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Abstract

The isolation of single units in extracellular recordings involves filtering. Removing lower
frequencies allows a constant threshold to be applied in order to identify and extract action potential
events. However, standard methods such as Butterworth bandpass filtering perform this frequency
excision at a cost of grossly distorting waveform shapes. Here we apply wavelet decomposition and
reconstruction as a filter for electrophysiology data and demonstrate its ability to better preserve
spike shape. For the majority of cells, this approach also improves spike signal-to-noise ratio (SNR)
and increases cluster discrimination. Additionally, the described technique is fast enough to be
applied real-time.
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Introduction

The removal of unwanted frequencies and artifacts is essential in the analysis of
electrophysiological data, especially where the data of interest are the time stamps of neuron
action potentials, also called “spikes.” In addition to high amplitude spikes, typical electrode
signals include local field potentials (LFPSs), instrument noise, and spikes from neurons too
distant from the recording site to be effectively discriminated. An ideal filtering technique
would preserve only discriminable spikes without distorting their waveforms, since differences
in waveform shape are useful in clustering and also provide an important source of information
about neuronal phenotypes (e.g. Csicsvari et al., 1998; Barth6 et al., 2004; Berke et al.,
2004). Filters commonly used in electrophysiology, such as the Butterworth filter, can be fast
to compute and possess a maximally flat frequency response (Butterworth, 1930). However,
they possess the undesirable side-effect of distorting the time-domain, e.g. the shape of action
potentials.
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After the data are filtered, they are usually thresholded to locate spike events, and then certain
features of the extracted spikes are used in a manual or semi-automated clustering procedure
(Lewicki, 1998). The features to be used in clustering can include spike amplitude, valley
width, principal components or wavelet decomposition coefficients. Wavelets have recently
gained notice as a powerful tool for signal analysis in the neurosciences and have been applied
in a myriad of ways, including spike detection (Hulata et al., 2002; Nenadic and Burdick,
2005), cell classification (Cesar and Costa, 1998; Letelier and Weber, 2000; Quiroga et al.,
2004) and EEG/LFP analysis (Clarencon et al., 1996; Adeli et al., 2003; Markazi et al.,
2006; Berke et al., 2008). Here, we apply wavelet filtering to “raw” (wide-band) electrode
signals as a preprocessing stage before spike detection and sorting. This approach accurately
maintains waveform shape while removing low frequency field potentials and noise artifacts.
We demonstrate benefits for the later stages of spike discrimination, compared to the standard
Butterworth bandpass filter.

Algorithms were implemented in the Python language (van Rossum, 1995) using the modules
NumPy (Oliphant, 2006), SciPy (for Butterworth filter, as implemented by Jones et al., 2001),
Modular toolkit for Data Processing (for principal components analysis (PCA), as implemented
by Berkes and Zito, 2007), and PyWavelets (for wavelet transforms, as implemented by
Wasilewski, 2006). Algorithms were duplicated when necessary in Matlab for speed
comparisions, using the Wavelet and Signal Processing toolboxes (Misiti et al., 2000). All
computations were performed on an AMD Athlon 2.2 GHz Windows XP machine with 4 GB
of RAM. Electrophysiological data were obtained from tetrodes implanted in two awake freely-
moving animals (one rat, one mouse). For the rat, 46 cells across 5 tetrodes from two separate
recording sessions were isolated in the striatum, including 30 presumed medium-spiny
projection cells (Berke et al., 2004). For the mouse, 20 cells were isolated from 2 tetrodes in
a single session from dorsal hippocampus area CA1, including 17 presumed pyramidal cells.
In both cases signals were recorded continuously at 31250Hz/channel with hardware filtering
with a passband of 1Hz to 9000Hz. Spikes (shown with negative voltage up) were sorted
manually using Offline Sorter (Plexon Inc). For comparison of filter performance we used a
4th order Butterworth bandpass filter, with a passband from 300 Hz to 6000 Hz, typical settings
for neurophysiology filters. For analyses and visualization, spikes were interpolated by a factor
of four then realigned at their peaks. They were then downsampled to their original sampling
frequency of 31250Hz.

