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Does face image statistics predict a preferred
spatial frequency for human face processing?
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Psychophysical experiments suggested a relative importance of a narrow band of spatial frequencies for

recognition of face identity in humans. There exists, however, no conclusive evidence of why it is that such

frequencies are preferred. To address this question, I examined the amplitude spectra of a large number of

face images and observed that face spectra generally fall off more steeply with spatial frequency compared

with ordinary natural images. When external face features (such as hair) are suppressed, then whitening of

the corresponding mean amplitude spectra revealed higher response amplitudes at those spatial

frequencies which are deemed important for processing face identity. The results presented here therefore

provide support for that face processing characteristics match corresponding stimulus properties.
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1. INTRODUCTION
It has been suggested that the processing of sensory

information in the brain has adapted to the specific signal

statistics of stimuli (Barlow 1989). Such stimulus-specific

adaptation is tantamount to taking advantage of statistical

regularities in order to encode the highest possible amount

of information about the signal (Attneave 1954; Linsker

1988; Baddeley et al. 1998; Nadal et al. 1998; Wainwright

1999) under various constraints. The constraints include,

for example, minimizing energy expenditure (Levy &

Baxter 1996; Laughlin et al. 1998; Lenny 2003),

minimizing wiring costs between processing units

(Laughlin & Sejnowski 2003) or reducing spatial and

temporal redundancies in the input signal (Attneave 1954;

Barlow 1961; Srinivasan et al. 1982; Atick & Redlich

1992; Hosoya et al. 2005).

In the case of visual stimuli, natural images reveal a

statistical regularity that corresponds to an approximately

linear decrease of their amplitude spectra as a function of

spatial frequency when scaling both coordinate axes

logarithmically (Burton & Moorhead 1987; Field 1987).

This property is equivalent to strong pairwise correlations

between pairs of luminance values (Wiener 1964). It has

been proposed that visual neurons use this statistical

property in a way that cells tuned to different spatial

frequencies have equal sensitivities (Field 1987). Thus,

neurons tuned to high spatial frequencies should increase

their response gain such that they achieve the same

response levels as low frequency neurons. This is the

response equalization hypothesis (which should be distin-

guished from the decorrelation hypothesis; Srinivasan et al.

1982; Atick & Redlich 1992; Graham et al. 2006).

Response equalization (‘whitening’) may enhance the

information throughput from one neuronal stage to

another by adjusting the output of one stage such that it
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matches the limited dynamic range of the successive stage

(Graham et al. 2006).

The present article unveils a link between statistical

properties of face images and psychophysical data for the

processing of face identity. The processing of face identity

was found to preferably depend on a narrow spatial

frequency band (approx. 2 octaves) from 8 to 16 cycles per

face (Tieger & Ganz 1979; Fiorentini et al. 1983; Hayes

et al. 1986; Costen et al. 1994, 1996; Peli et al. 1994;

Näsänen 1999; Ojanpää & Näsänen 2003). However, to

the best of my knowledge, no explanation has yet been

offered of why it is that face processing mechanisms in the

human brain reveal such a preference.

Here I analysed the amplitude spectra of a large

number of face images. Different types of amplitude

spectra were considered—with and without suppression of

external face features (hair, shoulders, etc.). The spectra

were whitened (i.e. ‘response’-equalized) according to

three different procedures. In this way, it is demonstrated

that the main results are largely independent of the specific

method that was used for whitening: amplitudes were

higher at spatial frequencies at approximately 10 cycles per

face—but only in those spectra where external face

features were suppressed. Therefore, the effect must

have been produced by internal face features (eyes,

mouth and nose).
2. MATERIAL AND METHODS
(a) Face images

We used 868 female and 868 male face images from the face

recognition grand challenge database (FRGC, http://www.frvt.

org/frgc or www.bee-biometrics.org; see electronic supple-

mentary material, figure 5). Original images (1704!2272

pixels, 24-bit true colour) were adjusted for horizontal

alignment of the eyes, before they were downsampled to

256!256 pixels and converted into 8-bit greyscale. Sub-

sequently, the positions of the left eye, the right eye and the

mouth ((xle, yle), (xre, yre) and (xmouth, ymouth), respectively)

were manually marked by two persons (M.S.K. and E.C.)
This journal is q 2008 The Royal Society
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with an ad hoc programmed graphical interface. The position

of each face centre (approx. the nose) was approximated as

xnoseZrnd((xleCxre)/4Cxmouth/2) and ynoseZrnd[0.95!

rnd( yleC( ymouthK( yleCyre)/2)/2), where rnd($) denotes

rounding to the nearest integer value.

