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ABSTRACT

To investigate nucleic acid base pairing and stack-
ing via atom-specific mutagenesis and crystallogra-
phy, we have synthesized for the first time the
6-Se-deoxyguanosine phosphoramidite and incor-
porated it into DNAs via solid-phase synthesis with
a coupling yield over 97%. We found that the UV
absorption of the Se-DNAs red-shifts over 100 nm
to 360 nm (e= 2.3�104 M�1 cm�1), the Se-DNAs
are yellow colored, and this Se modification is rela-
tively stable in water and at elevated temperature.
Moreover, we successfully crystallized a ternary
complex of the Se-G-DNA, RNA and RNase H.
The crystal structure determination and analysis
reveal that the overall structures of the native and
Se-modified nucleic acid duplexes are very similar,
the selenium atom participates in a Se-mediated
hydrogen bond (Se . . . H–N), and the SeG and C
form a base pair similar to the natural G–C pair
though the Se-modification causes the base-pair
to shift (approximately 0.3 Å). Our biophysical and
structural studies provide new insights into the
nucleic acid flexibility, duplex recognition and sta-
bility. Furthermore, this novel selenium modification
of nucleic acids can be used to investigate chemo-
genetics and structure of nucleic acids and their
protein complexes.

INTRODUCTION

Selenium derivatization of proteins via selenomethionine
has revolutionized protein X-ray crystallography via mul-
tiwavelength anomalous dispersion (MAD), and two
thirds of new crystal structures of proteins have been
determined via this strategy recently (1,2). Indirect deriva-
tization of nucleic acids with the Se-labeled proteins for
structure determination of five ribozymes, such as the
hepatitis d virus ribozyme and the flexizyme (3,4), was
also reported. Inspired by these advances, our research

group pioneered and developed covalent incorporation
of selenium into DNAs and RNAs (5–8) for structure
determination via MAD or single-wavelength anomalous
dispersion (SAD) phasing. This novel research area has
attracted many attentions and research activities in chemi-
cal synthesis, biochemistry and structural biology (9–15).
Besides structural study, we are exploring chemogenetic

investigation of nucleic acid function by the atom-specific
substitution of oxygen (atomic radius, 0.73 Å) with sele-
nium (1.16 Å, from the same elemental Family VIA in
the periodic table) as an atomic probe (12,15). As the
genetic information storage, replication, and transcription
are achieved via base-pairing, stacking interaction and size-
and-shape impact of the nucleobase pairs, extensive research
has been focused on studying the recognition and stability
of nucleobase pairs and double-stranded structures (16–20).
Interestingly, our recent study via replacement of thymi-
dine 4-oxygen with selenium in DNA (SeT) has revealed
that DNA is flexible and able to accommodate a large
atom. In addition, we have discovered that the thymidine
4-selenium atom forms a hydrogen bond (Se . . .H–N) with
the adenosine 6-amino group in DNA duplex (12), and the
Se-nucleobase-derivatized DNA has an X-ray crystal struc-
ture virtually identical to the corresponding native DNA
structure. This selenium substitution, which leads to the
Se-mediated hydrogen bond, the Se-nucleobase stacking
interaction and the Se-modified duplex, provides a unique
opportunity to obtain new insights into the base-paring and
stacking interactions, and the duplex recognition and
stability.
Despite the synthesis of the 20-deoxy-6-selenoguanosine

and its derivatives several decades ago (21,22), synthesis
of nucleic acids containing the Se-guanine remained a
challenge, even though 6-S-purines have been introduced
into nucleic acids (23,24). To explore the Se derivatiza-
tion of guanine for structure and function studies, we
report here the synthesis of a 6-Se-20-deoxyguanosine
phosphoramidite, its incorporation into oligonucleo-
tides, and Se-DNA duplex stability investigation via
UV-melting study. We also report here the observation
of the colored DNAs containing the 6-Se-guanine and
the Se-G DNA stability in water and at an elevated
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temperature. Moreover, we crystallized a ternary complex
of the Se-G-DNA, RNA and RNase H, and determined
its X-ray crystal structure. This is the first structure deter-
mination of a protein-nucleic acid complex on the basis of
Se-derivatized nucleic acids and MAD phasing. We also
report here that the overall nucleic acid structures of the
native and modified duplexes are very similar, that the
selenium atom forms a Se-hydrogen bond (Se . . .H–N),
and the SeG and C form a base pair similarly to the
native G–C pair, though the 6-selenium modification
results in the base-pair shift for approximately 0.3 Å.
This Se-base-pair shift leads to a reduction in the base-
stacking interaction, which explains the decrease in UV-
melting temperatures of the modified duplexes, comparing
to the corresponding native ones. Our exciting and novel
discoveries will open a new research avenue in structure
and function studies of nucleic acids as well as their pro-
tein complexes.