The Wavelet Filter

We used wavelet multi-level decomposition and reconstruction (WMLDR) as the core of our
filter. There are many different names for this procedure, including fast wavelet transform, fast
orthogonal wavelet transform, multiresolution algorithm, and pyramid algorithm (Addison,
2002). The algorithm is represented visually in Figure 1 (for further information, see
Daubechies, 1992 or Addison, 2002). First, the signal is decomposed into frequency sub-bands
(Fig. 1A; Hu et al. 2006) by separate iterative convolution with high-and low-pass wavelet
decomposition filters (Fig. 1C). For our application, we used pre-computed values of the
Daubechies 4 wavelet (Daubechies, 1988), as provided by the Matlab wavelet toolbox and the
Py Wavelets Python module. The coefficients containing the higher frequencies of the signal
are saved at each iteration i as detail coefficients, labeled as cD;. The coefficients containing
the lowest frequencies, the approximation coefficients, are labeled cA,. Table 1 shows the
frequency content of each coefficient set at levels 1-6. The signal is subsequently reconstructed
by iteratively convolving the approximation coefficients with the low-pass reconstruction
filter, convolving the detail coefficients with the high-pass reconstruction filter and summing
the results (Fig. 1B). The reconstruction filters are the time-inverses of the decomposition filters
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(Fig. 1D), and therefore provide a zero-phase-lag reconstruction (for discussion of this point,
see Hu et al., 2006). In this application, we removed all information about the lowest
frequencies in the signal by setting all values in cA, to zeros. This has the effect of a high-pass
filter after reconstructing the signal. This dampening or zeroing of approximation coefficients
is sometimes referred to as “wavelet de-noising” in the signal processing literature.

One cannot directly specify the cutoff frequency for the wavelet filter. Instead, one chooses a
level of decomposition n which implicitly defines a high-pass bound. The approximation
coefficients always contain the lowest frequencies in the signal, up to some frequency f.. The
cutoff frequency of the wavelet filter is then f;, since it is the highest frequency not to be
contained in the final reconstructed signal. The cutoff frequency is found to be

f-=Nyquist Frequency/2"

where n is the level of decomposition and the Nyquist frequency is equal to half the data
sampling rate. Although we did not do this, in practice one could resample the signal before
WMLDR to yield a specified cutoff frequency.

Using the Daubechies 4 wavelet, we performed an n = 6 level decomposition, which passes
frequencies above 244 Hz given a sampling rate of 31250 Hz. We chose this level after
comparison of the signal-to-noise ratio (SNR) of spikes and reconstruction quality across
various levels (Fig. 3B). Although an n = 7 level decomposition provides better clustering
quality and less waveform distortion, using an n = 6 wavelet filter grants a much higher SNR
with small losses in clustering ability (Fig. 4). We chose to compare our wavelet filter to a 4-
pole Butterworth filter with a passband of 300-6000 Hz, since this is one of the most common
settings of hardware filters, and one of the highest performing, with respect to waveform
distortion, SNR, and clustering quality (Fig. 4). Using 244 Hz as the Butterworth high-pass
cutoff marginally decreases signal distortion by minimally smearing the artificial “hump”
across time (Fig. 3A, B), but at the cost of further decreasing the SNR (not shown). Overall,
the difference between 244Hz and 300Hz is not large enough to be relevant here.

The Wavelet Filter Algorithm

Pick a maximum decomposition level, n. Pick a wavelet and its associated decomposition and
reconstruction filters (Fig. 1C & D). High-pass and low-pass decomposition filters are
abbreviated as HiD and LoD, respectively. The corresponding reconstruction filters (which are
the time inverses of the decomposition filters) are labeled as HiR and LoR. Then, for a signal
S,

1. Decomposition of the signal.
Repeat foreachi={1, 2, ..., n}

Convolve S with HiD. Keep only the even-indexed elements. Call this cD;
and save.

Convolve S with LoD. Keep only the even-indexed elements. Call this cA;,
but do not save unless i = n. Set this to be S.

2. Reconstruction of the signal.
*  Setall coefficients in cAp to 0.
Initialize Sf = cA,,.

Repeat foreachi={n,n-1, ..., 1},

Upsample (Add zeros as even-indexed elements into St and cD;).
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Convolve Sf with LoR. Call this cA™.
Convolve ¢Di and HiR. Call this cD™.
S¢= cA* +cD"

Cluster Quality

To quantify clustering quality, we used two measures as described by Schmitzer-Torbert et al.
(2005). Isolation Distance is a measure of how well-separated a cluster is from the rest of a
data set and LRratio indicates the distribution of non-cluster spikes around a cluster.

