
Proc. R. Soc. B (2008) 275, 1441–1448

doi:10.1098/rspb.2008.0179
The predictability of extinction: biological and
external correlates of decline in mammals

Marcel Cardillo1,2,*, GeorginaM.Mace2,†, John L. Gittleman3,‡, Kate E. Jones2,

Jon Bielby1,2 and Andy Purvis1,4

1Division of Biology, and 4NERC Centre for Population Biology, Imperial College London,

Silwood Park campus, Ascot SL5 7PY, UK
2Institute of Zoology, Zoological Society of London, Regent’s Park NW1 4RY, UK

3Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA

Published online 26 March 2008
Electron
1098/rsp

*Autho
and Ma
Nationa
(marcel.
† NERC
Silwood
‡ Institu
USA.

Received
Accepted
Extinction risk varies among species, and comparative analyses can help clarify the causes of this variation.

Here we present a phylogenetic comparative analysis of species-level extinction risk across nearly the whole

of the class Mammalia. Our aims were to examine systematically the degree to which general predictors of

extinction risk can be identified, and to investigate the relative importance of different types of predictors

(life history, ecological, human impact and environmental) in determining extinction risk. A single global

model explained 27.3% of variation in mammal extinction risk, but explanatory power was lower for

region-specific models (median R2Z0.248) and usually higher for taxon-specific models (median

R2Z0.383). Geographical range size, human population density and latitude were the most consistently

significant predictors of extinction risk, but otherwise there was little evidence for general, prescriptive

indicators of high extinction risk across mammals. Our results therefore support the view that comparative

models of relatively narrow taxonomic scope are likely to be the most precise.
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1. INTRODUCTION
Why are some species at greater risk of extinction than

others? Identifying the underlying causes of high extinc-

tion risk is an important step in understanding the

processes contributing to current species declines, and

predicting the probable future declines in the face of

escalating human pressure on natural habitats. Although

the set of circumstances contributing to extinction risk is

unique for each species (and often for populations),

comparative studies have begun to reveal general patterns

and correlates of extinction risk within large groups of

species. In general, the distribution of extinction risk

among species is phylogenetically non-random, with some

taxonomic groups more likely to contain threatened

species than others (McKinney 1997; Purvis et al.

2000b). This implies that biological differences among

taxa are at least partly responsible for the differences in

extinction risk. Indeed, ecological and life-history traits

are often associated strongly with extinction risk in

comparative analyses (Fisher & Owens 2004; Reynolds

et al. 2005).

However, comparative studies have rarely been able

to explain the greater part of variation in extinction risk
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among species; models typically have R2 values less than

0.5, leaving over half of the variation unaccounted for.

Furthermore, comparative models for different taxa

often give idiosyncratic, and sometimes conflicting,

results (Purvis et al. 2000b; Fisher & Owens 2004).

For these reasons, it has been suggested that the most

powerful and informative comparative models of extinc-

tion risk will be those of narrow scope, restricted to

single regions and relatively small taxonomic groups

(Fisher & Owens 2004). As with all models, however,

there is an obvious trade-off between predictive power

and generality. Tightly focused extinction risk models

may be the most powerful, but the results may not be

applicable beyond the particular region or taxon in

question. Furthermore, comparative studies of narrow

focus often necessarily deal with small datasets, limiting

the scope for testing complex hypotheses without the

risk of overparametrizing models. An alternative approach

is to broaden the scope of the models by analysing

global datasets for large taxa, while explicitly testing and

accounting for heterogeneity among phylogenetic and

geographical subsets. In this way, the generality of the

results may be maximized while permitting the possibility

that the correlates of extinction risk vary among

regions and taxa. Indeed, such heterogeneity is itself of

interest, both for understanding extinction processes and

for mitigating human impacts. By applying a common

methodology to a global dataset, this approach also

reduces the problems involved with synthesizing results

of disparate studies, which is often confounded by the

differences in analytical methods and the types of response

and predictor variables selected for study (Fisher &

Owens 2004; Purvis et al. 2005).
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In this paper, we apply such a global approach to

analysing correlates of species-level extinction risk in non-

marine mammals. Part of the reason that predictive power

of comparative studies has been limited may be that with

few exceptions (e.g. Fisher et al. 2003; Cardillo et al. 2004,

2005), previous studies have focused on intrinsic (i.e.