MATERIALS AND METHODS

Synthesis of 6-Se-deoxyguanosine phosphoramidite (3)

N2-[2-(4-tert-butylphenoxy)acetyl]-6-(2-cyanoethyl)seleno-
50-O-(4,40-dimethoxytriphenylmethyl)-20-deoxyguanosine
(2). 2,4,6-(Triisopropylbenzene)sulfonyl chloride (300mg,
1mmol, 1.5 eq., TIBS–Cl) dissolved in CH2Cl2 (1ml) was
added to the solution of 1 (500mg, 0.66mmol), 4-dimethyl-
aminopyridine (15mg, 0.12mmol, DMAP), and triethyl-
amine (0.18ml, 1.32mmol, 2 eq., TEA) in CH2Cl2 (2ml)
under argon. This reaction was stirred at room temperature
for 15min (monitored by silica gel TLC to confirm
the completion; 5% MeOH in CH2Cl2) and then injected
to a solution of the sodium selenide (NCCH2CH2SeNa).
The selenide solution (25) was prepared by injecting
the NaBH4 suspension (150mg in 4ml of EtOH) into a
flask containing di-(2-cyanoethyl) diselenide (700mg,
2.64mmol, 8 eq.) dissolved in ethanol (15ml) on an ice-
bath and under argon. After the selenium incorporation
reaction was completed in an hour (monitored by TLC,
5% MeOH in CH2Cl2, product Rf=0.43), water (10ml)
was added to the reaction flask. The solution was extracted
with CH2Cl2 (3� 20ml). The combined organic layer was
dried over MgSO4 (s), filtered and evaporated under
reduced pressure. The crude product was then dissolved
in methylene chloride (5ml) and purified on a silica gel
column equilibrated with methylene chloride. The column
was eluded with a step-wise gradient of methanol-
methylene chloride mixtures (CH2Cl2, 0.5%, 1.0%, 2.0%
MeOH in CH2Cl2, 300ml each) to afford product 2 as a
white foam (460mg, 80% yield over two reactions).
Intermediate: 50-O-(4,40-Dimethoxytriphenylmethyl)-N2-
[2-(4-tert-butylphenoxy)acetyl]-6-O-[2,4,6-(triisopropyl-
benzene)sulfonyl]-20-deoxyguanosine. 1H-NMR (CD2Cl2)
d: 1.28–1.32 (m, 18H, 6� CH3-ipr), 1.36 (s, 9H, 3� CH3-
tBu), 2.59–2.65 and 2.76–2.83 (2� m, J20�10=6.4Hz, 2H,
H-20), 2.99 (h, J=6.8Hz, 1H, CH-ipr), 3.16 (br, 1H, OH),
3.35 and 3.47 (2� dd, J50�40=4.0 and J50�50=10.4Hz, 2H,
H-50), 3.78 (s, 6H, 2� OCH3), 4.21–4.31 (m, 3H, 2�
CH-ipr and H-40), 4.64 (s, 2H, CH2–O), 4.85–4.88
(m, 1H, H-30), 6.60 (t, J10-20=6.4Hz, 1H, H-10), 6.76–7.50

(m, 19H, CH-arom), 8.16 (s, 1H, H-8), 8.66 (br, 1H, NH);
13C-NMR (CD2Cl2) d: 23.24 and 24.30 (CH3-ipr), 29.93
and 34.36 (CH-ipr), 31.20 (CH3-tBu), 34.07 (C-tBu),
40.36 (C-20), 55.16 (OMe), 64.23 (C-50), 68.11 (CH2-O),
72.31 (C-30), 84.64 (C-10), 86.44 (C-arom), 86.83 (C-40),
113.05, 114.41, 124.06, 126.54, 126.81, 127.75, 128.04,
129.92, 130.08 (CH-arom), 120.57 (C-5), 131.18, 135.55,
135.88, 144.76, 145.18, 150.31, 150.76, 154.52, 154.68,
154.92, 158.63, 158.67, 166.40 (C=O). HRMS (ESI–
TOF): molecular formula, C58H67N5O10S; [M+H]+:
1026.4678 (calc. 1026.4681). Compound 2: 1H-NMR
(CD2Cl2) d: 1.35 (s, 9H, 3� CH3-tBu), 2.47 (br, 1H, OH),
2.56–2.62 and 2.80–2.88 (2� m, J20�10=6.4Hz, 2H, H-20),
3.16 (t, J=7.2Hz, 2H, SeCH2CH2CN), 3.34 and 3.47
(2� dd, J50-40=4.0 and J50�50=10.0Hz, 2H, H-50), 3.58
(t, J=7.2Hz, 2H, Se–CH2–CH2–CN), 3.79 (s, 6H,
2� OCH3), 4.18–4.21 (m, 1H, H-40), 4.68 (s, 2H, CH2–O),
4.80–4.84 (m, 1H, H-30), 6.49 (t, J10�20=6.4Hz, 1H, H-10),
6.78–7.43 (m, 17H, CH-arom), 8.10 (s, 1H, H-8), 8.96
(br, 1H, NH); 13C-NMR (CD2Cl2) d: 18.92 and 19.01
(SeCH2CH2CN), 30.94 (CH3–tBu), 33.83 (C–tBu), 40.04
(C-20), 54.95 (OMe), 63.80 (C-50), 67.76 (CH2–O), 72.00
(C-30), 84.11 (C-10), 86.17 (C-arom), 86.27 (C-40), 112.79,
114.07, 126.39, 126.57, 127.56, 127.76, 129.73 (CH-arom),
118.93 (CN), 131.49 (C-5), 135.38, 135.42, 144.54, 144.99,
154.63, 158.39 (C-arom), 148.37 (C-4), 150.80 (C-2),
158.01 (C-6), 165.55 (C=O). HRMS (ESI–TOF): molecu-
lar formula, C46H48N6O7Se; [M+Na]+: 899.2651 (calc.
899.2642).