The Isolation Distance for cluster ¢, containing n. spikes, is defined as the squared Mahalanobis
distance of the nth closest non-c spike to the center of c. The squared Mahalanobis distance
is calculated as

2 TN}
D} =(x; — pte) Z( (o — pte)

where X; is the vector containing features for spike i (3 PCA coefficients per tetrode wire), and
Hc is the mean feature vector for cluster c. > ¢ is the covariance matrix of spikes in cluster c.
The Isolation Distance is not defined when n is greater than the number of non-cluster spikes.
A higher value indicates that non-cluster spikes are located farther away. The Mahalanobis
distance (Mahalanobis, 1936) is used because it helps compensate for ellipse-shaped
distributions of spikes, i.e. a point at any edge of an ellipse is equidistant from the center of
the ellipse using Mahalanobis distance. Note that Isolation Distance is not normalized against
cluster size, so that clusters with a large number of spikes will tend to have a higher Isolation
Distance.

LRatio is calculated as follows for cluster c:
L(c)=) 1-CDF,, (D?
© ; o (D7)

where D; ¢? is the squared Mahalanobis distance between non-c spike i and the center of ¢ and

CDFxgr is the chi-squared cumulative distribution function describing the distribution of spikes
in cluster c. The number of degrees of freedom is equal to the number of features used in the
cluster space (here we use 3 principal components for each wire in a tetrode, df = 12). Then,
L(c)
Lo ()=

ne

A low Lggiio indicates that there is a relatively empty space between the cluster and other spikes
in the data set. Lrasjo positively correlates with Type 11 errors (false omissions) and Isolation
Distance negatively correlates with Type | errors (false positives; Schmitzer-Torbert et al.,
2005). Therefore, a lower Lgaiio and a higher Isolation Distance together indicate better cluster
quality. We tested for a significant difference between the clustering performance for the
wavelet-and Butterworth-filtered spikes using the paired Student’s t-test. The number of points
on which PCA was performed was varied as a window size, centered on the spike peak. To
assess a possible improvement in spike detection, we calculated the SNR for each neuron. We
defined the SNR as the peak amplitude of a neuron’s average filtered waveform divided by the
standard deviation of the entire filtered recording session from which the spikes were extracted.
The standard deviation was calculated using 60 1-second evenly distributed samples of the
filtered data.
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As found in non-neural applications, WMLDR is an effective means of removing the lower
frequencies from an electrophysiological signal (Fig. 2), as a preprocessing step before spike
detection and sorting. To assess the distortion of waveforms produced by different filtering
techniques, we first assigned spikes to single-units using standard Butterworth bandpass
filtering (4-pole, 300-6000Hz passhand), detection via constant threshold, and manual
clustering. From these time-stamps, we then re-extracted spike waveforms from continuous
data — either the original wideband signal (i.e. we took a spike-triggered average of the “raw”
voltages) the wavelet-filtered, or the Butterworth-filtered signal. For neurons with the most
common waveform shapes , typical of projection neurons in striatum (Fig. 3B, ii; Berke et al
2004) and hippocampus (Fig. 3Biii, iv), Butterworth filtering produces a highly distorted
“valley” shape, while wavelet-filtered signals retain higher fidelity to the original wide-band
signal. For briefer waveforms that represent likely interneurons, (e.g. Fig. 3Bv, vi) the
distortion produced by Butterworth filtering was less marked but still typically more
pronounced than with wavelet filtering. In no case did we observe marked distortion produced
by wavelet filtering, although there was a slight tendency to produce a lowering of the signal
around the spike peak; the extent of this effect varied with choice of wavelet decomposition
level (Fig. 3C).

We noticed that part of the distorting effect of Butterworth filtering was to reduce the peak
height of striatal and hippocampal projection neuron spikes (e.g. Fig. 2). We compared the
signal-to-noise ratio (SNR) for presumed rat and mouse projection neurons (n=47), and found
that wavelet filtering produced a significant increase in SNR over Butterworth filtering (p <
0.05, paired t-test). For cells with briefer waveforms (including presumed striatal and
hippocampal fast-spiking interneurons), the overall difference in SNR was not significant
n=19; p = 0.486, paired t-test), and a few cases even had higher SNR with Butterworth filtering.
This is because Butterworth filtering generally shifts the spike signal towards zero mean, which
brings the signal closer to an upper threshold for cells with large downward deflections (Fig
3v,vi). Applying both a positive-and negative-threshold would remove this advantage over
wavelet filtering.