(b) Dimension of spatial frequency

For conversion of spatial frequency units, face dimensions were

manually marked with an ad hoc programmed graphical

interface. The factors for multiplying cycles per image to

obtain cycles per face width were 0.41G0.013 (females,

nZ868) and 0.43G0.012 (males, nZ868). Corresponding

factors for obtaining ‘cycles per face height’ were 0.46G0.021

(females) and 0.47G0.018 (males). Conversion factors at

oblique orientations were calculated under the assumption that

horizontal and vertical conversion factors define the two main

axes of an ellipse. Pooling of results over gender also implied a

corresponding averaging of conversion factors and the factors

for width and height were averaged in the isotropic case.

(c) Amplitude spectra

Let the features that are not part of the actual face be denoted

by external features (e.g. shoulder region or hair). On the other

hand, internal features refer to the eyes, the mouth and the

nose. The presence of external features in our face images

influences in their amplitude spectra, and may cause

truncation artefacts. It is thus desirable to compare results

with and without the presence of external features. A good

suppression of external features could be achieved by centring

a minimum four-term Blackman–Harris (B.H.) window (Harris

1978) at (xnose, ynose) (see electronic supplementary material,

figures 8 and 9). Nevertheless, application of the window

leaves a characteristic fingerprint in each spectrum (see

electronic supplementary material, figure 6a). This artificial

fingerprint, as well as the spurious lines caused by truncation,

could be attenuated with a correction procedure based on a

spatially varying diffusion mechanism (outlined below).

Thus, for each face image, originally four types of amplitude

spectra were considered: the original raw spectrum, the B.H.

spectrum, and their respective corrected versions (i.e. corr.

raw and corr. B.H.).

(d) Correction of amplitude spectra

Let P2{0,1}n!n be a binary n!n matrix of the same size as

the two-dimensional amplitude spectra A. In P, artefacts are

represented by ones, while all other positions are set to zero.

Thus, P is set to the image for correcting the B.H. spectrum

and the raw spectrum as shown in figure 6b,c, respectively, in

the electronic supplementary material. The idea of the

correction algorithm consists in simply averaging out

the positions with artefacts. To this end, information from

neighbouring positions flows into artefact positions. This

process is called inward diffusion. Let X(t) be a sequence of

corrected amplitude spectra parametrized over time t, with

the initial condition X(0)hA. Inward diffusion is defined by

vX ij =vtZPijV
2X ij , where (i, j ) denotes matrix positions. The

diffusion process was terminated at the moment when

the correlation difference c(t)Kc(tCDt) was smaller than

0.001 or when a maximum of 100 iterations was reached.

(e) Slopes of amplitude spectra

(i) Isotropic slopes a

Amplitudes associated with a given spatial frequency lie on a

circle. This is to say that when representing the spectrum with
Proc. R. Soc. B (2008)
polar coordinates, then spatial frequencies vary along the

radial coordinate, but stay constant while varying orientation.

An isotropic amplitude spectra is obtained by averaging all

amplitudes with a fixed spatial frequency across orientations

(i.e. for each circle, the mean value of all amplitudes of the

circle was computed). Because the logarithmized amplitude

spectra of face images fall approximately linear as a function

of log frequency, a line with slope a could be fitted to the

isotropic spectra. Although, in principle, amplitude data were

available from kZ1 to 127 cycles per image, only the interval

from kminZ8 to kmaxZ100 was used for line fitting. I used

the function ‘robustfit’ (linear regression with low

sensitivity to outliers) provided with MATLAB’s statistical

toolbox (MATLAB v. 7.1.0.183 R14 SP3, STATISTICAL TOOLBOX

v. 5.1, see www.mathworks.com).
(ii) Oriented spectral slopes a(Q)

Each two-dimensional amplitude spectrum was subdivided

into 12 ‘pie slices’ (each with DQZ308). For each pie slice

with orientation Q, an (oriented) isotropic one-dimensional

spectrum was analogously computed as just described (with

amplitudes being averaged across arcs) and subsequently a

line with slope a(Q) was fitted (figure 2).
(f ) Slope whitening of amplitude spectra

This algorithm proceeds in straight analogy to whitening of

the isotropic spectra. Let a be the isotropic slope value

corresponding to a two-dimensional amplitude spectrum

A(kx, ky) with spatial frequency coordinates kx, ky2[1,127]

cycles per image. Let kZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xCk2
y

q
(radial spatial frequency).

