y, and W-135 capsular serogroups,
but no effective vaccine yet exists for serogroup B menin-
gococci. Serogroup B organisms are currently responsible
for the majority of meningococcal diseases in the United
States and Western Europe (6). Moreover, in the age group
(under 2 years) most susceptible to disease, the immune
response to serogroup A and C polysaccharides is poor (9).
Consequently, in addition to group-specific polysaccharides,
other antigens must be identified to achieve broadly effective
immunoprophylaxis against meningococcal disease. Several
recent observations suggest that iron acquisition mecha-
nisms of meningococci might provide such targets.
Many studies suggest that iron acquisition is important for

bacterial pathogens, including N. meningitidis (5, 27, 28).
Holbein (13) showed that the use of transferrin (TF) iron is a
critical factor in maintaining meningococcemia in experi-
mentally infected mice. Most bacteria manufacture iron-
chelating compounds (siderophores) to acquire essential iron
from their environment (22). Siderophore production en-
hances the virulence of many bacteria, probably by increas-
ing the availability of iron bound to host proteins such as TF
and lactofemn (LF). These two iron-binding proteins are
thought to be the primary iron sources available to bacterial
pathogens in plasma and on mucosal surfaces, respectively
(27). Although Yancey and Finkelstein (32) reported that
meningococci produce minute quantities of a hydroxamate
siderophore, other studies have failed to detect meningococ-
cal siderophores (1, 26, 29). Nevertheless, all meningococci
can utilize partially saturated TF and LF as sole sources of
iron for growth (19, 20, 26). In contrast, most nonpathogenic
Neisseria spp. cannot use TF or LF as an iron source (19,
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20). The mechanism by which meningococci acquire iron
from TF is unclear, but it is known that TF is not internalized
as iron is removed and that digestion of the meningococcal
cell surface with trypsin inhibits iron uptake from TF (26).
These observations imply that the meningococcus may pos-
sess cell surface receptors involved in acquisition of iron
from TF and perhaps from other iron-binding proteins.

Iron-limited growth of many bacteria derepresses the
synthesis of a variety of outer membrane proteins, many of
which are critically involved in iron uptake (23). For exam-
ple, in Escherichia coli iron-repressible proteins (FeRPs)
varying in molecular mass from 74 to 81 kilodaltons (kDa)
are outer membrane receptors for various ferri-siderophore
complexes (11, 12, 18, 30). These FeRPs are expressed in the
membranes of E. coli isolated from experimentally infected
guinea pigs (10), suggesting their importance during infec-
tion. Meningococci also possess outer membrane FeRPs
(Fig. 1), and Brener et al. (3) found that increased synthesis
of one of these FeRPs was associated with enhanced viru-
lence of meningococci in experimentally infected mice.
Taken together, these observations suggest that
meningococcal FeRPs may be involved in iron acquisition
and in the pathogenesis of meningococcal disease.

Consequently, we were interested in whether meningococ-
cal FeRPs (seen in vitro only under iron-limited growth
conditions) are expressed in vivo and whether they are
immunogenic. Therefore, we studied sera from four patients
with meningococcal disease by Western blotting for evi-
dence of an immune response to meningococcal FeRPs. We
also examined the antigenic relatedness of individual FeRPs
by probing membranes from all four strains with sera from
two patients and with rabbit antiserum directed against the
70-kDa FeRP from one of these strains.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The meningococ-

cal strains used in this study were all recent clinical disease
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following onset (convalescent sera
rum was available from the patien
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3 4 Rabbit antiserum directed against the 70-kDa FeRP of
a b a b strain FAM20 was prepared essentially as described by

Payne and Collins (Abstr. Annu. Meet. Am. Soc. Microbiol.
1985, K199, p. 204). A 500-,ug sample of outer membranes
from iron-limited cells was electrophoresed on a 10% SDS-

_ polyacrylamide gel, and the 70-kDa FeRP was identified by
staining with Coomassie blue. The protein band was excised
from the gel, electroeluted into 25 mM Tris-192 mM
glycine-0.1% SDS (pH 8.3), and dialyzed against 2 mM
Tris-30 mM NaCl (pH 7.4). The protein was then concen-
trated by lyophilization, dissolved in a small volume of
sterile water, and emulsified with an equal volume of com-
plete Freund adjuvant. The mixture was then injected sub-
cutaneously into a young (6-week-old) New Zealand White
female rabbit; booster injections followed at 2-week inter-