ecological and life history) traits as extinction risk

predictors. Intrinsic predictors of extinction risk only tell

part of the story: they represent the degree to which

different species are able to withstand external, usually

anthropogenic, threatening processes. A species’ risk of

extinction must be influenced not only by its biology but

also by the severity of the impacts to which it is exposed,

and by the interaction between external and intrinsic

factors (Reynolds 2003; Purvis et al. 2005; Price &

Gittleman 2007). Hence, the threatening processes

themselves must also be part of the extinction risk

equation. We therefore include in our study both intrinsic

and external factors, and their interactions. Our list of

putative predictors includes intrinsic traits shown in

previous studies to be associated with extinction risk in

mammals, including body size, home range size, trophic

level, population density, geographical range size and life-

history indicators of maximum rate of population

increase, such as gestation length, interbirth interval and

litter size (e.g. Purvis et al. 2000a; Johnson et al. 2002;

Fisher et al. 2003; Jones et al. 2003; Isaac & Cowlishaw

2004; O’Grady et al. 2004; Cardillo et al. 2005, 2006;

Price & Gittleman 2007). For example, large body size has

been linked to elevated extinction risk because larger

mammal species are more likely targets for hunting, but

also because larger species usually have lower reproductive

rates and slower population growth (Cardillo et al. 2005).

We also include external factors that might mediate

species’ responses to human impact. Mammal population

sizes may be related to temperature or rainfall, and in the

regions of low productivity or resource availability,

populations may be highly variable, leaving them more

vulnerable to extinction (Owen-Smith 1990; Owen-Smith

et al. 2005). We examine the degree to which the sets of

extinction risk predictors are consistent across the

mammals, both phylogenetically and geographically. Our

primary aim is to examine the degree to which future

mammal declines and extinctions are predictable, by

providing the most thorough analysis to date of the

correlates of mammal extinction risk.
2. MATERIAL AND METHODS
(a) Databases

Our measure of extinction risk was derived from the IUCN

Red List categories (IUCN 2004), converted to an ordinal

index from 0 to 5, following several previous studies (Purvis

et al. 2000a; Jones et al. 2003; Cardillo et al. 2004). We

excluded from all our analyses (including the calculation of

external threat index (ETI); see below) those threatened

species not listed under criterion A of the Red List

(a measurable recent decline in distribution or population

size), to avoid any circularity inherent in predicting extinction

risk from geographical range size or population density. Our

extinction risk index therefore corresponds to a coarse measure

of the rate of recent and ongoing decline in population size or

the extent of geographical distribution, but one based on

objective, quantitative criteria (Rodrigues et al. 2006).
Proc. R. Soc. B (2008)
We compiled information on four kinds of variables as

putative predictors of extinction risk: life history; ecological;

human impact; and environmental (definitions and descrip-

tions of the variables included are provided in the electronic

supplementary material). Biological data came from the

‘PanTheria’ database, a compilation of data on ecological

and life-history traits for up to 4030 mammal species, from

over 3300 published literature sources. Before use in the

analyses, data values were put through an error checking

procedure to identify and remove extreme outliers that were

likely to have represented data entry errors. Multiple data

values for a single trait for each species were then

summarized to a single measure of central tendency. Full

details of these procedures and the construction of the

PanTheria database, and the database itself, will be

provided in a forthcoming publication. For phylogenetic

comparative analyses, we used a dated, composite supertree

phylogeny of 4510 mammal species (the ‘best-dates’ tree of

Bininda-Emonds et al. 2007).