N2-[2-(4-tert-butylphenoxy)-acetyl]-6-(2-cyanoethyl)-
seleno-50-O-(4,40-dimethoxytriphenylmethyl)-20-deoxy-
guanosine 30-O-(2-cyanoethyl)-N,N-diisopropylamino
phosphoramidite (3). Compound 2 (250mg, 0.29mmol)
and 5-(benzylthio)-1H-tetrazole (27mg, 0.15mmol) were
dried on a high vacuum overnight. Under argon, dry
methylene chloride (1ml) was added into the flask to dis-
solve them, followed by injection of 2-cyanoethyl
N,N,N,N-tetraisopropylphosphorodiamidite (103mg,
0.34mmol, 1.2 eq.). The solution was stirred under
argon at room temperature for 30min. Reaction comple-
tion was indicated by TLC [CH2Cl2/EtOAc (7:3), product
(Rf=0.58 and 0.65): a mixture of two diastereomers]. The
reaction was quenched with NaHCO3 (3ml, sat.), stirred
for 5min, and extracted with CH2Cl2 (3� 5ml). The com-
bined organic layer was dried over MgSO4 (s), filtered, and
evaporated under reduced pressure. The crude products
were purified on a silica gel column equilibrated with
CH2Cl2, and eluted with CH2Cl2/EtOAc (7:3). After dis-
solving in CH2Cl2 (1ml), these products were precipitated
from pentane (200ml) to yield the titled compound (3) as
a white powder (230mg, 75% yield). 1H-NMR (CD2Cl2,
two sets of signals from a mixture of two diastereoi-
somers) d: 1.15–1.24 (m, 24H, 8� CH3-ipr), 1.36 (s,
18H, 6� CH3–tBu), 2.51 and 2.65 (2� t, J=6.4Hz, 4H,
2� OCH2CH2CN), 2.68–2.78 and 2.88–2.95 (2�m,
J20-10=6.4Hz, 4H, 2� H-20), 3.21 and 3.22 (2� t,
J=7.2Hz, 4H, 2� SeCH2CH2CN), 3.35–3.50 (m, 4H,
2� H-50), 3.58 (t, J=7.2Hz, 4H, 2� SeCH2CH2CN),
3.63–3.91 (m, 8H, 4� CH-ipr, 2� O–CH2–CH2–CN),
3.80 and 3.82 (2� s, 12H, 4� OCH3), 4.29–4.37 (m, 2H,
2� H-40), 4.71 and 4.72 (2� s, 4H, 2� CH2–O), 4.78–4.88
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(m, 2H, 2� H-30), 6.44 (t, J10-20=6.4Hz, 2H, 2� H-10),
6.78–7.45 (m, 34H, CH-arom), 8.13 and 8.14 (2� s, 2H,
2� H-8), 8.91 and 8.92 (2� br, 2H, 2� NH); 13C-NMR
(CD2Cl2) d: 19.14 (SeCH2CH2CN), 19.43 and 19.45
(SeCH2CH2CN), 20.20, 20.27 and 20.36, 20.43
(OCH2CH2CN), 24.30, 24.34, 24.37, 24.41 (CH3-ipr),
31.21 (CH3-tBu), 34.08 (C-tBu), 39.44, 39.49 and 39.54,
39.57 (C-20), 43.22, 43.34 (CH-ipr), 55.18 and 55.21
(OMe), 58.15, 58.34 and 58.29, 58.48 (OCH2CH2CN),
63.35 and 63.69 (C-50), 68.08 (CH2–O), 73.38, 73.55 and
73.85, 74.03 (C-30), 84.48 and 84.52 (C-10), 85.85, 85.91
and 86.09, 86.13 (C-40), 86.55 (C-arom), 112.59, 114.33,
126.61, 126.80, 126.83, 127.79, 128.01, 128.08, 129.99,
130.02, 130.06 (CH-arom), 117.66 and 117.82
(OCH2CH2CN), 119.29 (SeCH2CH2CN), 131.76 and
131.77 (C-5), 135.60, 135.65, 144.77, 145.12, 145.16,
155.00, 155.02, 158.64, 158.66 (C-arom), 148.72 and
148.76 (C-4), 151.13 and 151.16 (C-2), 158.29 and 158.35
(C-6), 165.76 (C=O); 31P-NMR (CD2Cl2, using H3PO4 as
the standard) d: 149.2. HRMS (ESI–TOF): molecular for-
mula, C55H65N8O8PSe; [M+H]+: 1077.3902 (calc.
1077.3901).