M4BiS;jt1v vals, with antigen emulsified in incomplete Freund adjuvant.
SDS-PAGE and Western blotting. SDS-PAGE was per-

formed in 10, 15, or 4 to 30% linear-gradient acrylamide gels,
using the discontinuous buffer system of Laemmli (15).
Outer membrane preparations (10 pug) were mixed with an

analyzed by SDS-PAGE equal volume of sample buffer (0.125 M Tris hydrochloride
-red pair of samples, lane a [pH 6.8], 4% SDS, 20% glycerol, 0.004% bromophenol blue)
md lane b designates iron- and solubilized at 37°C for 60 min or 100°C for 5 min. The
IB502; 3, JB503; 4, FAM20. solubilization conditions used did not affect the mobility of
,ular weights are indicated in any FeRPs on SDS-PAGE. Electrophoresis was carried out

at 30 mA constant current. Gels were stained by the proce-
dure of Wray et al. (31) or used for Western transfer.

luid) obtained from the For Western blots, electrophoretically separated proteins
,al and identified as N. were transferred to nitrocellulose (Millipore Corp., Bedford,
;e reaction, carbohydrate Mass.), using the phosphate buffer system of Batteiger et al.
eningococcal serogroup- (2). Transfer was performed in a Transblot device (Bio-Rad
[come Co., Research Tri- Laboratories, Richmond, Calif.) with a current of 75 mA for
JB502, and FAM20 were 16 h. Nitrocellulose blots were then probed with acute or
rogroup B. FAM20 was convalescent patient sera, with pooled normal human sera,
heme of Frasch et al. (8). or with immune or pooled normal rabbit sera, diluted in 10
ontypable but displayed mM Tris hydrochloride (pH 7.4)-0.9% NaCl-5% bovine
sodium dodecyl sulfate- serum albumin or in phosphate-buffered saline (4 mM

s (SDS-PAGE) (Fig. 1). KH2PO4, 16 mM Na2HPO4, 115 mM NaCl [pH 7.3]) plus
Lssed only once on GCB 0.05% (vol/vol) Tween 20. Resulting antigen-antibody com-
Mich.) with Kellogg sup- plexes were identified by 125I-protein A for immunoglobulin
then frozen (-70°C) in G (IgG) (Amersham Corp., Arlington Heights, Ill.) or goat
l for further use. anti-human or anti-rabbit IgM (Capell, Malvern, Pa.) that
were grown to late log were labeled by the procedure of Markwell and Fox (16).

uid medium described by Blots were then exposed to Kodak X-OMAT AR-5 X-ray
plete cells were grown in film for 24 to 72 h at -70°C, with intensifying screens before
Ldded iron [as Fe(NO3)3]. developing.
ttion at 12,000 x g, sus-
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7.2, and disrupted by
cell at 14,000 to 16,000
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,hed by centrifugation at
n concentration of each
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;hin 24 h of the onset of
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RESULTS AND DISCUSSION
When grown under iron-limiting conditions, membranes of

the four meningococcal strains contained FeRPs whose
apparent molecular weights were identical or very similar in
all strains, as well as other FeRPs not shared by all strains
(Fig. 1). SDS gels stained with Coomassie blue showed
FeRPs of about 70 and 105 kDa in all strains (Fig. 1). SDS
gels stained with silver showed an FeRP of about 94 kDa in
all strains and an FeRP of about 88 kDa in all strains except
JB503. Other FeRPs in the size range of 84 to 110 kDa were
seen in strains JB501, JB502, and JB503. Mietzner et al. (21)
recently described a 37-kDa FeRP in N. meningitidis, using
9.5 to 12.5% SDS-PAGE gradient gels containing 70 mM
NaCl. However, this protein does not appear to be ex-
pressed in all strains of meningococci grown in our defined,
iron-limited medium (Fig. 1; D. Dyer and P. F. Sparling,
personal communication).