Species geographical range maps (Sechrest 2003; Grenyer

et al. 2006) were used to calculate range sizes and generate

derived variables summarizing human impact and environ-

mental conditions within each species’ range. We used three

indirect measures of human impact as follows: (i) mean

human population density (HPD) within the geographical

range of each species, from the 1995 Gridded Population of

the World database (CIESIN 2000), (ii) the 5th percentile of

the distribution of HPD values within a species’ range, which

represents the amount of ‘people-free space’ available to each

species, e.g. a value of 50 means that HPD is below

50 people kmK2 in only 5% of a species’ range and (iii) the

ETI (Cardillo et al. 2005). ETI is calculated for a given

species i as

ETIi Z

X

jsi

rj$wij

X

jsi

wij

;

where j is a species that shares part of its geographical range

with species i; rj is the extinction risk index value of species j ;

and w is the size of the geographical range shared by species i

and j. ETI is intended to summarize the set of threatening

processes that may affect mammals generally but are not

necessarily captured by measuring HPD. For each species’

geographical range, we also calculated the absolute latitude of

the geographical centroid, the median values of actual

evapotranspiration, mean annual temperature and precipi-

tation, and whether or not the species is island endemic

(restricted to non-continental landmasses). Climate data were

from the GRID databases of the United Nations Environment

Program (UNEP 2003). Geographical data were processed in

ArcGIS (ESRI 2002), and the calculations were corrected for

latitudinal distortions in the area of grid cells.

(b) Statistical models

To avoid statistical problems arising from the phylogenetic

signal in extinction risk and many of the putative predictors

(Fisher & Owens 2004; Purvis et al. 2005), all analyses were

done using phylogenetically independent contrasts. Contrasts

were calculated after transforming phylogenetic branch

lengths by raising them to a power (k), with the value of k

optimized for each variable to minimize the correlation

between absolute scaled contrasts and their standard

deviations (Garland et al. 1992). Soft polytomies were
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resolved arbitrarily into a series of bifurcations separated by

zero-length branches, and contrasts computed at each

resulting bifurcation; these contrasts were then given reduced

weight to ensure a single degree of freedom for each polytomy.

Different arbitrary resolutions give exactly the same result,

and the downweighting ensures that the tests will be

statistically conservative (Purvis & Garland 1993).

All models were run using linear regression forced through

the origin (Garland et al. 1992). We began by finding a global

minimum adequate model (MAM) from the full set of

predictor variables, for all mammal species in the dataset.

Because there were a large number of missing values in the

dataset, varying the set of predictors in the model usually

changed the number of species represented, making it

difficult to guarantee finding the best-fitting model. To search

for the best model as effectively as possible, we followed the

heuristic procedures described by Purvis et al. (2000a) and

Cardillo et al. (2004). At each step in fitting the model, we

tested model robustness by identifying and removing any

strongly influential contrasts, defined as values with studen-

tized residuals of three or more (Jones & Purvis 1997).

Having thus identified a set of predictors that indepen-

dently contribute to mammal extinction risk, we then tested

whether the slopes of these predictors varied among

mammal taxa and geographical regions. We divided the

mammals into the following 10 groups (hereafter ‘taxa’):

Carnivora; Primates; Rodentia; marsupials; ungulates

(ArtiodactylaCPerissodactyla); Lagomorpha; Afrotheria

(ProboscideaCHyracoideaCMacroscelideaCTubulidentataC

Afrosoricida); Chiroptera; and ‘minor clades’ (XenarthraC

ScandentiaCEulipotyphlaCMonotremata). The minor

clades were pooled for analysis because each had too few

data values for reliable model fitting; all the other groups

form monophyletic clades in the mammal supertree,

although the ungulates exclude Cetaceans from the

Cetartiodactyla. We divided the world into the following

geographical regions based on the continental subdivisions

in the ArcGIS basemap: Africa; Australasia (AustraliaCNew

ZealandCNew Guinea and the surrounding islands);