Synthesis, purification and analysis of the Se-GDNAs

All syntheses were carried out in a 1-mmol scale and with
the DMTr-on. The 6-Se-G derivatized oligonucleotides
were prepared using the ultramild CE phosphoramidites
(dA, dC and dG). Concentration of the Se-modified
phosphoramidite (3) in acetonitrile was the same as
those of the conventional phosphoramidites (0.1M). The
phosphoramidite coupling reaction was carried out
using BTT activator (0.325M). After the synthesis, the
Se-oligonucleotides were cleaved from the solid support
and fully deprotected overnight at room temperature
with potassium carbonate (1ml, 0.05M in anhydrous
methanol). The supernatant was evenly divided into two
2-ml Eppendorf tubes, followed by the addition of water
(1ml per tube) and triethylammonium acetate buffer
[0.5ml per tube, 2M triethylammonium acetate
(TEAAc), pH 7.1]. After filtration with 0.45m filter, the
Se-DNA oligonucleotides were purified by reversed-phase
high performance liquid chromatography (RP-HPLC)
twice, with DMTr-on and DMTr-off.

The purification was carried out on Welchrom XB-C18
column (21.1� 250mm, 10 m) with buffer A (10mM
TEAAc, pH 7.1) and buffer B (10mM TEAAc, pH 7.1,
in 50% acetonitrile). A flow rate of 6ml/min and a gradi-
ent (starting from buffer A) were used with buffer B
increased by 4.5% (for DMTr-on) or 2% (for DMTr-
off) every minute over 20min. By monitoring under
260 nm and 360 nm, the Se-DNAs were collected and lyo-
philized. For the 50-DMTr deprotection, the lyophilized
Se-DNAs with DMTr-on were treated with trichloroacetic
acid solution (final concentration: 0.3% w/w) for 3min,
followed by the addition of TEAAc buffer (2M) to adjust
the pH to �7. Similarly, the Se-DNAs with DMTr-off
were purified by HPLC again, followed by lyophilization.
The purified Se-DNAs with DMTr-off were re-dissolved
in water and analyzed by HPLC, UV and MS to confirm
the high quality and integrity. Similarly, Se-DNA HPLC

analysis was performed on a Welchrom XB-C18 column
(4.6� 250mm, 5 m) using the same buffer system. A flow
rate of 1.0ml/min and a gradient (starting from buffer A)
of reaching 30% buffer B in 20min were used.

UV absorption, thermo-stability, and duplex melting studies
of the Se-GDNAs

To determine the extinction coefficient of DNA SeG by
comparing with the native nucleotide, we synthesized
and purified GG, SeGG and SeGSeG dimers, and their
UV spectra were studied. By taking the advantage of
HPLC separation and UV analysis, we have developed a
useful HPLC–UV approach to allow separation and accu-
rately measure and calculate the extinction coefficients of
the base-modified nucleotides. The HPLC conditions are
the same as those in the oligonucleotides analysis. To
study the Se-DNA thermo-stability, 6-Se-G-DNAs were
heated at 608C for 1 h in the buffer of 100mM
NaH2PO4-Na2HPO4 (pH 7.6), followed by UV and
HPLC analysis.
We measured the melting temperature of the Se-DNA-

derivatized duplexes along with those of the native
duplexes. Prior to acquisition of the melting curves,
duplexes were annealed by heating to 708C for 2min, fol-
lowed by slowly cooling to 58C and keeping at the tem-
perature for 3 h. Denaturation curves were acquired at
260 nm and 1 cm path length at heating or cooling rates
of 0.58C/min, using a UV-Vis spectrophotometer
equipped with a six-sample thermo-stated cell block and
a temperature controller. The experiments were performed
using the samples (DNA duplexes, 1.0 mM) dissolved in
the buffer of 50mM NaCl, 10mM NaH2PO4-Na2HPO4

(pH 6.5), 0.1mM EDTA and 10mM MgCl2.

RESULTS AND DISCUSSION

Synthesis of 6-Se-2’-deoxyguanosine phosphoramidite (3)

Our development of the 2-cyanoethyl-seleno protection
and deprotection for the 4-Se-thymidine DNA synthesis
(12) encouraged us to protect the 6-Se-functionality on
deoxyguanosine with the same protecting group. In addi-
tion, the 2-cyanoethyl protecting group can be removed
under ultramild conditions (0.05M K2CO3 in methanol).
Since strong basic conditions (such as NH3 treatment) can
cause deselenization, we decided to use (4-tert-butyl-
phenoxy)acetyl (TBPA) as the protecting group (26) for
the 2-NH2 of this 6-Se-deoxyguanosine phosphoramidite
(3), which can also be removed under the ultramild con-
dition. Our synthesis (Scheme 1) started from the partially
protected deoxyguanosine derivative (1). To avoid protec-
tion of the 30-hydroxyl group, we have developed a con-
dition that allows selective sulfonylation at the 6-position
of deoxyguanosine in the presence of the free 30-OH
group, using 2,4,6-triisopropylbenzenesulfonyl chloride
(27). Without purification of the activated intermediate,
the protected 6-Se-deoxyguanosine derivative (2) was
obtained (80% yield over two steps) by the substitution
of the activating group at the 6-position with sodium
2-cyanoethylselenide, which was generated by the reduc-
tion of di-(2-cyanoethyl) diselenide with NaBH4 (25).
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The 6-Se-deoxyguanosine derivative (2) was converted to
the corresponding phosphoramidite (3) in a satisfactory
yield.

