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Abstract

Non-coding RNA (ncRNA) play an important and varied role in cellular function. A significant amount of research has been
devoted to computational prediction of these genes from genomic sequence, but the ability to do so has remained elusive
due to a lack of apparent genomic features. In this work, thermodynamic stability of ncRNA structural elements, as
summarized in a Z-score, is used to predict ncRNA in the yeast Saccharomyces cerevisiae. This analysis was coupled with
comparative genomics to search for ncRNA genes on chromosome six of S. cerevisiae and S. bayanus. Sets of positive and
negative control genes were evaluated to determine the efficacy of thermodynamic stability for discriminating ncRNA from
background sequence. The effect of window sizes and step sizes on the sensitivity of ncRNA identification was also
explored. Non-coding RNA gene candidates, common to both S. cerevisiae and S. bayanus, were verified using northern blot
analysis, rapid amplification of cDNA ends (RACE), and publicly available cDNA library data. Four ncRNA transcripts are well
supported by experimental data (RUF10, RUF11, RUF12, RUF13), while one additional putative ncRNA transcript is well
supported but the data are not entirely conclusive. Six candidates appear to be structural elements in 59 or 39 untranslated
regions of annotated protein-coding genes. This work shows that thermodynamic stability, coupled with comparative
genomics, can be used to predict ncRNA with significant structural elements.
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Introduction

Non-coding RNA (ncRNA) are functional RNA transcripts that

are not translated into protein (i.e., not messenger RNAs).

Research, particularly over the last 10 years, has shown that they

perform a wide range of functions in the cell [1–4]. Despite the

growing body of knowledge about ncRNA, it is likely that many

ncRNA remain undiscovered. Data from high-throughput exper-

imental methods show that much of the intergenic DNA in

eukaryotic genomes is transcribed and may be ncRNA [5–10].

Even in Saccharomyces cerevisiae, one of the most thoroughly studied

model organisms, there is evidence that only a fraction of the

ncRNA is known. Tiling arrays, large-scale cDNA libraries, and

serial analysis of gene expression (SAGE) experiments have all

shown transcription from many locations in the genome that

appear to be unannotated ncRNA genes [11–14]. This along with

recent identification of new protein coding genes such as

YPR010C-A in 2006 shows that even in this best-studied

Eukaryote, we still do not know the complete gene set [13].

Computational methods for accurate ncRNA gene prediction

remain elusive. The development of such methods are crucial for

identifying ncRNA that are difficult to detect experimentally such

as those expressed at low levels or under unusual conditions. They

are also needed to reduce the time and expense required to

perform experimental methods, particularly when considering the

large number of species of interest. The challenge of predicting

ncRNA genes rests with the fact that they lack common primary

sequence features and demonstrate poor cross-species sequence

conservation [15,16]. They do not have start codons, stop codons

or open reading frames which serve as key signposts for protein-

coding genes and cannot be located using simple sequence

searches.

Some success with ncRNA gene prediction has been achieved

by focusing on specific sub-classes of ncRNA that share common

features. Examples include tRNAs, tmRNAs, snoRNAs (C/D box

and H/ACA box), and miRNAs [17–32]. In S. cerevisiae,

computational screens for C/D box [19] and H/ACA box

snoRNAs [20] have identified several new snoRNA genes.

Additional ncRNA screens in S. cerevisiae have included searches

for polymerase III promoters, searches in larger than average

intergenic regions [33] and searches for ncRNA structural features

using the QRNA program. The QRNA program was used to

search pair-wise alignments for patterns of compensatory muta-

tions consistent with base-paired secondary structure [34]. These

regions were then tested experimentally to determine if they

expressed a transcript likely to be ncRNA. Together, these three

methods resulted in identification of 6 novel ncRNA that were

supported by experimental evidence (RNA170, snR161, snR82,

snR83, snR84, RUF5-1/2). In another study, the S. cerevisiae genome

was analyzed using the RNAZ program [35]. This program is

based on the same principals as the QRNA program and uses

multiple, cross-species sequence alignments to search for patterns

of compensatory changes suggestive of secondary structure. RNAZ

also includes thermodynamic analysis. A total of 572 candidate
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regions were identified as potentially containing unannotated

ncRNA candidates using the RNAZ program [35,36]. Publicly

available data sets were used to provide general support for these

predictions but no detailed experimental analysis was performed

on individual predictions.

In this work ncRNA genes are predicted in S. cerevisiae based

solely on the thermodynamic stability of ncRNA structures as

proposal by Maizel in the late 1980’s [37–39]. Maizel theorized

that structural ncRNA are thermodynamically more stable than

random sequences. An influential paper by Rivas & Eddy entitled

‘‘Secondary structure alone is generally not statistically significant

for the detection of noncoding RNAs’’ suggested that Maizel’s

approach was generally not effective for structural ncRNA

discovery [40]. Based on this conclusion, many investigators

turned away from thermodynamic based approaches for ncRNA

discovery to methods based on compensatory changes in cross-

species alignments[31]. However, a growing body of evidence has

been accumulating suggesting that thermodynamic stability is a

discriminating feature of many classes of structural ncRNA [41–

43]. In this work, we build on this result to not only evaluate the

thermodynamic stability of known structural ncRNA but also to

use it for structural ncRNA discovery.

The work presented here demonstrates the value of thermody-

namic structural stability, as summarized in a Z-score, for

discovery of structural ncRNA. It also explores the impact of

window size and step size on the sensitivity of ncRNA

identification. Sets of positive and negative control genes were

evaluated to determine the effectiveness of the approach. This

approach was then applied to predict ncRNA genes on

chromosome six of S. cerevisiae. The analysis was repeated

independently in S. bayanus and the gene predictions common to

both genomes comprised the final set of gene predictions.

Experimental validation of these predictions show that four

ncRNA transcripts are well supported by northern blot analysis,

rapid amplification of cDNA ends (RACE), and publicly available

cDNA data. One additional ncRNA candidate is also supported

by experimental data but the data is not entirely conclusive. Six of

the predicted candidates appear to be structural elements in 59 or

39 untranslated regions (UTRs) of annotated protein-coding genes.

Results

General Approach
The thermodynamic stability of potential ncRNA candidates

was evaluated using a Z-score based on the minimum folding

energy (MFE) determined by RNAfold [44]. The Z-score

represents the number of standard deviations that the MFE of a

native sequence, x, deviates from the mean MFE of a set of

shuffled sequences of x (see Materials and Methods).

A key variable in calculating the Z-score for ncRNA discovery

(as opposed to evaluating known structural ncRNA) is the length of

the sequence to be evaluated. As ncRNA vary in length and

structure, no single window size is expected to be optimal for

ncRNA gene identification. Short structural elements will

probably only be detected with relatively short window sizes while

longer structural elements will probably only be detected with

relatively longer window sizes. To identify the window sizes most

appropriate for ncRNA discovery, values ranging from 20 nt to

200 nt were investigated and incremented in steps of 5 nt (window

delta).

A scanning approach was used to computationally search for

potential structural elements within a test sequence. A starting

minimum window size was selected and this window was used to

scan the test sequence starting at the beginning of the sequence

and moving each time by the amount of the step size (our analysis

used a step size of 5 nt). A Z-score was calculated for each window

position. Once the entire test sequence was evaluated using this

fixed window length, a new window length was selected by

increasing window length by the amount of the window delta (our

analysis used a window delta of 5 nt). The test sequence was

evaluated in the same manner using the new window size. This

process was repeated until all window sizes had been evaluated.

Since the same test sequence was evaluated using multiple

window sizes, it was necessary to determine the impact of multiple

hypothesis testing. In lieu of a Bonferroni correction, negative

control sets were evaluated using the same number of window sizes

and step sizes.

Any windows producing a ‘‘significant’’ Z-score during the

scanning process were considered candidate regions for structural

ncRNA. The Z-score cutoff considered to be ‘‘significant’’ was

determined by evaluating positive and negative test sets. It was

sometimes the case that multiple, overlapping windows, of several

lengths, produced ‘‘significant’’ Z-scores. In such cases, the region

encompassed by all the overlapping windows constituted the

candidate region.

Once candidate regions were identified, primers were designed

within these regions to determine whether they produced a

transcript and to identify the transcript boundaries. The primers

were designed as close as possible to the middle of the candidate

regions. The exact position of the primer was dictated by the need

to satisfy the fairly stringent requirements of the rapid amplifica-

tion of cDNA ends (RACE) procedure (See Materials and

Methods).