The increased SNR observed for striatal and hippocampal projection neurons with wavelet
filtering noticeably enhanced cluster separation, when plotting peak height on each wire (for
example, see Fig. 4). To quantitatively assess this difference between filtering methods on
spike discriminability, we performed principal components analysis (PCA) on spike
waveforms, using varying sizes of time window centered on the spike peak. We then measured
the extent of cluster separation using Isolation Distance and Ltjo in principal components
space as a function of window size (Fig. 5). The best results were obtained using narrow
windows around the peak (~350-400us), with wavelet filtering. This is a useful result for spike
sorting, because it indicates that only a narrow window around the spike peak need be extracted
for effective cluster discrimination in PCA space.

We quantified filter performance for a variety of filter types and parameters (Fig. 6), including
both high- and band-pass Butterworth filters, higher-order versions of each, and an alternative
IIR filter (Bessel bandpass). SNR determines the detectability of a spike using a constant
threshold. An n=6 level wavelet filter outperforms all Butterworth filter types here, although
the Bessel filter performs equivalently. The wavelet filter demonstrates markedly lower
waveform distortion than any non-wavelet filter examined. The clustering performance of the
wavelet filter, measured by Isolation Distance, was also significantly higher than the
alternatives. In choosing a wavelet order, there is a tradeoff between SNR for initial detection
and subsequent clustering performance. Although a level 6 wavelet filter has the most balanced
performance, at some computational cost one could obtain even better results by using a level
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5 wavelet-filter to detect spikes, then clustering them using either unfiltered waveforms or
those obtained with a level 7 wavelet-filter. Our results also show among IIR filters, using a
Bessel filter is a far better option than regular Butterworth filtering.

WMLDR is an established algorithm that is computationally efficient (Mallat, 1989). For a
signal of length N and a high and low-pass filter set each of length K, the total decomposition
and reconstruction of the signal requires at most 2KN multiplications and additions (Mallat,
1999), resulting in an operation that scales linearly with signal length. In our experience, using
regular desktop computers, the execution time is comparable to Butterworth filtering and much
less than the duration of the signal being processed even for recordings with >80 simultaneously
processed channels. Thus,wavelet filtering is clearly fast enough to be used online for those
laboratories that either do not wish to save the full high-speed wide-band signal, or that perform
real-time spike sorting (e.g. for brain-machine interfaces).

Discussion

We have shown several advantages for using wavelet filtering with electrophysiological data,
compared to current standard methods. WMLDR can faithfully preserve spike shape, which is
a useful partial indicator of neuronal phenotype. For striatal and hippocampal projection
neurons, which make up the great majority of neurons in those regions, wavelet filtered spikes
exhibit a significantly higher SNR, allowing for easier spike detection and enhanced spike
discrimination through cluster analysis. The technique is based on relatively simple operations,
and so is fast enough to be applied online. It is thus reasonable to use it as a pre-processing
filter before standard threshold-based spike detection methods, which require a signal with the
low frequencies removed. Alternatively, methods that use wavelet coefficients for spike
detection (e.g. Nenadic and Burdick, 2005, Hulata et al. 2002) could modify this approach to
avoid redundant computation, by performing wavelet decomposition once for both removal of
low frequencies and spike detection.

There is room for further refinements of the technique to increase the flexibility of the passband.
First, a more subtle wavelet denoising technique might be used. In this paper we destroyed
all the approximation coefficients, and, by not computing higher-level, lower-frequency detail
coefficients, we effectively destroyed them as well. Second, we might employ a more complex
wavelet algorithm called wavelet packet decomposition, along the lines of Hu et al., 2006. This
is a more computationally intensive alteration of WMLDR can split both the high-and low-
frequency components of a signal into equally-spaced frequency bands. WMLDR, by contrast,
only splits the low-frequency components of a signal. This would enable the construction of a
wavelet band-pass filter with arbitrarily precise control over the passband, although with a
higher computational cost than our current approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Schematic description of the wavelet-filtering algorithm. cA; denotes approximation
coefficients at level i, cD; denotes detail coefficients at level i. A. Block-diagram representation
of the decomposition stage of the wavelet filtering algorithm (see Methods). B. Representation
of the reconstruction phase. C. The decomposition wavelet filters. The high-pass filter is in
black labeled as HiD, the low-pass filter is in grey labeled as LoD, and each has 8 coefficients.
The y-axis represents coefficient values. D. The reconstruction wavelet filters. The high-pass
filter is in black labeled as HiR, and the low-pass filter is in grey labeled as LoR.
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Unfiltered

Wavelet filtered

40 —

Butterworth filtered

Figure 2.