Synthesis of the 6-Se-G DNAs

Strong basic conditions (such as NH3 treatment) for
nucleobase deprotection cause the deselenization of 6-Se-
G (SeG), thus the ultramild protecting group [(4-tert-butyl-
phenoxy)acetyl] (26) is used for the 2-NH2 of 3. The 6-Se-G
derivatized oligonucleotides were prepared using the ultra-
mild CE phosphoramidites (dA, dC and dG; 28), 3, and
BTT activator (29). These ultramild protecting groups can
be removed under the ultramild deprotection condition
(the K2CO3 treatment; 12). When the oligonucleotides con-
tain many dG residues, phenoxyacetic anhydride (Pac2O),
instead of acetic anhydride, is used in the capping step to

avoid the dG acetylation, which is difficult to remove under
the K2CO3 treatment.

To measure the coupling efficiency of the 6-Se-G phos-
phoramidite (3), we synthesized 50-DMTr-SeGG dinucleo-
tide, analyzed it by RP-HPLC (Figure 1), and compared it
with the native 50-DMTr-GG synthesis and analysis
(Supplementary Data), which indicated a high coupling
yield (over 97%). Typical HPLC, UV and MS analyses
of the SeG-DNAs are shown in Figure 2. More MS data of
the synthesized SeG-DNAs are shown in Table 1. The
purified Se-DNAs are yellow colored, which is the first
observation of the colored DNAs containing the 6-Se-
deoxyguanosine. In addition, our synthesis and analysis
indicated that the 6-Se-G functionality of the Se-DNAs
is relatively stable under aqueous conditions and air.

Determination of extinction coefficient of DNA SeG (e
SeG
360 )

and UV spectroscopic studies

To determine the extinction coefficient of DNA SeG by
comparing with the native nucleotide, we synthesized
and purified GG, SeGG and SeGSeG dimers, and their
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UV spectra are presented in Figure 3. By taking the
advantage of HPLC separation and UV analysis, we
have developed this useful HPLC–UV approach to accu-
rately measure and calculate the extinction coefficients of
the base-modified nucleotides. Our experimental results
indicate that SeG in DNA absorbs at both 254 nm and

360 nm (�max=267 nm and 360 nm) while native G
(�max=254 nm) does not absorb at 360 nm (Figure 3A).
The SeG �max values of

SeGG (�max=359 nm) and SeGSeG
(�max=361 nm) are virtually identical; the average �max of
SeG is 360 nm. Since the extinction coefficient of G at
260 nm ("G260 =1.22� 104M�1cm�1) is known (30), we
performed HPLC analysis of SeGG and SeGSeG under
both 260 nm and 360 nm (Figure 3B and C), and their
peak areas were quantified, respectively. First, the absorp-
tion ratio at 260 nm and 360 nm of SeGSeG (A

SeG
260 /A

SeG
360 ) was

calculated and determined as a value. In Figure 3B, the a
value is used to calculate the 260-nm absorption contribu-
tion from SeG of the SeGG. The net 260-nm absorption
from G of the SeGG (AG

260) is obtained by subtraction of
the SeG 260-nm contribution from the total SeGG absorp-
tion at 260 nm (Figure 3B). Thus, we deduced Equation
(3) from Equation (1) and (2) presenting the SeGG. Since
A

SeG
360 can be directly measured and AG

260can be accurately
calculated from this SeGG in Figure 3B, we determined
"
SeG
360 as 2.3� 104M�1cm�1. Similarly, from Equation (2)
and (4) presenting the SeGSeG, we deduced Equation (5)
and calculated the ratio of A

SeG
260 /A

SeG
360 in Figure 3C, thereby

accurately determining "
SeG
260 as 5.3� 103M�1 cm�1.
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dimer (red line); (B) RP-HPLC analysis of SeGG dimer at 260 nm (blue line) and 360 nm (red line); (C) RP-HPLC analysis of SeGSeG dimer at 260 nm
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Table 1. MALDI-TOF MS data of the SeG-modified oligonucleotides