Eurasia; North America; and South America. We then fitted

two extra models: one that included the terms in the MAM

together with the terms describing the interactions between

taxon and each main effect, and another with interactions

between geographical region and each main effect. In the

latter model, we included only those mammal species

endemic to each region to ensure that we were using

exclusive, non-overlapping sets of species. This avoided the

need to either assign wide-ranging species to one region or

another, or to include them multiple times in the analysis. In

the models with interactions, we set the value of k to zero to

ensure equal branch lengths before calculating phylogeneti-

cally independent contrasts; this was necessary because the

optimization procedure renders slope estimates non-

comparable (Garland et al. 1992). Finally, we identified

the sets of independent predictors for each mammal taxon

and each region separately, by finding a MAM for each,

using the procedures outlined above. We did not fit a

separate model for Afrotheria, because only two species were

listed as threatened under criterion A in this clade, giving

very few informative contrasts. Calculating independent

contrasts, optimizing k and fitting regression models

were done with a set of functions written by A.P. in R

(R Development Core Team 2007).
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3. RESULTS
(a) Global models of extinction risk

In presenting and discussing our results, we use adjusted

R2 values as a guide to the explanatory power of the

various models. We emphasize, however, that R2 values for

regressions forced through the origin may be biased

(Eisenhauer 2003) and should be interpreted cautiously.

A global MAM based on the full mammal dataset

explained 27.3% of the variation in extinction risk. This

identified five variables as significant independent pre-

dictors of extinction risk (table 1): weaning age (positive

effect); population density (negative); home range size

(positive); geographical range size (negative); and 5th

percentile of HPD (positive). Significant quadratic terms

for population density and HPD were included in the

model, and HPD was involved in two significant

interaction terms, one with geographical range size and

one with population density.

(b) Variation in extinction risk models among taxa

To test for variation among taxa in the slopes of these five

predictors, we added to the MAM terms describing

the interactions between taxon and each main effect.

Only the interaction with HPD was significant (table 1).

Including this interaction term added a small amount of

predictive power to the MAM (adjusted R2Z0.282),

although the sets of data points used in the two models

were non-identical, because nine between-taxon contrasts

were omitted from the model with the interaction.

Nevertheless, when these nine contrasts were removed

from the MAM, the model with a taxon–HPD interaction

term was still preferred over a model without this

interaction (AICZ63.74 and 86.76, respectively).

To examine further the variation among taxa, we

found a separate MAM for each (table 2). Subdividing

the mammals in this way produced models with substan-

tially higher explanatory power, in most cases, than the

global MAM: with the exception of the rodents (adjusted

R2Z0.156) and minor clades (adjusted R2Z0.195),

R2 values ranged from 0.33 for ungulates to 0.7 for

Carnivora. However, there was little qualitative consis-

tency between the models. Geographical range size was

the most common predictor, appearing in every model

except that for ungulates. In the representation of other

predictors, however, the models differed considerably.

There were also substantial differences among taxa in the

proportion of variation in extinction risk explained by the

different types of predictors (figure 1a): for example, life-

history variables accounted for none of the variation in risk

for rodents, but a large proportion of the variation in

risk for ungulates and minor clades.

(c) Variation in extinction risk models

among regions

We next examined geographical variation in extinction risk

models. In a model that included interactions between

predictors and region, the interactions between region and

population density and those between region and geo-

graphical range size were significant (table 1). This model

had slightly lower predictive power than the MAM

(R2Z0.262), although again, the set of contrasts used was

not identical to the MAM, as species occurring across

multiple regions were excluded. When fitted to identical sets

of contrasts, however, the model with region–population



Table 1. Global minimum adequate models (MAMs) of mammal extinction risk, using phylogenetically independent contrasts.
(Model with no taxon or region interaction terms: R2

adjZ0:273, d.f.Z302. This model includes 372 species; there are fewer
degrees of freedom than this because multispecies polytomies contribute a single degree of freedom each to the model. Model
including terms from the MAM plus a taxon–HPD interaction: R2

adjZ0:282, d.f.Z277. Note that this model excludes nine
between-taxon contrasts that are included in the MAM. Model including terms from the MAM plus region–population density
and region–geographical range size interactions: R2

adjZ0:262, d.f.Z206. Degrees of freedom are lower for this model because it

excludes species found across multiple regions. #p%0.05; �p%0.1; ��p%0.01; ���p%0.001; HPDZ5th percentile value of

human population density within a species’ distribution.)