Comparison of unfiltered (top), wavelet filtered (middle, level 6 decomposition) and
Butterworth filtered (bottom, 300-6000 Hz bandpass) traces from the same section of
continuously recorded striatal tetrode data. Dotted black lines represent a threshold of 4 times
the standard deviation calculated across the whole recording session.
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Figure 3.

Demonstration of the distortions caused by wavelet and Butterworth filtering. A. Filtering of
a 1 ms Hanning window, to illustrate the general type of distortion caused by each filtering
method. B. Average spike waveforms for 6 representative cells. Solid black traces are wavelet
filtered (level 6 decomposition), solid grey traces are Butterworth filtered (300-6000 Hz 4t
order bandpass), and dotted black are unfiltered. Each set of spikes is normalized such that the
largest spike has height 1 for the purpose of comparing relative shapes. The SNR is indicated
by black text on top for wavelet-filtered cells, and grey text on bottom for Butterworth-filtered
cells. Fast, sharp waveforms generally benefit in SNR from wavelet-filtering, however, the
more common, “wider” waveform shapes have consistently higher SNR when wavelet-filtered.
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C. Average waveform shape of one cell, wavelet filtered with different levels of decomposition.
Note that level 7 gives a near-perfect reconstruction of the unfiltered spike shape, but passes
frequencies above 122 Hz, which reduces SNR during spike extraction. In our analysis, we
used level 6, which has a cutoff frequency of 244 Hz and a much improved SNR over level 7,
while better preserving spike shape than level 5 (Fig. 6).
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Figure 4.

Comparison of cluster separation for wavelet- and Butterworth-filtered spikes. In this example,
five cells were recorded simultaneously from a striatal tetrode. Left: The average waveform
for each cell on each wire of the tetrode (1 ms per wire). Blue and red traces are presumed fast-
spiking interneurons, while others are medium spiny neurons (MSNs). Middle: Isolation
Distance of wavelet (W) and Butterworth (B) filtered spikes, calculated using only the peak
heights on each tetrode wire. Right: plot of peak heights for each cluster, showing visibly
improved separation using wavelet filtering.
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Figure 5.

Wavelet filtering allows superior cluster separation with fewer data points. To determine how
much of the spike waveform contributes to clustering performance, PCA was performed with
varying window sizes (see Methods). Top: Plot of Isolation Distance versus window size used
to perform PCA. Larger values of Isolation Distance are better. Circles are data from wavelet
filtered clusters, and triangles are Butterworth filtered. A total of 47 presumed projection cells
(30 from rat striatum, 17 from mouse hippocampus) across 7 tetrodes over 2 sessions each
were used to compute cluster quality. Crosses above the data points indicate that there was a
significant difference between the two filtering methods (p < 0.05, paired t-test, without
correction for multiple comparisons). Middle: Plot of Lrgtio Versus the window size. Lower
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values of Lratio are better. For both measures, the best performance was obtained using wavelet
filtering using a ~350-400 ps window, corresponding to approximately 11-13 samples at
31250Hz. Bottom: a visual representation of the time window used for PCA superimposed of
an example mean cell waveform (wavelet-filtered in black, Butterworth-filtered in grey).
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Figure 6.

Quantitative comparison of different filtering methods. Left: The SNR (see Methods)
determines spike detectability. Middle: Waveform distortion is calculated as the mean squared
Euclidean distance between each cell’s mean unfiltered waveform and mean filtered waveform
(n=47 projection cells). The waveforms are normalized such that the unfiltered waveform has
peak height 1. The Isolation Distance (see Methods) is calculated using 3 PCA coefficients per
wire (on 4 wires) performed on a 400us window of the spike, centered on the peak.
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Frequency content of detail and approximation coefficients at wavelet decomposition levels 1-6, for a signal sampled

at 31250Hz.
Coefficients] Freguency content]
cD1 7812 — 15625 Hz
cD2 3906 — 7812 Hz
cD3 1953 — 3906 Hz
cD4 976 — 1953 Hz
cD5 488 — 976 Hz
cD6 244 — 488 Hz
cAB 0—244 Hz
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