Entry Se-oligonucleotides Measured (calcd.) m/z

a 50-T-SeG-T-30 [M+H]+: 973 (973)
C30H40N9O19P2Se: FW 971.6

b 50-TT-SeG-T-30 [M+H]+: 1244 (1244)
C40H52N11O24P3Se: FW 1242.8

c 50-ATG-SeG-TGCTC-30 [M+H]+: 2793 (2794)
C88H112N32O53P8Se: FW 2792.8

d 50-ATG-SeG-T-SeG–CTC-30 [M+H]+: 2858 (2857)
C88H112N32O52P8Se2: FW 2855.7

e 50-AT-SeG-SeG-T-SeG–CTC-30 [M+H]+: 2920 (2920)
C88H112N32O51P8Se3: FW 2918.7

f 50-GT-SeG-TACAC-30 [M+H]+: 2474 (2474)
C78H99N30O45P7Se: FW: 2472.6

g 50-G-SeG-GTACAC-30 [M+H]+: 2498 (2499)
C78H98N33O44P7Se: FW 2497.6

h 50-GC-SeG-TATACGC-30 [M+H]+: 3092 (3092)
C97H123N38O57P9Se: FW: 3091.0

i 50-GCG-SeG-ATACGC-30 [M+H]+: 3116 (3116)
C97H122O56N41P9Se: FW: 3115.4
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Excitingly, we observed that invisible DNA turns into
colored DNA via the single atom replacement with sele-
nium, while natural DNAs are colorless. Comparing with
the native deoxyguanosine nucleotide (UV �max=254nm,
e=1.22� 104M�1 cm�1; 30), the UV spectrum of
the 6-Se-deoxyguanosine nucleotide (�max=360 nm,
e=2.3� 104M�1 cm�1) reveals a higher absorption and
a large red-shift over 100 nm, thereby leading to the
appearance of yellow color. This Se-nucleotide visualiza-
tion is probably due to the ease of the delocalization
of the selenium electrons on the nucleobase, requiring
less energy for the electron excitation, thereby resulting
in the large UV red-shift. In contrast, the 6-S-deoxygua-
nosine nucleotide (6-S-dG, �max=339 nm; 24) shows a
smaller red-shift from the deoxyguanosine nucleotide
and remains colorless.

Thermostability studies of the 6-Se-G SeNAs

The DNA containing 6-Se-G [50-DMTr-d(GAATCA-SeG-
GTGTC)-30] was heated at 608C for 1 h in the buffer of
100mM NaH2PO4-Na2HPO4 (pH 7.6) (Figure 4). Besides
a small amount of the DNA detritylation (�5%), desele-
nization of the Se-G-DNA was insignificant (�1%, deter-
mined by the Se-DNA total decrease), which shows that
the 6-Se-G functionality is relatively stable in aqueous
solution at the elevated temperature. Since stability in
the air is required in most crystallization experiments,
we have monitored the Se-derivatized DNAs for weeks
by HPLC, and found insignificant deselenization.

UV-melting study of the Se-GDNA duplexes

The UV-melting temperatures were measured (Tm,
Table 2) to examine the impact of the SeG residue incor-
poration on the thermodynamic stability of DNA
duplexes. Two typical melting tempeature curves of the

native and modified duplexes are shown in Figure 5. It
has been observed in the literature (31) that the 6-S-G
modification can slightly destablize nucleic aicd duplex
and cause drop in the UV-melting temperature (Tm)
up to �38C per S-modification. Since selenium atomic
size is larger than sulfur atomic size, we expected that
the 6-Se substitution can cause more decrease in the
duplex stability and melting temperature as well. As pre-
dicted, these Se-DNA duplexes with single, double or
triple Se-G-modifications indeed show significant decrease
in melting temperatures (up to 118C per modification on
DNA with one Se atom, Table 2).

Interestingly, we also observed that Tms of the
Se-DNA duplexes in Entry a and b of Table 2, where
the Se-modifications are close to the 50 or 30 terminus,
are just 3–48C lower than that of the corresponding
native complex. In addition, a small change in Tm was

Table 2. UV Melting temperatures of the SeG-modified oligonucleotides

Entry DNA pairs Se-DNA Tm

(native) 8C

a 50-CGTACC TACAGTT-SeG-T-30 51.1� 0.2 (55.0� 0.1)
30-GCATGGATGTCAA—C-A-50

b 50-Py-A-SeG–A-ACTGTAGGTACG 55.2� 0.1 (58.3� 0.1)
30-T—C-BrU-TGACATCCATGC-50

c 50-TACTAAC-SeG-TAGTA-30 47.9� 0.1 (54.0� 0.3)

d 50-GAATCC-SeG–CTGTC-30 42.0� 0.1 (53.0� 0.1)
30-CTT AGG–C-GACAG-50

e 50-GAATCT-SeG–CTGTC-30 40.0� 0.2 (48.0� 0.2)
30-CTT AGA–C-GACAG-50

f 50-GAATCA-SeG-GTGTC-30 38.4� 0.2 (47.0� 0.1)
30-CTT AGT—C-CACAG-50

g 50-GC-SeG-TATACGC-30 28.5� 0.3 (38.0� 0.2)