Positive and Negative Control Sets
Positive and negative control sets were compiled to test if the Z-

score could be used to distinguish known ncRNA from non-

functional sequences as suggested by previous investigators [41–

43]. The positive control set was drawn from the list of annotated

ncRNA in the Saccharomyces Genome Database (SGD) [45]

(Table 1). The tRNA and rRNA genes were not included in the

positive control set as they can be identified with great accuracy

using existing tools [17] and because tRNA are known to produce

poor thermodynamic footprints [40,41,46]. The positive control

Author Summary

Recent advances in DNA sequence technology have made
it possible to sequence entire genomes. Once a genome is
sequenced, it becomes necessary to identify the set of
genes and other functional elements within the genome.
This is particularly challenging as much of the genomic
sequence does not appear to perform any function and is
loosely referred to as ‘‘junk.’’ Identifying functional
elements among the ‘‘junk’’ is difficult. Experimental
methods have been developed for this purpose but they
are time-consuming, expensive, and often provide an
incomplete picture. Thus, it is important to develop the
ability to identify these functional elements using compu-
tational methods. Protein-coding genes are relatively easy
to identify computationally, but other categories of
functional elements present a significantly greater chal-
lenge. In this work, we used a computational approach to
identify genes that do not encode for a protein but rather
function as an RNA molecule. We then used experimental
methods to verify our predictions and thereby validate the
computational method.

Non-Coding RNA Prediction and Verification
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set consisted of four snoRNA genes and all of the remaining

known ncRNA (Table 2).

Three negative control sets were created to cover the full range

of negative control cases. The first negative control set consisted of

20 randomly generated sequences of 300 nt in length. This set was

used because it was known not to contain any unannotated genes.

The shortcoming of this control set is that it likely fails to capture

the nuances of nucleotide distributions in S. cerevisiae. The

randomly generated sequences had a GC content of ,40%,

ranging from 35.0% to 49.3%, reflecting the GC content of S.

cerevisiae. A second negative control set was created by randomly

shuffling the positive control set. Each sequence was shuffled

preserving sequence length as well as its mono- and di-nucleotide

composition using the ‘‘squid’’ utilities [47]. The third negative

control set was generated by selecting six intergenic regions from

the S. cerevisiae genome. Intergenic regions were chosen as a control

instead of coding regions because the GC content in the S. cerevisiae

genome differs between protein coding regions and non-protein

coding regions. Since the ultimate goal was to search for ncRNA

in intergenic regions, it was best to select a test set representative of

these regions. The untranslated regions (UTR) of most genes in S.

cerevisiae are not mapped so the actual intergenic regions are

generally unknown. In order to minimize the possibility of

choosing a region that contained an unannotated structural

element, six intergenic regions were chosen that are flanked on one

side by a gene with a known, short (,40 nt) 59 UTR, unlikely to

form a structure. A window of 300 nts from the 59 end of the open

reading frame (ORF) of each of these genes was used as a negative

control test sequence (Table S1).

Positive and Negative Control Set Evaluation
Z-score values calculated for the 20 randomly generated

negative control sequences revealed that large negative Z-scores

are often generated when using window sizes of less than 65 nt.

With these short window sizes, many shuffled sequences have a

calculated minimum folding energy of zero or close to zero and the

Z-score distribution of the shuffled sequences is narrow. This

produces a small value for the standard deviation. If the MFE of

the original, unshuffled sequence is even slightly above zero, it will

be many standard deviations from the distribution mean and

produce a large negative Z-score. When examining window sizes

of 75 nt or greater, two (Random9 and Random13) of the 20

randomly generated sequences produced a Z-score less than 23.5

(Table S2, Figures S1 and S2). The total length of sequence

producing a Z-score #23.5 was 295 nt and represented 5.0% of

the nucleotides in the entire randomly shuffled test set (Table 3).

Z-score values calculated for the 6 intergenic sequences of the

second negative control set produced a pattern very similar to that

of the randomly generated sequences. For window sizes less than

about 65 nt, large negative Z-scores were generated. Window sizes

longer than 75 nt did not produce any Z-scores less than 23.5

with the exception of the intergenic sequence between genes PTP1

and SSB1. The first 190 nt of this sequence produced Z-scores as

low as 24.7 for various window sizes (Table S2). This may

represent either a false positive or may suggest the presence of a

structural feature (ncRNA or long PTP1 59 UTR structure). This

190 nt region represents approximately 10.5% of the total length

of the intergenic negative control set.

The final negative control set consisted of shuffled sequences of

the positive control set (Table 2). Of these, portions of 5 out of 16

sequences (31%) produced Z-scores less than 23.5 (Table S2 and

Figures S3 and S4). The total sequence length included in these

regions represented 8.1% of the total negative control set length.

All of the sequences in the positive control set produced Z-scores

less than 23.5 for multiple window sizes (Table S3, Figures S5 and

S6) with the exception of three genes. These genes were snR76,

RNA170, and SRG1.

The snR76 gene is a C/D box snoRNA and it is questionable

whether structure plays a significant role in the function of this

gene. The SnoScan program was written explicitly to predict C/D

box snoRNA and has been used successfully to predict these genes

in both D. melanogaster and S. cerevisiae [19,48]. Known C/D box

snoRNA were used to identify features shared among this family of

ncRNA. Only one of the six criteria identified is related to

structure (terminal stem base pairings). This base pairing consists

of only 4–8 bps and is not always present [19]. This is in stark

contrast to the snoGPS program used to identify H/ACA snoRNA

[20]. The snoGPS program was trained using known H/ACA

snoRNA examples and includes secondary structure as a key

element in H/ACA box snoRNA detection. Results from these

snoRNA gene identification efforts strongly suggest that structure

is generally not a significant component of C/D box snoRNA

genes.

Table 1. Summary of all known nuclear encoded ncRNA in S.
cerevisiae.

Non-coding RNA Number Comments

tRNA 275 Spread across genome

snoRNA (H/ACA box) 29 Spread across genome

snoRNA (C/D box) 47 Spread across genome

rRNA 2 Chr XII, 40–140 tandem repeats

snRNA 5 LSR1, snR14, snR19, snR6,
snR7-Long/short

other 7 NME1, RNA170, RPR1, RUF5-1/2,
SCR1, SRG1, TLC1

doi:10.1371/journal.pgen.1000321.t001

Table 2. Positive control set.

S. cerevisiae
ncRNA Description %GC Length

SNR6 mRNA splicing (U6) 39.29 112

SNR7-L mRNA splicing (U5) 44.39 214

SNR14 mRNA splicing (U4) 38.75 160

SNR19 mRNA splicing (U1) 39.79 568

LSR1 mRNA splicing (U2) 40.85 1174

RPR1 tRNA cleavage (RNase P component) 51.49 369

NME1 Pre-rRNA cleavage (RNase MRP component) 38.94 339

SRG1 Regulates SER3 35.39 550

RNA170 Unknown function, RNA Pol III transcript 45.56 168

RUF5-1 Unknown function 34.08 709

SCR1 Cytoplasmic RNA 54.98 521

TLC1 Telomerase template 35.59 1300

SNR76 C/D box snoRNA 47.71 108

SNR49 H/ACA box snoRNA 33.94 164

SNR83 H/ACA box snoRNA (RUF3) 35.62 305

SNR30 H/ACA box snoRNA 46.76 600

Test genes selected to form the positive control set.
doi:10.1371/journal.pgen.1000321.t002

Non-Coding RNA Prediction and Verification
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SRG1 is a ncRNA gene that has been shown to repress the

expression of its neighboring gene SER3 [49]. Transcription of

SRG1 interferes with the binding of SER3 activators in its

promoter. This mechanism suggests that SRG1 fulfills its role as

a transcriptional repressor through its transcription rather than

through a significant structural component.

The RNA170 gene was discovered through a genome-wide

search of Polymerase III box A and B consensus sequences [33].

Its function and mechanism of action are unknown. It seems likely

that this ncRNA does not require a significant structural

component to perform its function.

The total sequence length encompassed by a Z-score less than

23.5 in the positive control set represented 41% of the total

sequence evaluated. If snR76, SER3 and RNA170 are removed

from the set, 46% of the positive control set produces a Z-score

,23.5 (Table 3). Window sizes of 75 nt to 85 nt were crucial for

identifying the short ncRNA such as snR6.

To summarize, three negative control sets were used consisting

of a set of randomly generated sequences, a set of intergenic

sequences, and a set of shuffled positive controls. The percent of

sequence producing a false positive indication (i.e., Z-score

#23.5) for each of these sets was 5.0%, 10.5%, and 8.1%,

respectively (Table 3). We examined the regions producing Z-

scores #23.5 for unusual GC content that might explain the large

negative Z-score but found nothing significant in these regions

(Table S4). For the positive control set, 13 of the 16 genes

produced a Z-score #23.5, encompassing 41% of the total

sequence length of the set (Table 3). There is good reason to think

that the three genes in this set failing to produce a Z-score #23.5

do not contain structural features.

Analysis of the positive and negative control sets provided the

following conclusions, (1) Evaluating window sizes less than 65 nt

produces many false positives, (2) A Z-score value of 23.5 is useful

for discriminating known ncRNA from non-functional sequence,

(3) The percent of false positive sequence was observed to be

,5.0–10.5% when using a cut-off Z-score value of 23.5.