no taxon or
region
interactions taxon interaction region interaction

predictor t value F value partial R2 F value partial R2

weaning age 2.26# 6.87�� 0.018 20.46��� 0.068
home range size 4.02��� 1.2 0.003 4.63# 0.015
population density K1.83� 0.39 0.001 0.06 0.0002
population density2 2.17# 10.08�� 0.024 7.33�� 0.024
geographical range size K3.23�� 63.2��� 0.151 39.57��� 0.131
HPD 4.35��� 1.5 0.004 0.02 0.0001
HPD2 K3.9��� 1.7 0.004 2.1 0.007
geographical range size–HPD K3.39��� 15.4��� 0.04 0.99 0.003
population density–HPD K2.9�� 0.59 0.001 0.47 0.002
taxon–HPD 5.47��� 0.068
region–population density 2.63# 0.035
region–geographical range size 2.55# 0.034

Table 2. Minimum adequate models of extinction risk for mammal taxa. (Values shown are t values. HPD, human population
density; AET, mean annual actual evapotranspiration. #p%0.05; �p%0.1; ��p%0.01; ���p%0.001.)

Carnivora ungulates Chiroptera marsupials Primates Rodentia Lagomorpha
minor
clades

R2 0.7 0.326 0.419 0.649 0.346 0.156 0.678 0.186
species in model 62 60 761 K191 181 1644 51 208
degrees of freedom 49 46 368 145 129 590 44 99

life history
adult mass K1.87� K4.13��� 0.74 3.15��

adult mass2 2.19#

weaning age 3.47��

litter size 4.55���

litters per year K3.04��

gestation length 3.21���

ecology
population density K3.28�� K2.13#

geographical range size K4.59��� 0.55 K15.57��� K5.67��� K7.25��� 0.97 1.38
geographical range

size2
2.96��� K2.86��

environmental
precipitation 3.05�� 2.47�

latitude 2.49# K2.19# 3.82���

AET K2.93��

human impact
HPD 5th percentile K1.52 K1.53 2.52#

HPD 5th percentile2 2.75�� K2.1#

HPD mean 2.99�� 3.75���

interactions
adult mass–latitude 2.86��

geographical range
size–adult mass

5.39��� K2.74��

geographical range
size–HPD mean

K3.28��

1444 M. Cardillo et al. Mammal extinction risk
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Figure 1. Partitioning of variance in extinction risk among
four different types of predictors. (a) Taxon-specific models
and (b) region-specific models.
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density and region–geographical range size interactions was

preferred to the model without these interactions (AICZ
249.91 and 258.6, respectively). Separate MAMs for the

different geographical regions had lower predictive power,

in general, than those for the separate taxa:R2 values ranged

from 0.114 for South America to 0.406 for Africa (table 3).

Although geographical range size appeared in every region-

specific model, there was, again, considerable variation

between the models for different regions, both in the

predictors represented and in the partitioning of variance

among the different predictor types (figure 1b).
4. DISCUSSION
Our comparative analyses show that the chance of a

mammal species surviving far into the future will depend

on multiple, interacting aspects of its biology, geography

and the external threats to which it is exposed. If we think

of global mammal diversity as passing through a filter

induced by human activity (Balmford 1996), these results

offer an insight into the nature of this filter. Thus, among

mammals generally the species most likely to go extinct

will be those that wean at a late age, require large home

ranges, live at low population densities, have narrow

geographical distributions and share the great majority of

their distributions with large human populations. Further-

more, there appear to be synergistic effects that indicate a

‘double jeopardy’ for species with small distributions or

low population densities that also inhabit regions densely

populated by people. For example, the blackbuck Antilope

cervicapra (currently listed as Near Threatened) has a

value for HPD 5th percentile of 80.25 people kmK2

(in the top 5% of values among all species), but has itself

a mean population density of only 4.31 individuals kmK2

(in the bottom 5% of values among species). The Javan

gibbon Hylobates moloch (currently listed as Critically
Proc. R. Soc. B (2008)
Endangered) is in a similar position, sharing its distribu-