Then, the corresponding whitened spectrum W is defined as

W(kx, ky)ZA(kx, ky)$k
jaj. Qualitatively, the W were not

different from a more advanced procedure that consisted in

subdividing A into oriented pie slices and whitening each with

its corresponding oriented slope value a(Q). Therefore, only

those results are presented where A was whitened with an

isotropic slope value (the term ‘isotropic’ in the headline of

the spectra in figure 4 and electronic supplementary material,

figure 15 indicates just this).
(g) Whitening by variance

Amplitudes in the spectrum A(kx, ky) with equal spatial

frequencies lie on a circle with radius kZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xCk2
y

q
. Let nk be

the number of points on this circle (nk monotonically

increases as a function of k). Let A(k, Q) be the spectrum

in polar coordinates. Then, we first average, for each k,

all amplitudes across orientations according to mðkÞZP
QAðk;QÞ=nk. The variance is subsequently computed as

s2ðkÞZ
P

QðAðk;QÞKmÞ2=ðnk K1Þ. Finally, the variance-whi-

tened spectrum is defined as VZA/(s2(k)Ce) with a small

positive constant e/1. Examples of V are shown in

electronic supplementary material, figure 16.
(h) Whitening by diffusion

Let X(kx, ky, t) a sequence of amplitude spectra parametrized

over time t, with the initial condition X(kx, ky, 0)hA(kx, ky).

For tO0, the X are defined according to the diffusion

equation vX =vtZV2X . The whitened spectrum then is

DhA/(1CX(tmax)) at precisely the instant tmax when the

Shannon entropy of D is maximal.

http://www.mathworks.com
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Figure 1. Corrected B.H. spectrum (females). (a) Logarithmized, mean amplitude spectrum of all female face images. Prior to
computing individual spectra, a B.H. window was applied to each face image in order to suppress external face features (see
electronic supplementary material, figure 8d ). The application of the B.H. window, however, leaves an undesired spectral
‘fingerprint’ in each of the spectra (see electronic supplementary material, figure 6a), which was attenuated before averaging (see
electronic supplementary material, figure 7). (b) The two-dimensional spectrum shown in (a) is transformed into a one-
dimensional isotropic spectrum by averaging all amplitudes with different orientations at a fixed frequency k (blue circles, female
data). The size of each circle is proportional to the standard deviation (s.d.). The maximum s.d. (biggest circle) was 9186.75
(39.3%) and the minimum s.d. (smallest circle) was 252.67 (28.08%). Notice that in the supplementary material (eha).
For comparison, the typical slope of natural images (aZK1) is also shown as a grey dashed line. The grey dot-dashed line shows
the result of an ordinary linear regression (least-square fit) for computing slopes (aZ1.63; notice that this line is practically
hidden behind the pink line. Since linear regression is sensitive to outliers, slope values were additionally computed with an
outlier-insensitive (robust; pink line, aZK1.67) algorithm. Finally, the slope for the uncorrected amplitude spectrum is also
indicated (green line, aZ1.7). Further spectra are shown in electronic supplementary material, figures 12–14.

Table 1. For each gender, the table shows the average slope values for the four types of amplitude spectra. (Two possibilities for
computing these values were considered: slopes means that individual slope values were averaged (each gender nZ868,
cf. electronic supplementary material, figures 10 and 11), and spectra refers to the slope of the average spectrum as illustrated
with figure 1a (as well as in electronic supplementary material, figures 12–14).)

gender averaging of raw corrected raw B.H. corrected B.H.

female slopes K1.608G0.0858 K1.604G0.0870 K1.686G0.0698 K1.654G0.0731
spectra K1.584 K1.579 K1.701 K1.668

male slopes K1.649G0.0738 K1.645G0.0757 K1.673G0.0785 K1.642G0.0895
spectra K1.644 K1.637 K1.689 K1.658
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3. RESULTS
(a) Amplitude spectra

Amplitude spectra are best conceived in polar coordinates,

where the spatial frequency k varies proportional to radius.

Thus, spectral amplitudes that have the same spatial

frequency lie on a circle. The two-dimensional spectrum

can be collapsed into a one-dimensional isotropic

spectrum for each k by averaging all amplitudes on that

circle. This means that in an isotropic spectrum any

orientation dependence on the amplitudes is lost.

The amplitude spectra of natural images were found to

depend on spatial frequency as fka, with an average

(isotropic) spectral slope azK1 (Burton & Moorhead

1987; Field 1987).