Identifying ncRNA in Background Sequence
Evaluation of the positive and negative control sets showed that

the Z-score was useful for discriminating known structural ncRNA

from non-functional sequence. To apply the approach to de novo

gene prediction it is necessary to scan through a large test sequence

(i.e., a chromosome) in search of regions that produce Z-score

values indicative of structural ncRNA. To test the effectiveness of

our approach for ncRNA discovery, and to determine the optimal

parameters for the search, we performed two tests. We evaluated

our ability to detect known ncRNA (Table 1), then we performed a

detailed analysis of optimal search parameters using a small subset

of ncRNA.

First, each annotated, nuclear encoded ncRNA (excluding

rRNA), along with 200 nt upstream and downstream of the gene,

was used as a test sequence. Z-scores were calculated on the

ncRNA strand using the following parameters: window sizes = 75

to 200 nt, step size = 5 nt, window delta = 5 nt. The known

ncRNA were considered detected if the center of the window(s)

producing a Z-score #23.5 overlapped the gene.

100% of the snRNA were detected, 72.4% of the H/ACA box

snoRNA were detected, and 23.9% of the C/D box snoRNA

genes were detected. Only 16% of the tRNA genes were detected.

This result is consistent with previous reports of poor detection of

tRNA based on a Z-score-type search criteria [40,41,43]. Clote et

al [41] suggested that this may, in part, be due to the extensive

post-transcriptional modifications that occur to tRNA that are not

accounted for in the MFE calculation based on unmodified

sequence. The percent of tRNA detected was a function of the

tRNA length. 10.4% of the tRNA shorter than 75 nt (192 total)

were detected while 34.6% of tRNA greater than 75 nt (83 total)

were detected.

This ncRNA data can also be used to show the impact of using a

single window size or a large step size on ncRNA detection

(Table 4). The table provides the percent of H/ACA box

snoRNAs detected when only a single window size was used to

perform the analysis. The impact of using different step sizes (5 nt,

25 nt and 50 nt) is also presented. Using a single window size, as

opposed to several sizes, reduces the number of snoRNA detected.

The number of H/ACA snoRNA detected by evaluating all

window sizes from 75 nt to 200 nt was 72.4%, which is greater

than the number detected by using any single window size. The

Table 3. Percent of positive and negative control set with Z-score #23.5.

Control set Description
Total length
evaluated

Total length of sequence
with Z-score ,23.5 % length with Z-score ,23.5

Negative Controls Randomly shuffled 6000 295 5.0

Intergenic 1800 190 10.5

Shuffled Positive Controls 7361 599 8.1

Overall 15161 1084 7.2

Positive Controls Known ncRNA 7361 3019 41.0

All numbers given are length (nt).
doi:10.1371/journal.pgen.1000321.t003

Table 4. Effect of using a fixed window size with different
step sizes.

Single Fixed Window Size

step
size 80 90 100 110 120 130 140 150 160 170 180 190 200

5 62.1 44.8 51.7 51.7 51.7 51.7 41.4 48.3 48.3 41.4 44.8 44.8 41.4

25 34.5 20.7 31.0 27.6 37.9 34.5 34.5 20.7 31.0 17.2 31.0 27.6 27.6

50 13.8 6.9 17.2 17.2 31.0 17.2 17.2 17.2 17.2 13.8 24.1 20.7 20.7

The ability to identify the H/ACA snoRNA in background sequence was
evaluated using a variety of fixed window sizes and step sizes. The percent of H/
ACA snoRNA identified using a fixed window size and step size is provided for
window sizes from 80 to 200 and step sizes of 5, 25 and 50. There are a total of
29 known H/ACA snoRNA. The percent of snoRNA detected for a given window
size drops with increasing step size. The number of H/ACA snoRNA detected
using all of the window sizes with a step size of 5 was 72.4%.
doi:10.1371/journal.pgen.1000321.t004

Non-Coding RNA Prediction and Verification
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number of H/ACA snoRNA detected for a given window size

decreases as the step size increases. These results can provide

guidance for choosing a subset of window sizes to perform a

ncRNA screen. Tradeoffs can be made between the percent of

ncRNA detected and the computational investment required to

perform the analysis.

A second experiment was performed to further explore the

question of optimal values for step size and window delta. Ten

tRNA from the Rfam database [50] were embedded at random

locations within 300 nt background sequences (Table S5). The

selected tRNA ranged in length from 68 nt to 91 nt and generated

large negative Z-scores (,24.0) when evaluated in isolation. The

background sequences used were mRNA transcripts that had no

significant Z-score along their length. A Z-score was calculated at

each position along the total sequence (step size = 1) for each

window sizes from 60 to 95 nt (window delta = 1). In most cases it

was possible to detect the tRNA in the embedded sequences using

a step size of 5 and a window delta of 5 (Figure 1). However, in

some cases the window size and window delta needed to be smaller

than this to be certain of finding the transcript (Figure 2).

Based on the above results, we chose to use a step size of 5 nt

and a window delta of 5 nt for the remainder of our analysis. This

provided a high probability of detecting most ncRNA while

keeping computational time manageable.

ncRNA Prediction on Chromosome VI of S. cerevisiae and
S. bayanus

The ncRNA prediction method was applied to intergenic

regions of S. cerevisiae chromosome VI using window sizes from 75

to 200 nt, a window delta size of 5 nt, and a step size of 5 nt. The

UTRs of most genes in the S. cerevisiae genome are unknown so the

term intergenic used here refers to the distance between ORFs of

adjacent annotated genes. Genes classified as dubious in SGD [45]

were ignored. The UTRs of the flanking genes are thus included in

the intergenic region, and those containing structure [51] may be

detected. The limited data available on S. cerevisiae 59 and 39 UTRs

shows that most UTRs are short (39 UTR median length 91 nt, 59

UTR median length 68 nt) [12,13], suggesting that most of the

structural signals detected should come from independent ncRNA

rather than UTRs. Only intergenic regions greater than 90 nt in

length were evaluated.

Forward and reverse DNA strands were evaluated indepen-

dently since the GU pairing in ncRNA confers different folding

potential to the complementary strands. In an attempt to reduce

the rate of false positives produced by the screen, the analysis was

repeated in syntenic regions of S. bayanus (MCYC623) [52]. For a

region to be considered syntenic, it had to have the same flanking

genes with the same orientation in both S. bayanus and S. cerevisiae.

A total of 66 syntenic regions satisfying these criteria were

identified. The percent identity between these regions in S. cerevisiae

and S. bayanus varied between 18.0% and 76.5% with an average

of 57.0% (Table S6). Predicted structural elements common to

both species were taken as ncRNA candidates. There were no

constraints placed on the relative position of the structural

predictions in syntenic regions, only that they appeared between

the same two flanking genes in both species.

There were 23 intergenic regions in S. cerevisiae that produced Z-

scores #23.5 and 24 intergenic regions in S. bayanus that

produced Z-scores #23.5. Fourteen of these regions were

common to both S. cerevisiae and S. bayanus and resulted in a total

of 16 high priority candidates (two syntenic regions produced two

separate candidates) (Table 5). In many cases, a Z-score below the

cutoff criterion was generated from both the Watson and Crick

strand. For this reason, experimental testing was performed on

both strands independently for all candidates. An example of the

Z-score values generated by evaluating the Watson strand for each

position in the intergenic region between SEC4 and VTC2 for all

window sizes is provided in Table S7. The position of windows

producing Z-scores #23.5 within selected intergenic regions are

given in Figures S7, S8, S9, and S10.

Figure 1. Z-score vs. position. The tRNA (K00228.1), length 82 nt, is embedded in mRNA sequence (AF452886, 22–270 nt) at position 170–246
(represented as a black box). The Z-score for the sliding window (step size = 1) is plotted vs. position. The Z-score value is placed in the center of the
window. Three different window lengths (black-60 nt; blue-82 nt; red-95 nt) are plotted. The blue plot is a scan using the exact tRNA length (82 nt) as
the window size. This tRNA was detected using window lengths as short as 60 nt and as long as 95 nt.
doi:10.1371/journal.pgen.1000321.g001

Non-Coding RNA Prediction and Verification
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Experimental Verification
Northern blots and rapid amplification of cDNA ends (RACE)

were used to test the validity of the ncRNA candidates. Since the

environmental conditions required for expression of the ncRNA

gene candidates were unknown, nine conditions were tested.

Conditions were selected that have been shown to generate high

overall transcript expression [53,54]. These nine conditions were:

heat shock (25uC to 37uC), diamide treatment, growth in minimal

media, saturated growth in minimal media, anaerobic growth,

sporulation, schmooing, YPGlycerol (non-fermentable carbon

source), and YPD growth. RNA was isolated and northern

blotting was performed (see Materials and Methods). Strand

Figure 2. Z-score vs. position. The tRNA (AF076356.1), length 69 nt, is embedded in mRNA sequence (NM_001003966, 1–366 nt) at position 117–
185 (represented as a black box). The Z-score for the sliding window (step size = 1) is plotted vs. position. The Z-score value is placed in the center of
the window. Three different window lengths (black-60 nt; blue-69 nt; red-79 nt) are plotted. The blue plot is a scan using the exact tRNA length
(69 nt) as the window size. This tRNA was not detected using window length of 60 nt and detected only by a single point using a window length of
79 nt.
doi:10.1371/journal.pgen.1000321.g002

Table 5. Candidate transcripts on chromosome VI.