tion with 645 people kmK2 but having itself a population

density of only 6.18 individuals kmK2. Species such as

these will have little access to people-free refuge areas

where they can maintain viable populations large enough

for long-term survival.

Although it explains 27% of variation in extinction risk

among species, the global model masks a great deal of

heterogeneity among mammal taxonomic groups and

geographical regions, both in the sets of predictors included

and the overall explanatory power of the final models. A

noteworthy exception is the near-ubiquitous negative

association between extinction risk and geographical

range size. This association has often been found in

previous studies of extinction risk in separate mammal

taxa (Purvis et al. 2000a; Johnson et al. 2002; Jones et al.

2003; Cardillo et al. 2004; Price & Gittleman 2007), and

the generality of the effect is demonstrated palpably here.

Evidently, the importance of a broad distribution, in

permitting a large population size, or as a buffer against

habitat loss, is such that it transcends biological differences

among taxonomic groups, as well as differences in the

environments and the threatening processes among

regions. Other than geographical range size, the most

commonly significant predictors in the taxon-specific

models were adult body mass, HPD and latitude. Body

mass is strongly correlated with risk-promoting aspects of

biology such as a slow life history and with external

threatening processes such as hunting intensity. Moreover,

body mass interacts with other risk-promoting factors such

that larger mammal species seem to be most sensitive to

slow life history, low population density and other factors

(Cardillo et al. 2005). Human population may be a good

general proxy for threat intensity (Cardillo et al. 2004),

although it will be more strongly correlated with some types

of threatening processes (e.g. hunting) than others (e.g.

invasive species). Latitude may also be a general proxy for a

range of environmental or anthropogenic factors that

influence extinction risk: for example, mammals of larger

body size tend to be found at higher latitudes, while

temperate latitudes are often most heavily modified by

human activity.

There were no other predictors that could qualify as

general, prescriptive indicators of high extinction risk

across mammal taxa or regions. There are three probable

reasons for this. First, mammal clades differ greatly in life-

history and ecological strategies, and therefore in the

responses of species populations to the threatening

processes. Broadly speaking, life-history speed (and

hence rates of maximum population increase) in mammals

scales with body size (Bielby et al. 2007). Thus, in the

MAM for rodents, the group with the smallest mean

body mass, none of the variation in extinction risk is

attributable to differences in life history, but in the

ungulates (for which mean body mass is much larger)

life history is of overriding importance. This is consistent

with a previous finding (Cardillo et al. 2005) that

biological traits tend to be important predictors of

extinction risk in larger species, but are less important in

smaller species (bats appear to be an exception, but they

tend to have slower life history relative to body size than

other mammals; Jones & Purvis 1997).

Second, the predominant threatening processes experi-

enced by mammal populations vary among taxa and



Table 3. Minimum adequate models of mammal extinction risk for geographical regions. (Values shown are t values. HPD,
human population density; ETI, external threat index. #p%0.05; �p%0.1; ��p%0.01; ���p%0.001.)