How do the amplitude spectra of face images compare

to this finding? To answer, I computed slopes of the

amplitude spectra of 868 female and 868 male face

images (size 256!256, samples are shown in electronic

supplementary material, figure 5). In a double-logarithmic

representation, these spectra also decreased approximately

linear as a function of spatial frequency (figure 1). There-

fore, a line with (spectral) slope a could be fitted to each

spectrum. Four different types of amplitude spectra

were considered for each face image (with different a; see

table 1 and §2).

At first the spectra of the original images were

computed (‘raw’). The second type of spectrum is defined
Proc. R. Soc. B (2008)
by attenuating in each spectrum the truncation artefacts

(‘corr. raw’; see electronic supplementary material, figures

6c and 7). These artefacts are a consequence of the

cropped shoulder region being displayed in each image

besides the actual face (see electronic supplementary

material, figure 5). To smoothly strip off external face

features (like the hair, i.e. anything but the actual face), a

B.H. window was applied to each image prior to

computing its spectrum (‘B.H.’; see electronic supple-

mentary material, figure 8d ). Because application of the

B.H. window leaves a faint but characteristic spectral

fingerprint (see electronic supplementary material,

figure 6a), a further spectrum type (‘corr. B.H.’) was

considered, with the artificial fingerprint being attenuated.

The mean isotropic slope values were computed in two

ways. First, the spectral slope of each face image was

computed, and individual slope values were averaged (label

‘slopes’ in table 1). Second, an average spectrum is

computed at first, which is composed of all individual

spectra (figure 1). The second slope value corresponds then

to the slope of the average spectrum (label ‘spectra’ in

table 1). Isotropic slope values are situated approximately at

K1.6, with minima and maxima of K2.014 and K1.180

(females), respectively, and K1.994 and K1.007 (males).

Note that the standard deviations associated with the

slopes of arbitrary natural images are usually bigger

(Tolhurst et al. 1992; van der Schaaf & van Hateren 1996),
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Figure 3. One-dimensional whitening. Whitening of the
corrected mean isotropic one-dimensional spectra reveals a
global amplitude maximum at approximately 10 cycles per face
with all four spectra. Symbol size is proportional to standard
deviation (ranging from 12% to 45%). The slopes that were
used for whitening are (cf. table 1): pink, female corr. raw
aZK1.58; orange, female corr. B.H. aZK1.67; grey, male
corr. raw aZK1.64; green, male corr. raw B.H. aZK1.66.
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Figure 2. Oriented spectral slopes. The curves juxtapose
oriented spectral slopes from corrected raw (‘corr. raw’) spectra
and corrected B.H.-windowed (‘corr. B.H.’) spectra (robust
fit). Slopes were computed from the respective averaged
spectra, with angular increments of 308 (van der Schaaf &
van Hateren 1996). Error bars denoteG1 s.d. (estimated using
robust statistics). Uncorrected spectra show similar dependen-
cies of slopes from orientation. Note that the slope values are
defined modulus 1808. Solid lines, s.d. corr. B.H. (mCf ); filled
squares, mean corr. B.H. (m); filled triangles, mean corr. B.H.
(f ); filled circles, mean corr. B.H. (mCf ); open squares, mean
corr. raw (m); open triangles, mean corr. raw (f ); open circles,
mean corr. raw (mCf ); pluses, median corr. raw (mCf );
crosses, median corr. B.H. (mCf ).
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as there is no restriction on displayed content and scale,

respectively (Torralba & Oliva 2003).

Usually, a varies also as a function of orientation Q

(Switkes et al. 1978; van der Schaaf & van Hateren 1996).

The orientation dependence is illustrated by means of the

averaged corrected spectra (figure 2). Minimum slope

values are located at 08 (wavevector pointing to east) and

908 (north), respectively, whereas maxima tend to be at

oblique orientations. Slope values of the B.H. spectra vary

more than with the raw spectra. As external features are

widely suppressed in the B.H. spectra, minimum slopes

are associated with the orientations of the internal face

features (08, 1808: nose; 908, 2708: eyes, mouth and the

bottom termination of the nose).

Summarizing so far, the majority of the individual a for

face images is more negative than the theoretically

predicted lower bound of K1.5 for natural images

(Balboa & Grzywacz 2001; table 1; see electronic

supplementary material, figures 10 and 11). Similar

observations also hold for spectral slopes of the mean

amplitude spectra (figure 1; see electronic supplementary

material, figures 12–14). This should not come as a

surprise since the structure of face images is different from

natural images: face images are not composed of self-

occluding, constant intensity surface patches (Ruderman

1997; Balboa & Grzywacz 2001), and lack the self-similar

distribution of spectral energy as was reported for natural

images (Field 1987).