Candidate Flanking Genes Strand Start (59) End (39) Length Comments

RUF20 SEC4-VTC2 Crick 131056 131498 442 Complete transcript (flanking genes on Watson)

RUF21 TUB2-RPO41 (1) Crick 58520 57814 706 Complete transcript (flanking genes on Watson)

RUF22 ROG3-PES4 (1&2) Crick 199801 ,199287 .514 39 end uncertain (flanking genes on Watson)

RUF23 RPL2A-YFR032C Watson 221702 ,221955 .253 39 end uncertain (flanking genes on Crick)

Gene? YFL051C-ALR2 Watson Complex, possibly 3 transcripts

Gene? IES1-YFL012W Crick ,109984 110374 .390 Cap only. No data from 59 UTR of IES1 so observed cap could be IES1 59 end.

UTR TUB2-RPO41 (2) Watson 39 end TUB2

UTR YFR017C-YFR018C Crick 39 end YFR018C

UTR CDC4-SMC1 Watson 39 end CDC4

UTR ALR2-SWP82 Crick 59 end ALR2

UTR GYP8-STE2 Crick 59 end GYP8

UTR ACT1-YPT1 Crick 59 end of long ACT1 transcripts

? DUG1-YFR045W no transcript ends

? GSY1-YFR016C no transcript ends

? RIM15-HAC1 no transcript ends

Each candidate was mapped using RACE. This data was combined with cDNA data from Miura et al, 2006 to determine transcript ends.
doi:10.1371/journal.pgen.1000321.t005
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specific blotting protocol was used for the northern blot analysis to

identify the transcribed strand and to help rule out DNA

contamination. Northern blotting confirmed expression of tran-

scripts between SEC4 and VTC2 (RUF20) on the Crick strand and

between YFL051C and ALR2 on the Watson strand (Figure S11).

The ACT1-YPT1 transcript showed strong expression on the

Crick strand under all conditions but later proved to be part of the

ACT1 59 UTR (data not shown).

Rapid amplification of cDNA ends (RACE) was used to

measure the 59 or 39 end of flanking genes as well as map

candidate gene ends (Table 5, Table S8, Table S9). The cDNA

was generated using a poly-T primer from RNA collected from

anaerobic or heat shock conditions (see Materials and Methods).

The RACE analysis proved considerably more sensitive than

northern blotting.

In addition to this experimental data, several publicly

available data sets were evaluated for their value in substanti-

ating these ncRNA predictions. Tiling array data [11,12] has

been used by several investigators to substantiate computational

ncRNA predictions. However, we found this data quite noisy

and difficult to interpret with a high degree of confidence. It also

remains a point of debate whether all of the transcription

measured by microarray tiling experiments represents true

functional transcripts or whether some of it represents spurious

transcription or experimental artifact [3,4,9,55–58]. The se-

quenced cDNA library data appears to be more useful in

verification of ncRNA predictions [13]. The data included

information on transcript ends and as such was likely to derive

from a functional transcript. A summary of all the experimental

data is provided in Table 6.

The candidates in Table 6 are listed in order of increasing

experimental support. The top four ncRNA candidates have been

assigned names RUF20 (RNA of unknown function) to RUF23

(Figure 3). The RUF name was chosen to follow the naming

convention established by previous investigators [34]. These

transcripts do not appear to be snoRNA or to encode an ORF

(see Materials and Methods). One of the candidates, RUF22,

overlaps with an autonomously replicating sequence, ARS607.

One other ncRNA candidate, IES1-YFL012W, partially overlaps

(120 bp) with the dubious ORF YFL012W-A which is on the

opposite strand (Watson). This dubious gene also partially overlaps

(120 bp) the IES1 gene. According to SGD, this dubious ORF is

unlikely to encode a protein based on available experimental and

comparative sequence data [45].

It is reasonable to question whether our computational screen

provided an improved ability to identify ncRNA relative to simple

random experimental searches. Previous investigators have shown

that randomly probing intergenic regions of the S. cerevisiae is unlikely

to reveal ncRNA. In the work by McCutcheon & Eddy, 20

intergenic regions were chosen randomly and probed by northern

blot [34]. None of these regions produced a transcript. Olivas,

Muhlrand and Parker also provided evidence that probing intergenic

regions is unlikely to produce a transcript even though they were

conducting a directed search for ncRNA [33]. They performed two

different screens in an effort to discover ncRNA. In one case, they

used a computational approach to identify 10 locations in the

genome that contained potential RNA polymerase III binding

motifs. When they probed the 10 regions, only one was found to

express a transcript. In their second screen, they identified regions

within the genome with large gaps between genes. They expected

these regions to contain ncRNA transcripts because the high density

of genes in the Saccharomyces genome suggested that any large gaps

were likely to be occupied by unannotated genes. Probing 59 such

regions revealed 15 potential transcripts. It is clear that even probing

regions expected to contain ncRNA transcripts is often unsuccessful.

Our experimental screen of 16 candidates produced 4 ncRNAs with

strong support, 2 potential ncRNA with weaker support, and 6

UTRs likely to contain structure (Table 6). Thus, it appears that our

computational method improves ncRNA identification over simple

random searches.

Table 6. Summary of experimental data for the 16 ncRNA candidates evaluated.

Name Flanking Genes Strand cDNA Northern RACE Comments

RUF20 SEC4-VTC2 Crick Yes Yes Yes Strong Support

RUF21 TUB2-RPO41 (candidate1) Crick Yes - Yes Strong Support

RUF22 ROG3-PES4 (candidate 1 & 2) Crick Yes - Yes Strong Support (same transcript)

RUF23 RPL2A-YFR032C Watson - - Yes Strong Support

Gene? YFL051C-ALR2 Watson - Yes Yes Complex (3 transcripts?)

Gene? IES1-YFL012W Crick Yes np Yes Good Support

UTR TUB2-RPO41 (candidate 2) Watson - - Yes 39 UTR TUB2 (223 nt)

UTR YFR017C-YFR018C Crick Yes - Yes 39 UTR YFR018C (164 nt)

UTR CDC4-SMC1 Watson - np Yes 39 UTR CDC4 (101 nt)

UTR ALR2-SWP82 Crick - - Yes 59 UTR ALR2 (750 nt)

UTR GYP8-STE2 Crick - - Yes 59 UTR GYP8 ($249 nt)

UTR ACT1-YPT1 Crick Yes Yes - 59 UTR ACT1 (120 nt)

? DUG1-YFR045W unknown - np - Insufficient support

? RIM15-HAC1 unknown - - - Insufficient support

? GSY1-YFR016C unknown - np - Insufficient support

These candidate regions produced Z-scores #23.5 in both S. cerevisiae and S. bayanus. RACE data was evaluated from RNA collected under two different conditions
(anaerobic growth, heat shock from 25uC to 37uC). The cDNA data is taken from Miura et al, 2006. The northern contained total RNA from 9 different conditions as
described in Materials and Methods. A ‘‘-’’ in the column indicates that no signal was detected. A ‘‘np’’ in the northern column identifies candidates that were not
probed using northern blot.
doi:10.1371/journal.pgen.1000321.t006
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SEC4-VTC2 Candidate in S. bayanus and Ashbya gossypii
To further validate the SEC4-VTC2 ncRNA candidate, RACE

was performed in syntenic regions of S. bayanus and the more

distantly related hemiascomycete species Ashbya gossypii. This

species diverged from S. cerevisiae prior to the S. cerevisiae whole

genome duplication. However, A. gossypii still retains many

syntenic regions with S. cerevisiae and, in the case of the SEC4-

VTC2 gene candidate, gene order and orientation are preserved.

RACE products were obtained from both S. bayanus and A. gossypii

(Figure 4). The fact that the transcript is preserved over such a

large evolutionary distance provides strong evidence that this is a

bona fide ncRNA gene.

Discussion

A computational screen for structural ncRNA in S. cerevisiae was

performed using thermodynamic stability to discriminate struc-

tural ncRNA from background sequence. The method was tested

on positive and negative control sets to determine its effectiveness

for identifying known ncRNA and to develop optimal search

parameters. These parameters were determined to be a Z-score

,23.5, window sizes 75 nt to 200 nt, step size of 5 nt, and

window delta of 5 nt. The parameters were then used to screen for

novel ncRNA in the intergenic regions of S. cerevisiae chromosome

VI. To reduce the number of false positive predictions, an

independent analysis was performed on syntenic regions of S.

bayanus. The set of predictions found in common in both species

were subjected to further experimental verification. Like all

computational ncRNA gene discovery approaches currently

available, our method can only provide guidance on regions likely

to contain structural elements. It cannot predict the exact location

of the ncRNA gene or its precise ends. These must be determined

experimentally.