h 50-ATG-SeG-TGCTC-30 32.3� 0.3 (42.5� 0.3)
30-TAC—C-ACGAG-50

i 50-ATG-SeG-T-SeG–CTC-30 17.0� 0.5 (42.5� 0.3)
30-TAC—C-A—C-GAG-50

j 50-AT-SeG-SeG-T-SeG–CTC-30 9.6� 1.0 (42.5� 0.3)
30-TA—C—C-A—C-GAG-50
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Figure 4. Thermostability studies of the 6-Se-G-DNA. The sample
[50-DMT-d(GAATCA-SeG-GTGTC)-30] was dissolved in a 100mM
phosphate buffer (pH 7.6) and analyzed by HPLC at 360 nm.
(A) before heating; (B) after heating at 608C for 1 h. (C) HPLC analysis
of the Se-G-DNA, monitored at both 267 nm and 360 nm, before
heating.
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also observed when the Se-modification was introduced to
a region containing a bulge or a flipping nucleotide. For
instance, the self-complementary sequence in Entry c
forms two A-bulges in the duplex, where these two
A-nucleotides flip out in the crystal structure (32). Tm of
this duplex with the Se-modification close to these two As
drops only 2-38C per Se-modification. These results sug-
gest that the degree of the Se-G-duplex destabilization is
dependent on the modification location, sequence and sec-
ondary structure of nucleic acids. Since the large size of
selenium atom, which requires more space surrounding
the modification site, is the major factor of the duplex
instability, less thermo-destabilization is observed when
the Se-modification is introduced to a position close to
secondary structures that are more dynamic and flexible.
This unique effect of the selenium modification can be
taken advantage of in identifying and studying secondary
structures of nucleic acids, such as DNAzymes and ribo-
zymes, and nucleic acid-protein complexes (33–36). For
structural studies of nucleic acids and their protein com-
plexes, it is better to place this modification close to the
termini of DNA or RNA, pyrimidines, or the internal
bulges or loops. It is also a good idea to put the modifica-
tion in RNA or DNA loops.

Structure of Se-DNA/RNA in a protein complex

In order to further study the Se-G-modification and Se-
derivatized duplex of nucleic acids, we attempted to crys-
tallize a Se-DNA/RNA/RNase H ternary complex and
determine its X-ray crystal structure. Furthermore, we
attempted to demonstrate the proof of principle on the
structural determination of protein-nucleic acid complexes
via Se-derivatized nucleic acids and phasing. By using the
RNase H complex as a model system, which was deter-
mined previously (37,38), we successfully demonstrated
the structure determination of a protein–nucleic acid com-
plex on the basis of the nucleic acid Se-derivatization and
MAD phasing. Besides facilitation of the structure deter-
mination, our selenium-modification study has revealed
new insights into RNase H catalysis. The crystallization,
structure refinement and determination results, and the
enzyme mechanism study will be published elsewhere.

In this report, we focus here on the study of the Se-G-
modification and its structural impact on base pairing and
stacking interaction. It is easier to synthesize, derivatize,
and purify DNAs than RNAs, thus the DNA portion
of the DNA/RNA hybrid (50-ATGTCG-p-30/50-UCGA
CA-30; one-base overhang at both 50-ends) was derivatized
with the selenium functionality on two Gs (G3 and G6).
The plasmid expressing Bacillus halodurans RNase H
(D132N mutant; 37,38) was a kind gift from Yang’s
laboratory at the National Institute of Health. The 3D
crystal structure of the Se-DNA/RNA/RNase H complex
(PDB ID: 2R7Y) was successfully determined on the basis
of the DNA Se-derivatization and phase information
obtained from selenium scattering.

Both the native and Se-DNA-derivatized complexes
were crystallized in C2 space group with similar unit cell
dimensions. Our study reveals that the protein structures

of both the native (2.70 Å resolution, PDB ID: 2G8U;
37,38) and modified (1.80 Å resolution, PDB ID: 2R7Y)
complexes are virtually identical, and that the nucleic acid
global structures of the native and Se-modified duplexes
are very similar (Figure 6) though the nucleobases shift
locally (Figure 6A–D). Probably due to flexibility of the
over-hung ends, more structural differences are observed
at the DNA and RNA termini. The distance between
1-NH of G3 in the DNA sequence and the N3 of C5 in
the RNA sequence, and the distance between exo-2-NH2

of G3 and exo-2-O of C5 are 3.16 Å and 2.59 Å, respec-
tively (the corresponding H-bond lengths of the native
G–C pair: 2.99 Å and 2.95 Å). These distances indicate
the retention of the two native hydrogen bonds of the
G3–C5 base pair. Since the Se atomic radius is 0.43 Å
larger than that of O and hydrogen bond length is nor-
mally 2.7–3.2 Å, the distance (3.48 Å) between the G3 exo-
6-Se and C5 exo-4-NH2 (the native H-bond length: 2.99)
indicates a selenium-mediated H-bond (Figure 6E).
Thus, the SeG3–C5 base pair consists of three hydrogen
bonds (exo-6-Se/exo-4-NH2, 1-NH/N3, and exo-2-NH2/
exo-2-O). Interestingly, the hydrogen bond length
(2.59 Å) between G3 exo-2-NH2 and C5 exo-2-O is 0.36 Å
shorter than the corresponding native bond (2.95 Å).
The bond length comparisons between the native and