Australasia North America South America Africa Eurasia

R2 0.248 0.277 0.114 0.406 0.162
species in model 262 451 607 220 517
degrees of freedom 162 284 266 160 321

life history
adult mass K2.6# 3.84��� 2.79�� 2.87��

weaning age 2.99��

ecology
geographical range size K5.84��� K10.24��� 1.69� K5.21��� K7.52���

geographical range size2 4.09���

environmental
island status

human impact
HPD 5th percentile K0.81
HPD 5th percentile2 2.3#

HPD rate of increase
ETI 1.57
ETI2 K1.96#

interactions
geographical range

size–adult mass
2.55# K3.73���
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regions (table S2 in the electronic supplementary

material). Different threat types most strongly affect

species with different biological traits (Isaac & Cowlishaw

2004; Price & Gittleman 2007), and this may partly

explain the variability in our models. However, there is no

clear correspondence between the proportion of variance

in extinction risk explained by different predictor types

(figure 1) and the most prevalent threatening processes

listed in the Red List (table S2 in the electronic

supplementary material), whether across clades or across

regions. This may reflect the lack of a consistent,

quantitative method of assigning threatening processes

to mammal species under the Red List scheme.

Third, a more procedural reason for the variability in

extinction risk models may simply be the effect of our

patchy knowledge of the biology of mammal species. In

the compilation of data as extensive as the one we have

used (PanTheria), a large amount of missing data is

inevitable. It is also an unavoidable fact that we know far

more about some groups of mammals (in particular,

primates and carnivores) than others (especially rodents),

so that the missing data are non-randomly distributed

with respect to phylogeny. In the extreme case, variables

that are very poorly represented for a given taxon (e.g.

population density for bats) cannot appear in the final

model for that taxon. In general, however, there is no close

correspondence between data completeness and the

composition of the final models for each taxon (table S3

in the electronic supplementary material), although few of

the predictor variables present in the final models are

represented by less than half of the species in the relevant

taxon. Higher frequencies of missing values within taxa

may result in models that are less robust to highly

influential observations. However, our model-fitting

procedure provided insurance against this by systemati-

cally identifying influential contrasts at each step of the

model-fitting process, and assessing whether their removal

made any qualitative difference.
Proc. R. Soc. B (2008)
Techniques for filling in missing values, such as multiple

imputation (MI), are widely advocated by statisticians

(Little & Rubin 2002), and have indeed been used in a

recent comparative extinction risk study (Fisher et al.

2003). However, we are unaware of any MI algorithm

capable of dealing correctly with the strongly hierarchical

phylogenetic structure inherent in a comparative biological

dataset. The result is that biological variables imputed using

currently available MI algorithms suffer a loss of phyloge-

netic signal (M. Cardillo & A. Purvis 2008, unpublished

data). We therefore believe that our heuristic approach to

finding the best models from incomplete datasets remains

the most powerful approach until a phylogenetically explicit

MI method is developed. Nonetheless, we note that a

dataset for primates with missing values estimated using MI

(M. Cardillo & A. Purvis 2008, unpublished data) yielded

an extinction risk model qualitatively identical to the

primate model presented here. This offers some encour-

agement that our results may not be strongly biased by

missing values.
5. CONCLUSIONS
The comparative approach to identifying patterns and

correlates of extinction risk has contributed a great deal to

our understanding of the ecological processes underlying

species declines (Fisher & Owens 2004). Based on our

results for mammals, we concur with Fisher & Owens

(2004) that models of relatively narrow taxonomic scope

are likely to be more informative for practical conservation

than more broadly focused models. How can comparative

models of extinction risk help inform conservation policy?

One way is by identifying species and areas most sensitive

to human impacts on the basis of their biology (Cardillo

et al. 2004, 2006). This is an especially important exercise

for species in areas where natural habitats are still largely

intact, but likely to come under increasing pressure over

the coming decades. For example, over the next 15 years,
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a large proportion of the tropical forest of the Amazon

Basin is expected to be destroyed or heavily degraded

under proposed development schemes (Laurance et al.

2001; Soares-Filho et al. 2006), and the potential for

mammal extinctions is high (Grelle 2005). In such areas,

comparative models could help prioritize species for

preventative conservation efforts, if species are ranked by

their inherent vulnerability to decline (i.e. predicted

extinction risk), rather than their current threat status.

Many mammal species are still too poorly known to assign

to an IUCN Red List category, and it may even be possible

to use comparative models to aid in assigning species to

provisional Red List categories.
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