Northern blots, rapid amplification of cDNA ends (RACE), and

publicly available cDNA library data were used to test the

predictions. Each of these methods was selected for specific

reasons. The strength of northern blot analysis is that it does not

rely on transcript amplification and hence avoids artifacts that can

result from an amplification step. However, it is not as sensitive as

other methods and this can be a significant limitation when testing

for ncRNA that may be expressed at low levels. RACE provides

greater sensitivity than northern blot analysis but may be subject to

amplification artifacts. The potential for artifacts is reduced

because the 59 and 39 ends of the transcript are captured. The

presence of a cap and poly-A tail provides strong evidence that the

transcript has been processed by the cellular machinery and is a

legitimate functional transcript. This makes the approach superior

to methods such as tiling arrays that provide information on

transcription but for which it is difficult to distinguish transcrip-

tional noise from genuine transcripts. The publicly available

cDNA data used here also has the advantage of capturing the

transcript 59 and 39 ends, providing strong evidence for a

legitimate, processed transcript.

The initial computational screen presented here produced

sixteen ncRNA gene candidates on chromosome VI of S. cerevisiae.

Four candidates are well supported by experimental data and have

been given the names RUF20 to RUF23 (Table 5). The RUF20

candidate is also expressed in S. bayanus and in the more distantly

Figure 3. Schematic of ncRNA candidates. The genes annotated in SGD are represented as open boxes containing the name of the gene.
Position numbers above the genes on chromosome VI are taken from SGD. Dotted lines extending from the boxes represent UTR regions and
numbers above the lines indicate the measured length of the UTR. The curved vertical lines signify that the entire length of the flanking genes is not
included in the figure. The ncRNAs for which complete RACE data are available are shown as black boxes, and the candidates for which there is
incomplete RACE data are shown as gray or black-to-gray gradient boxes. (A) RUF20 between SEC4 and VTC2 (B) RUF21 between TUB2 and RPO41 (C)
RUF22 between ROG3 and PES4 (D) RUF23 between RPL2A and YFR032C.
doi:10.1371/journal.pgen.1000321.g003
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related species A. gossypii (Figure 4). All of the transcripts were

evaluated for the possibility that they might be snoRNA or encode

a protein but this was shown to be unlikely (see Materials and

Methods). Two additional candidates are also supported by

experimental evidence but further experimental testing is needed

to confirm their legitimacy. Six of the candidates were found to be

part of the 59 or 39 untranslated regions (UTRs) of annotated

protein-coding genes. These structures are interesting because they

may play a functional role in the UTRs of these genes (Table 5).

Additional experimental analysis will be needed to determine the

function of the structures as well as the function of the four new

ncRNA, RUF20 to RUF23.

There are several possible explanations why experimental data

could not be obtained to support three of the ncRNA predictions.

These predictions may represent false positives, they may not be

expressed under the conditions tested, or they may be expressed at

such a low level that they could not be detected. It has been shown

that transcript abundance in yeast varies over six orders of

magnitude and that some important transcription factors are

expressed at levels as low as one transcript per thousand cells [59].

It is also possible that these transcripts are not transcribed by RNA

polymerase II, the method used in this study to generate cDNA is

dependent on a poly-A tail in the RNA transcript. If the ncRNA

candidates are transcribed by polymerase I or III, they would

likely not be captured in the cDNA library.

It should be noted that there were three genes in the positive

control set (Table 2) that did not generate a Z-score ,23.5

(snR76, SER3, RNA170). It is questionable whether these genes

actually contain significant structural elements. One of them,

snR76, is a C/D box snoRNA and data from other investigators

[19] shows that structural features are only present in a subset of

these genes. It is not surprising that this category of ncRNA was

not easily detected in this screen based on structural thermody-

namic stability. It is clear that some classes of ncRNA will not be

identified very well in structural screens. The other two genes in

the positive control set were RNA170 (unknown function) and

SER3. The SER3 gene suppresses expression of its neighboring

gene, SRG1, by blocking access to the SRG1 promoter region via

its transcription. SER3 and RNA170 are unlikely to contain

significant structural features so the fact that they did not generate

Z-scores less than 23.5 tends to validate the method.

Two previous investigators have performed computational

genome-wide screens for ncRNA in S. cerevisiae. McCutchen and

Eddy, 2003 used the QRNA program to search for structural

elements based on observed compensatory changes in pair-wise

alignments of S. cerevisiae species. A fixed window size of 150 nts

and a step size of 50 nt were used to perform the analysis. Two

structural ncRNA candidates were found on chromosome VI. One

prediction, between RIM15 and HAC1 (74738–74738), was near

one of the candidates predicted in this study between the same

genes (74926–75006). They were unable to obtain sufficient

experimental support for expression of this transcript. This is

consistent with our experimental results as well. The second

McCutchen and Eddy prediction, between SMC1 and BLM10, did

not correspond to any predictions generated in this study. They

obtained northern blot and RACE data to support expression of

this second predicted gene.

A second screen for ncRNA was performed by Steigele et al

using the RNAZ program [35]. This program searches for

compensatory changes in multiple sequence alignments as well as

for thermodynamic stability cues indicative of structural elements.

The relative contribution of these two factors in the prediction is

not specified. A fixed window size of 120 nt and step size of 40 nt

was used to perform the analysis. They reported a sensitivity (true

positives/total) for identifying snoRNA of 47% (pooling H/ACA

box and C/D box snoRNA), sensitivity for identifying snRNA of

66%, and a sensitivity of 72% for tRNA. The screen generated a

total of 18 novel intergenic structural predictions on chromosome

VI. Of these, 8 were predicted to be on the Crick strand and 8 on

the Watson strand. Five of these intergenic regions were shared by

our predictions (YFL051C-ALR2, ACT1-YPT1, TUB2-RPO41,

GYP8-STE2 and YFR017C-YFR018C). All 5 of the Steigele et al

Figure 4. Schematic of RUF20 in S. cerevisiae, S. bayanus, and A. gossypii. Open boxes represent the flanking genes, SEC4 and VTC2. The
transcripts for which complete RACE data are available are shown as black boxes, and the candidates for which there is incomplete RACE data are
shown as blank or black-to-gray gradient boxes. The coordinates for the bounds of the genes are noted in S. cerevisiae. The curved vertical lines
signify that the entire length of the flanking genes is not included in the figure. (A) RUF20 in S. cerevisiae. (B) RUF20 in S. bayanus. (C) RUF20 in A.
gossypii.
doi:10.1371/journal.pgen.1000321.g004
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predictions were on the Watson strand in these regions. Two of the

predictions overlapped with our predictions (ACT1-YPT1 and

YFR017C-YFR018C).

Our experimental data suggested that the YFL051C-ALR2

region is transcriptionally complex and is likely to produce more

than a single transcript. This could account for the fact that both

studies predicted structural elements in this region. Our RACE

analysis of the ACT1-YPT1 region showed that the predicted

structural element was contained within the ACT1 UTR on the

Crick strand. The Steigele et al prediction overlaps within the

ACT1 UTR but is predicted to be on the opposite strand

(Watson). For the TUB2-RPO41 region, we experimentally

confirmed a transcript on the Crick strand encompassing our

predictions. This transcript overlaps with the Steigele et al

prediction but is again on the opposite strand (Watson). Our

GYP8-STE2 prediction proved to be part of the GYP8 59 UTR on

the Crick strand. The Steigele et al prediction in this region was on

the Watson strand and is beyond the region we measured for the

GYP8 UTR (although we were unable to map the end of this 59

UTR). In the YFR017C-YFR018C region, we obtained RACE

results that mapped our prediction to the Crick strand as part of

the YFR018C 39 UTR. The Steigele et al prediction, which

largely overlaps our prediction, was for a gene on the Watson

strand. Hence, while our predictions and those of Steigele et al are

close to one another or overlapping in five regions, in all five cases

they are on opposite strands.

It is interesting that there is no overlap between the QRNA and

the RNAZ predictions of chromosome VI since both programs

consider compensatory changes within alignments to identify

structural elements. The reason for this is unclear.

There are two primary differences between the search for

ncRNA presented here and the work of previous investigators.

First, this method does not require sequence alignments in the

analysis. Instead, it relies entirely on thermodynamic stability in

unaligned syntenic regions of related species to predict ncRNA

structure. The approach is capable of finding ncRNA that have

moved out of register within syntenic regions and can be applied in

situations where accurate alignments may be difficult to obtain.

The second difference in this work is its examination of the

impact of various window sizes and step sizes on ncRNA detection.