Se-mediated H-bonds are summarized in Table 3.
Furthermore, the bond length (3.48 Å) of the Se . . .H–N
hydrogen bond (exo-6-Se/exo-4-NH2) in the SeG3-C5 are
very close to the bond length (3.35 Å) of the Se . . .H–N
hydrogen bond (exo-4-Se/exo-6-NH2) previously discov-
ered within the SeT-A base pair (12). Similarly, the SeG6
and C2 also form three H-bonds and behave in the same
way (Table 3). Therefore, we have demonstrated that the
SeG and C form a base pair that is similar to the natural
G–C pair. Consistently, our UV-melting results agree with
our structure study. The crystal structure indicates that in
order to accommodate the large Se atom and to form the
Se . . .H–N bond within the base pair and duplex, each
SeG–C base pair unwinds slightly via minor adjustment
of the sugar pucker (Figure 6D and E) and shifts �0.3 Å
distance within the major groove (Figure 6D), when com-
paring to the corresponding native G–C pair. Our crystal
structure results explain the decrease in the melting tem-
perature after the sulfur or selenium modification, which
causes the base-pair shift and reduces stacking interaction,
thereby destabilizing the duplex structure. Our results also
explain why larger selenium atom destabilizes the duplexes
more than smaller sulfur atom (31). In addition, the results
are consistent with our observation of the duplex slight
destabilization when the Se-modifications are introduced
to the positions close to the 50 or 30 terminus, bulge loops
or flipping nucleotides, which are more dynamic, flexible
and capable of accommodating a larger atom.

CONCLUSIONS

In summary, we have synthesized the first 6-Se-deoxy-
guanosine phosphoramidite and incorporated it into oli-
gonucleotides, via solid-phase synthesis under ultramild
conditions, in nearly quantitative yield. We also
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discovered that the Se-G-containing DNAs are yellow and
with strong UV absorption at 360 nm (e=2.3�
104M�1 cm�1). In addition, this Se-functionality is stable
in aqueous solution and at the elevated temperature.
Moreover, we crystallized a ternary complex of the Se-
G-DNA, RNA and RNase H, and revealed that the
global nucleic acid structures of the native and Se-modi-
fied duplexes are very similar, the SeG and C form a base
pair similar to the native G–C pair, and the selenium atom
participates in a Se-mediated hydrogen bond (Se . . .H–N).
The G–C base pair accommodates the large selenium
atom by shifting approximately 0.3 Å. As this base-pair

shift reduces the stacking interaction, our structure work
provides a clear picture on why the Se-modification or
S-modification causes decrease in the UV-melting tem-
perature. Our study also points out where to better place
Se atom by incorporating it to the positions close to the
termini or flexible secondary structures.

The Se-modified nucleic acids have been used for the
first time in derivatization and structural determination of
a protein–nucleic acid complex via Se-nucleic acid and
MAD phasing. Our studies shed new light on the nucleic
acid stability, flexibility, and duplex recognition governed
by stacking interaction, base-pairing, and size-and-
shape impact of the base pairs. In addition, this novel
Se-modification of nucleic acids can be used to carry out
chemogenetic and spectroscopic investigation of nucleic
acids and their protein complexes, and to perform the
macromolecular structure study via crystallography by
MAD or SAD phasing. Besides the applications in struc-
ture and function studies, the Se-G DNAs (yellow color)
may also have great potentials in construction of colored
DNA nanoscale devices and structures (39) as well as in
nucleic acid diagnosis (40).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 6. The superimposed global and local structures of the 6-Se-G-modified (2R7Y) and native (2G8U) DNA/RNA duplexes (50-ATGTCG-p-30/
50-UCGACA-30) of the nucleic acid–protein complex; the balls represent selenium atoms in the Se-derivatized DNA (50-AT-SeG-TC-SeG-p-30). (A)
The structure of the Se-DNA sequence (2R7Y, in yellow) is superimposed over the corresponding native (2G8U, in grey); (B) The structure of the
RNA sequence (2R7Y, in green) is superimposed over the corresponding native (2G8U, in grey); (C) The duplex structure of the Se-DNA/RNA
hybrid (2R7Y, in green) is superimposed over the corresponding native (2G8U, in cyan); (D) The comparison of the Se-modified (in green) and
native (in cyan) G3/C5 base-pair structures; (E) The Se-G3/C5 base pair (2R7Y) with the experimental electron density shows three hydrogen bonds
(exo-6-Se/exo-4-NH2, 1-NH/N3, and exo-2-NH2/exo-2-O) with bond lengths in 3.48 Å, 3.16 Å and 2.59 Å, respectively.

Table 3. Hydrogen bond lengths of Se-mediated H-bonds comparing to

the native ones

Base pair H-bond Se-modified
base pair

Native
base pair

bond length
(Å)

bond length
(Å)

6-Se-G3/C5 in 2R7Y exo-6-Se/exo-4-NH2 3.48 2.99
1-NH/N3 3.16 2.99
exo-2-NH2/exo-2-O 2.59 2.95

6-Se-G6/C2 in 2R7Y exo-6-Se/exo-4-NH2 3.43 3.07
1-NH/N3 3.19 3.15
exo-2-NH2/exo-2-O 2.75 3.15

4-Se-T/A in 2NSK exo-4-Se/exo-6-NH2 3.35 2.87
3-NH/N1 3.02 2.78
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