Acute-phase serum did not show binding in Western blots
to meningococcal FeRPs from these strains at dilutions used
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FIG. 2. Western blots of meningococcal membranes grown with
(a) and without (b) added iron. These autoradiograms show the IgG
antibody response (A) and IgM antibody response (B) in acute (1)
and convalescent (2) sera from the patient with strain JB502 to
proteins from the homologous infecting strain JB502. Immunoreac-
tive FeRPs are marked with arrows. Sera were diluted 1:200 (A) or

1:50 (B). Molecular weights are indicated in thousands (K).

for convalescent serum (1:200 for IgG antibody experiments
and 1:50 for IgM antibody experiments); similar dilutions of
pooled normal human serum also lacked reactivity. Conva-
lescent serum from each patient contained IgG and IgM
antibodies that bound to the 70-kDa FeRP and IgG antibody
that bound to the 94-kDa FeRP from the homologous isolate
(Fig. 2; other data not shown). Convalescent sera from all
patients except the patient whose culture yielded strain
JB503 contained IgG antibody that bound to the 88-kDa
FeRP from the homologous isolate; strain JB503 did not
make a significant amount of an FeRP of this molecular
weight (Fig. 1). Although IgG or IgM antibodies against
other FeRPs were seen in individual homologous sera, as for
instance the 37-kDa FeRP in JB502 (Fig. 2A, lane 2b), the
only consistent immunoreactivity was directed against the
70-, 88-, and 94-kDa FeRPs. Very high-molecular-weight
FeRPs bound antibody in some experiments (Fig. 3, lanes lb
and 2b), but these were not always reproducible and might
represent incomplete denaturation of lower-molecular-
weight FeRPs. These results indicate that meningococcal
FeRPs are expressed in vivo, since they elicit an antibody
response in convalescing humans. Immune responses to
FeRPs have been seen in naturally occurring or experimental
infections caused by E. coli (10), Pseudomonas aeruginosa
(4), Vibrio cholerae (24), Klebsiella pneumoniae, and two
species of Proteus (25).

Antigenic cross-reactivity of meningococcal FeRPs was

investigated by probing membranes from all four strains with
convalescent sera from the two patients whose cultures
yielded JB501 and JB502 (Fig. 3; other data not shown).
These two patients produced IgG antibodies that bound to
the 70- and 94-kDa FeRPs in all strains and IgM antibodies
that bound to all 70-kDa FeRPs, suggesting that these
proteins share common immunoreactivity. Antibody from
each patient also bound to certain other heterologous FeRPs
(Fig. 3).
We were particularly interested in the observation that the

70-kDa FeRP in these strains might be cross-reactive, since
a meningococcal mutant lacking the 70-kDa FeRP has been
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FIG. 3. Western blot showing IgG response in convalescent
serum from the patient with strain JB501 to individual proteins from
membranes of four meningococcal isolates. In each pair of samples,
lane a designates iron-sufficient medium, and lane b designates
iron-limited conditions. Samples: 1, JB501; 2, JB502; 3, JB503; 4,
FAM20. Immunoreactive FeRPs are identified with arrows. Serum
was diluted 1:200. Molecular weights are indicated in thousands (K).

isolated. This mutant is unable to internalize appreciable
amounts of 55Fe bound to TF or LF (7). Therefore, we raised
monospecific rabbit antiserum against purified 70-kDa FeRP
isolated from strain FAM20 and used this to probe mem-
branes of all four strains (Fig. 4). This rabbit antiserum
contained both IgG and IgM antibodies that reacted strongly
with the 70-kDa FeRP in FAM20 (the homologous strain) as
well as JB501, JB502, and to a lesser extent, JB503. This
rabbit antiserum also reacted with analogous 70-kDa FeRPs
in each of two gonococcal strains tested (data not shown).
We realize that Western blots provide only a qualitative
measure of the cross-reactivity among 70-kDa FeRPs of
different strains. However, these results indicate a certain
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FIG. 4. Western blot of meningococcal membranes showing
cross-reactive IgG (A) and IgM (B) immune responses to 70-kDa
FeRPs in serum from a rabbit immunized with the 70-kDa FeRP
from strain FAM20. Lanes: a, iron-sufficient growth; b, iron-limited
growth. Samples: 1, JB501; 2, JB502; 3, JB503; 4, FAM20. Serum
was diluted 1:1,000. Molecular weights are indicated in thousands
(K).
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degree of conservation of antigenicity of 70-kDa FeRPs in
these strains. The observation that a meningococcal mutant
lacking this protein no longer uses TF or LF for growth (7)
makes the 70-kDa FeRP an especially attractive target for
future studies on both its function and its possible utility in
meningococcal prophylaxis.
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