The analysis shows that small step sizes are necessary to ensure

that most ncRNA are identified. It also shows that more than one

window size is needed when screening for ncRNA. Some ncRNA

are detected only when using short window sizes while others are

detected when using only long window sizes (Table 7). Limiting

the search to a single window size, as has traditionally been done,

is likely to bias the screen toward a subset of ncRNA for which that

window size is optimal.

The need for multiple window sizes and step sizes in the

screening algorithm increases the computational investment

necessary to perform the analysis. However, with the rapid

increase in computer performance and the availability of computer

clusters, these computations are not unreasonable. The increased

computational investment will be rewarded by increased sensitiv-

ity.

Our analysis suggests that a few carefully selected window sizes

will be nearly as effective at detecting ncRNA as the entire set

between 75 nt and 200 nt (total of 26 window sizes). For example,

when we used the entire set of window sizes from 75 nt to 200 nt,

we detected 22 of the 29 known H/ACA snoRNA within

embedded sequences (Table 7). If we had used only 4 window

sizes (80 nt, 120 nt, 160 nt, 200 nt), we would have succeeded in

identifying 90% of these H/ACA box snoRNA (20 of the 22) while

reducing computational requirements by approximately 85% (4 of

26 window sizes). If these four window sizes were used with a step

size of 25 nt, 77% (17 of 22) of the H/ACA box snoRNA would be

detected (Table S10). This becomes 64% (14 of 22) if the step size

is increased to 50 nt (Table S11).

Tradeoffs between sensitivity and computational requirements

should be evaluated when performing computational screens. We

recommend using a range of four window sizes when screening for

ncRNA in a genome (one short, one long, and two intermediate

values appears to be optimal). Our results suggest that the values of

80, 120, 160 and 200 should provide good results. A step size

between 5 and 10 should also provide a good screen. These

parameters should provide good ncRNA detection while keeping

computational time manageable. The development of an efficient

computational algorithm implementing the methodology present-

ed here would also significantly reduce computational run time.

Table 7. Detection of each snoRNA for each window size.

Single Window Size (step size = 5)

sno
RNA 80 90 100 110 120 130 140 150 160 170 180 190 200

snR30 X X X X X X X X X X X X X

snR32 X X X X X X X X X X X X X

snR37 X X X X X X X X X X X X X

snR44 X X X X X X X X X X X X X

snR49 X X X X X X X X X X X X X

snR161 X X X X X X X X X X X X X

snR42 X X X X X X X X X X X X X

snR83 X X X X X X X X X X X X

snR84 X X X X X X X X X X X

snR191 X X X X X X X X

snR36 X X X X X X X X X X X X

snR34 X X X X X X X X X X X

snR46 X X X X X X X

snR86 X X X X X X

snR10 X X X X

snR3 X

snR11 X

snR82 X X X X X

snR81 X X X X X X

snR80 X X

snR35 X

snR8 X X X

snR5

snR9

snR31

snR33

snR43

snR85

snR189

The table provides a list of each of the 29 H/ACA snoRNA and the window sizes
at which the snoRNA generated a Z-score #23.5 (indicated by ‘X’). A blank
space means that the snoRNA was undetected using the window size specified
at the top of the column. A step size of 5 was used. See supplementary material
for data using a step size of 25 and 50 nt.
doi:10.1371/journal.pgen.1000321.t007
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This screen used a simple cutoff Z-score value (#23.5) to

discriminate ncRNA. The sensitivity of the screen could probably

be improved if a more sophisticated cutoff criteria were developed

in which the Z-score cutoff was a function of window size. The

number of aberrant negative Z-scores dropped as a function of

window length in the negative control sets demonstrating that the

likelihood of producing large negative Z-score drops with

increasing window length. Developing a Z-score cut-off value as

a function of window length would probably improve the

sensitivity of the screen at longer window sizes.

This work demonstrates that structural thermodynamic stability

is an effective tool for predicting ncRNA genes. As examples of

ncRNA are accumulated through computational screens such as

this, it may become possible to determine ncRNA key features and

gain insight into their biological function. Computational methods

can complement experimental approaches in the effort to gain a

deeper understanding of these genes.

Materials and Methods

Strains
S288C was used for all growth conditions except for sporulation

(SK1) and pheromone treatment (BY4741).

Heat Shock from 25uC to 37uC
Cells grown continuously at 25uC were collected by centrifu-

gation, resuspended in an equal volume of 37uC medium, and

returned to 37uC for an additional 20 minutes. The RNA was

then isolated as described below. RNA was collected after twenty

minutes as it has been shown to be the point of maximum RNA

expression [53].

Schmooing
Pheromone treatment stimulates yeast cells to increase the

expression of mating genes, arrest cell division in the G1 phase,

and form polarizing mating projections directed toward the

pheromone source [60]. Overnight yeast cultures grown in YPD at

30uC were treated with 50 nM a-factor (GenScript Corporation).

Cells were examined under a microscope to ensure schmooing was

induced. Total RNA was extracted 75 minutes after pheromone

treatment.

Diamide Treatment
A strong cellular response to diamide treatment has been shown

previously [53]. It resembles a composite response to heat shock,

H2O2 treatment and menadione treatment. It induces cellular

redox genes and genes associated with defense against reactive

oxygen species. Diamide (Research Organics) was added to cell

cultures grown in YPD at 30uC in late log phase to a final

concentration of 1.5 mM. Cells were returned to 30uC for growth

for 30 minutes. RNA was then isolated as described above.

Synchronized Sporulation
This growth condition induces expression of genes involved in

meiosis and spore morphogenesis. SK1 yeast cells were sporulated in

a synchronous meiosis as described previously [61]. Briefly, yeast

cultures were pre-grown in YPD to saturation at 30uC, diluted 200-

fold into 100 ml of YPA (1% yeast extract, 2% Bacto-peptone, 2%

acetate), and grown to early stationary phase (about 56107 cells/ml).

Cells were then washed with water and resuspended into 100 ml of

SPM (sporulation media consisting of 0.3% potassium acetate and

0.02% raffinose). Sporulation was carried out at 30uC under

conditions that allowed good aeration. Expression data suggested

that metabolic, early, middle and late genes were active 11 hours

after transfer to sporulation media so total RNA was collected at this

time point [54]. Cells were inspected under a microscope to ensure

that sporulation of at least some of the cells had taken place. RNA

was then isolated as described below.

Anaerobic Growth
S288C yeast cells were grown for approximately 55 hours in

100 ml of minimal media (YNB) in an anaerobic chamber using an

anaerobic gas generating system (Mitsubishi Gas Chemical Compa-

ny, Inc.). Four minimal media plates were also streaked with S288C

and grown anaerobically for the same time period. The anaerobic

chamber was then opened and the cells growing on the plates were

added to the cells in the liquid growth by washing. Total RNA from

all of the cells was isolated immediately as described below.

Saturated, Rich Media Growth, and YPG
Saturated growth has been shown to activate gene expression,

presumably allowing the cells to adapt to nutrient depleted

conditions [53]. S288C cultures were grown to saturation (OD 3)

in minimal media (YNB). They were also grown to logarithmic

phase in rich media (YPD) and on a nonfermentable carbon

source, YPGlycerol. All three cultures were grown at 30uC and

aerated by shaking at 250–300 rpm.

RNA Isolation
A phenol-chloroform extraction protocol was used as described

previously [62] to extract total RNA from S. cerevisiae, S. bayanus

and A. gossypii. All glassware used in the procedure was baked for

4 hours to destroy RNase activity. Reusable plasticware and

laboratory bench surfaces were treated with RNAzap (Biohit,

Inc.). RNAse-free water was prepared by treating with Diethyl

pyrocarbonate for one hour and then autoclaving. Cells were

harvested from 50 ml cultures at an OD600 of 1–3 (1 OD = 36107

cells/ml) unless otherwise specified. The cells were collected via

centrifugation (except A. gossypii cells which were collected using a

vacuum filter). The cell wall was disrupted by vortexing at high

speed with acid-washed glass beads in a solution containing

guanidine thiocyanate. Total RNA was purified using multiple

washes with a combination of hot phenol and chloroform.

The total RNA was treated with TURBO DNase (Ambion) and

incubated at 37uC for 30 minutes prior to using for RACE or

northern applications. The DNase activity was destroyed by

heating to 70uC for 5 minutes per the standard protocol. RNA

quality was assessed by measuring absorbance at a wavelength of

260 nm on a NanoDrop (ND-1000) spectrometer.

Northern
A 6%, 7 M urea, 16 TBE denaturing polyacrylamide gel was

used to make a northern blot with total RNA as described previously

[63]. Total RNA was treated with TURBO DNase (Ambion) and

incubated at 37uC for 30 minutes prior to gel loading to ensure that

no DNA was present. It was loaded onto the gel and run at 150 V for

3 hours. The total RNA was transferred from the gel to a nylon

membrane using the OWL Scientific Panther Semi-Dry Electro-

blotter (Model # HEP-1) with a current of 200 milliamperes for a

period of 1 hr. The RNA was fixed to the blot with UV crosslinking.

Radioactive strand-specific probes were produced using the Strip-EZ

system with a-P32 dATP (Ambion). Each probe was used to on a

separate northern blot. This provided a check that the observed

signal derived from only a single strand and was not the result of

DNA contamination (which would produce signal from both

strands). The probes were detected by exposing the blot to BioMax

XAR film (Kodak) at 280uC 24–48 hours.
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Rapid Amplification of cDNA Ends (RACE)
The SMART RACE cDNA Amplification Kit (Clontech) was

used to map transcript ends. Total RNA was isolated from S288C

under two different growth conditions: anaerobic growth and heat

shock from 25uC to 37uC. It was treated with TURBO DNase

(Ambion) prior to making the cDNA.

To obtain RACE products for the ncRNA candidates, a RACE

reaction and nested reaction were performed for both the Watson

and Crick strand since it was uncertain which strand the transcript

might be generated from. The temperature profiles developed to

optimize the reaction are given in Appendix A. A hot start approach

was used to minimize extraneous amplification by allowing the

reaction tubes to reach a temperature of 94uC for 1 minute before

adding the Ex Taq (Takara) polymerase. The RACE products were

electrophoresed on a 1% agarose gel and the resulting bands were

cut out of the gel. They were purified using one of two methods. The

first was to use the QIAquick Gel Extraction Kit (QIAGEN),

according to the standard protocol. Alternatively, the gel slices were

frozen at 220uC and then spun on a tabletop centrifuge at 1400 rpm

for 20 minutes. The sample was then drawn from the top of the

resulting liquid. This proved a quick and reliable method for

obtaining purified product. The purified RACE products were

sequenced using standard BigDye chemistry, version 1.3, according

to standard protocols (Applied Biosystems).

RACE primers were designed according to guidelines provided

in the SMART RACE kit. They were 20–28 nt in length, had a

GC content between 50–70%, a melting temperature $72uC, and

had no more than 2 C’s or G’s in the last 5 nucleotides of the

oligonucleotide. Each primer was confirmed to be unique in the

genome using the ‘‘fuzznuc’’ program that is part of the EMBOSS

utilities [64].

Calculating Z-score
The Z-score compares the minimum folding energy (MFE) of a

sequence, x, to the distribution of MFE generated by permuted

versions of x having the same di-nucleotide composition. The di-

nucleotide composition must be preserved because of the importance

of stacked base-pairs in the MFE calculation [65]. The MFE of each

sequence, x, was calculated using the RNAfold program [44]. Each

sequence was then shuffled 500 times using the shuffle program

provided in Sean Eddy’s squid utilities [47] and a mean and standard

deviation were calculated for the resulting distribution. The Z-score

was then calculated using the equation

Z xð Þ~ E xð Þ{Sxshuffled xð ÞT
s xshuffled xð Þð Þ

where ,?. and s (?) denote the mean and the standard deviation of

the MFEs of the sequences in xshuffled(x). Hence, the Z-score

represents the number of standard deviations that the sequence x
deviates from the mean MFE of the shuffled sequences.

Genome Sequences
The genome sequence data used for ncRNA prediction and

subsequent evaluation of open reading frame coding potential is

listed in Table 8.

ORF Evaluation of ncRNA Candidates
It was important to investigate the possibility that the ncRNA

candidates might be protein-coding genes. Comparative genomics

was used to investigate this possibility for the four ncRNA gene

candidates RUF20, RUF21, RUF22 and RUF23 (Table 5). This

approach has been applied by other investigators with a high

degree of success [66].

There are no conserved ORFs within the three candidates

RUF21, RUF22 and RUF23 among the closely related species S.

cerevisiae, S. paradoxus, and S. bayanus (sensu stricto). These transcripts

are thus unlikely to be protein-coding genes.

The RUF20 candidate contains one ORF consisting of 8 amino

acids conserved among S. kudriavzevii, S. bayanus, S. paradoxus, and S.

mikatae (sensu stricto). However, the pattern of substitution among

these species is not consistent with synonymous amino acid

substitutions as would be expected for a protein-coding gene (two

mutations are in the 1st codon position, one mutation is in the 3rd

position). The ORF is not conserved in Candida glabrata or A.

gossypii. This is significant because our RACE data confirmed

expression of the transcript in A. gossypii. In addition, the 8 amino

acid ORF does not contain any splice signals suggesting that it is

spliced to another exon. While a number of short ORFs have been

identified in yeast [67], there are none known to be as short as 8

amino acids. Taken together, this data strongly suggests that the

short RUF20 ORF conserved among the sensu stricto does not

encode a protein.

SnoRNA Evaluation of ncRNA Candidates
The SnoScan [19] and SnoGPS [20] programs were used to test

if the ncRNA candidates were likely to be snoRNA. The SnoScan

program searches for features characteristic of C/D box snoRNA.

None of the RUF20 to RUF23 candidate genes have features

characteristic of C/D box snoRNA according to the program. The

SnoGPS program searches for features characteristic of H/ACA

box snoRNA. According to the program, RUF23 is unlikely to be a

H/ACA box snoRNA. The program found some features of H/

ACA box snoRNA evident in the RUF20, RUF21 and RUF22

candidates, although their overall bit score was low (28.4, 29.3,

and 29.9 respectively). A bit score value of 36 is recommended as

the cutoff value when searching for new H/ACA snoRNA. To

further evaluate the possibility that RUF20, RUF21 and RUF22

might to be H/ACA snoRNA, sequence from two closely related

species was used. The homologous gene sequences from S.

paradoxus and S. bayanus were evaluated using the snoGPS

program. The RUF20 candidates in these species were found to

be unlikely to be a H/ACA snoRNA by the program. The RUF21

and RUF22 genes did generate possible H/ACA snoRNA

candidates in the related species but there was no common rRNA

target identified among the homologous sequences. Hence, the

candidates appear to be unlikely H/ACA snoRNA genes.

Table 8. Genomic sequences used for ncRNA prediction.

Genome Strain
Date
Downloaded Reference

Saccharomyces cerevisiae S288C 11/04/06 [45]

Saccharomyces paradoxous NRRL Y-17217 11/04/06 [66]

Saccharomyces mikatae IFO1815 10/12/07 [66]

Saccharomyces kudriavzevii IFO1802 11/04/06 [52]

Saccharomyces bayanus MCYC623 11/04/06 [66]

Candida glabrata CBS138 10/12/07 [69]

Ashbya gossypii ATCC 10895 6/11/07 [70]

doi:10.1371/journal.pgen.1000321.t008
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Supporting Information

Figure S1 Regions producing Z-scores #23.5 for Random9

sequence of the negative control set. Positions along the 300 bp

sequence are shown on the scale at the top of the figure. All

windows producing a Z-score #23.5 are plotted below the scale

as a rectangle. The Z-score value for each window is shown above

the rectangle along with the position of the window in the

sequence (in parenthesis). The total length of the window is shown

in brackets. Overlapping windows are combined to determine the

total length of sequence producing the false positive indications (in

this case, positions 61–285, for a total length of 225 bp). The figure

was drawn using resources in the BioPerl toolkit [68]. See Table

S12 for all the Random sequences used in this study.

Found at: doi:10.1371/journal.pgen.1000321.s001 (0.85 MB TIF)

Figure S2 Regions producing Z-scores #23.5 for Random13

sequence of the negative control set. Positions along the 300 bp

sequence are shown on the scale at the top of the figure. All

windows producing a Z-score #23.5 are plotted below the scale

as a rectangle. The Z-score value for each window is shown above

the rectangle along with the position of the window in the

sequence (in parenthesis). The total length of the window is shown

in brackets. The figure was drawn using resources in the BioPerl

toolkit [68]. See Table S12 for all the Random sequences used in

this study.

Found at: doi:10.1371/journal.pgen.1000321.s002 (0.05 MB TIF)

Figure S3 Regions producing Z-scores #23.5 for the shuffled

LSR1 sequence of the negative control set. Positions along the

1175 bp sequence are shown on the scale at the top of the figure.

All windows producing a Z-score #23.5 are plotted below the

scale as a rectangle. The Z-score value for each window is shown

above the rectangle along with the position of the window in the

sequence (in parenthesis). The total length of the window is shown

in brackets. Overlapping windows are combined to determine the

total length of sequence producing the false positive indications.

The figure was drawn using resources in the BioPerl toolkit [68].

See Table S12 for all the shuffled sequences used in this study.

Found at: doi:10.1371/journal.pgen.1000321.s003 (0.09 MB TIF)

Figure S4 Regions producing Z-scores #23.5 for the shuffled

RUF5-1 sequence of the negative control set. Positions along the

710 bp sequence are shown on the scale at the top of the figure.

All windows producing a Z-score #23.5 are plotted below the

scale as a rectangle. The Z-score value for each window is shown

above the rectangle along with the position of the window in the

sequence (in parenthesis). The total length of the window is shown

in brackets. The figure was drawn using resources in the BioPerl

toolkit [68]. See Table S12 for all the shuffled sequences used in

this study.

Found at: doi:10.1371/journal.pgen.1000321.s004 (0.05 MB TIF)

Figure S5 Regions producing Z-scores #23.5 for the LSR1

sequence of the positive control set. Positions along the 1175 bp

sequence are shown on the scale at the top of the figure. All

windows producing a Z-score #23.5 are plotted below the scale

as a rectangle. The Z-score value for each window is shown above

the rectangle along with the position of the window in the

sequence (in parenthesis). The total length of the window is shown

in brackets. Overlapping windows are combined to determine the

total length of sequence producing the true positive indication.

The figure was drawn using resources in the BioPerl toolkit [68].

Found at: doi:10.1371/journal.pgen.1000321.s005 (1.39 MB TIF)

Figure S6 Regions producing Z-scores #23.5 for the RUF5-1

sequence of the positive control set. Positions along the 710 bp

sequence are shown on the scale at the top of the figure. All

windows producing a Z-score #23.5 are plotted below the scale

as a rectangle. The Z-score value for each window is shown above

the rectangle along with the position of the window in the

sequence (in parenthesis). The total length of the window is shown

in brackets. Overlapping windows are combined to determine the

total length of sequence producing the true positive indication.

The figure was drawn using resources in the BioPerl toolkit [68].

Found at: doi:10.1371/journal.pgen.1000321.s006 (0.09 MB TIF)

Figure S7 Regions producing Z-scores #23.5 for intergenic

sequence between SEC4 (YFL005W) and VTC1 (YFL004W).

Positions along the 828 bp sequence are shown on the scale at the

top of the figure. All windows producing a Z-score #23.5 are

plotted below the scale as a rectangle. The Z-score value for each

window is shown above the rectangle along with the position of the

window in the sequence (in parenthesis). The total length of the

window is shown in brackets. Overlapping windows were

combined to obtain a candidate region for experimental testing.

The figure was drawn using resources in the BioPerl toolkit [68].

Found at: doi:10.1371/journal.pgen.1000321.s007 (0.34 MB TIF)

Figure S8 Regions producing Z-scores #23.5 for intergenic

sequence between TUB2 (YFL037W) and RPO41 (YFL036W).

Positions along the 1072 bp sequence are shown on the scale at the

top of the figure. All windows producing a Z-score #23.5 are

plotted below the scale as a rectangle. The Z-score value for each

window is shown above the rectangle along with the position of the

window in the sequence (in parenthesis). The total length of the

window is shown in brackets. Overlapping windows were

combined to obtain a candidate region for experimental testing.

The figure was drawn using resources in the BioPerl toolkit [68].

Found at: doi:10.1371/journal.pgen.1000321.s008 (3.05 MB TIF)

Figure S9 Regions producing Z-scores #23.5 for intergenic

sequence between ROG3 (YFR022W) and PES4 (YFR023W).

Positions along the 839 bp sequence are shown on the scale at the

top of the figure. All windows producing a Z-score #23.5 are

plotted below the scale as a rectangle. The Z-score value for each

window is shown above the rectangle along with the position of the

window in the sequence (in parenthesis). The total length of the

window is shown in brackets. Overlapping windows were combined

to obtain a candidate region for experimental testing. This intergenic

sequence produced two separate candidate regions. The figure was

drawn using resources in the BioPerl toolkit [68].

Found at: doi:10.1371/journal.pgen.1000321.s009 (0.21 MB TIF)

Figure S10 Regions producing Z-scores #23.5 for intergenic

sequence between RPL2A (YFR031C-A) and YFR032C. Positions

along the 671 bp sequence are shown on the scale at the top of the

figure. All windows producing a Z-score #23.5 are plotted below

the scale as a rectangle. The Z-score value for each window is

shown above the rectangle along with the position of the window

in the sequence (in parenthesis). The total length of the window is

shown in brackets. Overlapping windows were combined to obtain

a candidate region for experimental testing. The figure was drawn

using resources in the BioPerl toolkit [68].

Found at: doi:10.1371/journal.pgen.1000321.s010 (0.07 MB TIF)

Figure S11 Northern blot analysis. Nine different environmental

conditions were tested as labeled across the top of each blot. (A)

Watson, SEC4-VTC2. (B) Crick, SEC4-VTC2. Expression was

observed under all conditions except schmooing, with the strongest

expression under anaerobic conditions. (C) Watson, YFL051C-

ALR2. Expression was observed under all conditions except

schmooing and sporulation. The strongest expression was

observed in YPG and YPD. (D) Crick, YFL051C-ALR2.
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Found at: doi:10.1371/journal.pgen.1000321.s011 (5.98 MB TIF)

Table S1 Negative control sequences for six intergenic regions.

The table gives the genes flanking the selected intergenic region as

well as the measured transcription start site for the genes (when

this data is available). The number of times each start site was

measured is given in parentheses if more than one measurement

was obtained. Transcription start site data is from [14].

Found at: doi:10.1371/journal.pgen.1000321.s012 (1.26 MB

DOC)

Table S2 Z-scores for sequences in negative control set

producing Z-scores #23.5.

Found at: doi:10.1371/journal.pgen.1000321.s013 (0.05 MB

DOC)

Table S3 Z-scores for sequences in positive control set

producing Z-scores #23.5.

Found at: doi:10.1371/journal.pgen.1000321.s014 (0.15 MB

DOC)

Table S4 GC content of regions in the negative and positive

control sets producing Z-scores #23.5.

Found at: doi:10.1371/journal.pgen.1000321.s015 (0.13 MB

DOC)

Table S5 ncRNA embedded in longer sequence. The GenBank

accession numbers and descriptions for sequences used for the

embedded ncRNA analysis. The column labeled Z-score provides

the Z-score that is computed when the exact tRNA length is used.

Found at: doi:10.1371/journal.pgen.1000321.s016 (0.07 MB

DOC)

Table S6 Percent nucleotide identity in syntenic regions of S.

cerevisiae and S. bayanus. The ‘‘needle’’ program contained in the

EMBOSS package was used to align intergenic regions and

compute the percent identity [71]. A gap open penalty of 10.0 and

a gap extend penalty of 0.5 was used to perform the alignment. It

is important to note that many of the syntenic regions between the

two species differ in length.

Found at: doi:10.1371/journal.pgen.1000321.s017 (0.16 MB

DOC)

Table S7 All Z-score values for Watson strand of intergenic

region between SEC4 and VTC2. The table provides the Z-score

calculated for each position of the intergenic region for each

window size (75 nt to 200 nt). The first column provides the

sequence name. This region lies between SEC4 (YFL005W) and

VTC2 (YFL004W) and is 828 bp long. The sequence name ends

with the boundary values for the window being evaluated. The

second column (Pos) specifies the beginning position of the

window. The 3rd column (Length) gives the length of the window.

The 4th column (MFE) gives the minimum folding energy of the

native sequence. The 5th column (#Shuffles) gives the number of

shuffled sequence used to generate a mean and standard deviation.

The 6th column (Mean) gives the mean of the distribution of

minimum folding energies for the shuffled sequences. The 7th

column (Std. dev) gives the standard deviation for the distribution of

minimum folding energies of the shuffled sequences. The 8th column

(Z-score) gives the Z-score for the window being evaluated.

Found at: doi:10.1371/journal.pgen.1000321.s018 (0.67 MB

DOC)

Table S8 The 59 UTRs mapped by RACE. A ‘‘W’’ means the

gene is on the Watson strand and a ‘‘C’’ means the gene is on the

Crick strand. The cap for GYP8 was not obtained so the UTR is

shown as greater than 249 nt long.

Found at: doi:10.1371/journal.pgen.1000321.s019 (0.10 MB

DOC)

Table S9. 39 UTRsmappedbyRACE.A ‘‘W’’means the gene is on

the Watson strand and a ‘‘C’’ means the gene is on the Crick strand.

Found at: doi:10.1371/journal.pgen.1000321.s020 (0.04 MB

DOC)

Table S10 Detection of each snoRNA for each window size

(step size = 25). The table provides a list of each H/ACA snoRNA

and the window sizes at which the snoRNA was detected (X in

box). A blank box means that the snoRNA was undetected using

the window size specified at the top of the column. A step size of

25 was used for all cases.

Found at: doi:10.1371/journal.pgen.1000321.s021 (0.13 MB

DOC)

Table S11 Detection of each snoRNA for each window size

(step size = 50). The table provides a list of each H/ACA snoRNA

and the window sizes at which the snoRNA was detected (X in

box). A blank box means that the snoRNA was undetected using

the window size specified at the top of the column. A step size of

50 was used for all cases.

Found at: doi:10.1371/journal.pgen.1000321.s022 (0.13 MB

DOC)

Table S12 All Random and shuffled sequences used in this

study. All sequences provided in fasta format.

Found at: doi:10.1371/journal.pgen.1000321.s023 (0.11 MB

DOC)
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