(b) Whitening the amplitude spectra

Here I ask whether by amplitude equalization of

amplitude spectra (whitening) one could explain psycho-

physical data on face perception. The results that are

presented below were obtained with the mean spectra.

Consider first the isotropic (one-dimensional) spectra.

Because the spectra fall, as a function of spatial frequency

k, as fkKjaj, we can multiply amplitudes by kjaj to obtain

a ‘flat’ spectrum (in the sense that its Shannon entropy is

maximal). The slopes that were used to this end are the

spectra ones from table 1. Whitened one-dimensional

spectra are shown in figure 3. They are not completely flat,

but instead have a global maximum at approximately 10

cycles per face, and a second but local maximum at

approximately 30 cycles per face.

Consider now the two-dimensional spectra, where

whitening was carried out according to three different

procedures: whitening by slopes (analogous to the one-

dimensional case), by variance and by diffusion (see §2).

Results are shown in figure 4 for females and in electronic

supplementary material, figure 15 for males. For both

genders, the whitened B.H. spectra reveal amplitude

maxima only within a narrow band of low spatial

frequencies. Furthermore, frequency maxima appear

only at a specific orientation in the spectra which

corresponds to horizontally oriented face features (‘hori-

zontal amplitudes’, i.e. eyes and mouth). These results are

obtained independently from the specific whitening

procedure that was used (slope whitening: figure 4a and

electronic supplementary material, figure 15a; variance

whitening: electronic supplementary material, figure 16;

diffusion whitening: not shown).

Plotting of only these horizontal amplitudes (indicated

by a white box in figure 4a) for all three whitening

procedures allows the identification of the spatial
Proc. R. Soc. B (2008)
frequencies of the maxima with higher precision. The

curves now show clearly that the maxima occur in the range

from 10 to 15 cycles per face height. Nevertheless, maxima

are revealed only by whitening of the B.H.-windowed

spectra, but not by whitening of any raw spectra. This

means that amplitude enhancement due to internal

face features is annihilated by the presence of external face

features (such as hair or shoulder).
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Figure 4. Two-dimensional whitening. (a) Slope whitening of the mean corrected B.H. spectra unveiled clear maxima at
horizontal feature orientations (marked by a white box). Here, the female data are shown (for male data see electronic
supplementary material, figure 15). (b) The curves show the amplitudes at the location demarcated by the white box in the
spectrum: green circles are the logarithmized amplitudes without whitening; amplitudes whitened ‘by slope’ are shown in light
grey, ‘by variance’ in mid grey and ‘by diffusion’ in dark grey (see §2 for further details on the three whitening procedures). The
important result here is that whitened amplitudes reveal distinct maxima irrespective of the specific whitening method
at approximately 10–15 cycles per face height. The variance-whitened spectra are shown in electronic supplementary
material, figure 16.
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4. DISCUSSION
Here, I studied amplitude spectra of face images in the

context of response equalization (whitening). When

external face features (hair and shoulder) are suppressed

by windowing the face images with a B.H. window, then

amplitude maxima are observed in the whitened spectra at

low spatial frequencies. For the isotropic one-dimensional

spectra, maxima are situated approximately 10 cycles per

face, and for the two-dimensional spectra at approxi-

mately 10–15 cycles per face height. In the two-

dimensional case, three different whitening methods

yielded consistent results.

Several psychophysical studies suggest that recog-

nition of face identity works best in a narrow band

(bandwidth approx. 2 octaves) of spatial frequencies

from approximately 8 to approximately 16 cycles per face

(Ginsburg 1978; Tieger & Ganz 1979; Fiorentini et al.

1983; Hayes et al. 1986; Costen et al. 1994; Peli et al.

1994; Näsänen 1999). Note that this does not mean that

face recognition exclusively depends on this frequency

band, as faces can still be recognized when corresponding

frequency information is suppressed (Näsänen 1999;

Ojanpää & Näsänen 2003).

Because the amplitude maxima appear in the whitened

spectra exclusively at horizontal feature orientations, the

results suggest that the psychophysical frequency pre-

ference might have been caused by an adaptation of

corresponding neuronal mechanisms to the eyes and

the mouth.

Interestingly, in the earlier cited psychophysical studies

the spatial frequencies are often measured in ‘cycles per

face width’ (i.e. along vertically oriented face features),

whereas the results presented here were rather brought

about by horizontally oriented face features. The factors to

convert spatial frequencies from ‘cycles per image’ to

‘cycles per face’ (see §2) are statistically different for width

and height (as suggested by a one-way ANOVA and a

Kruskal–Wallis test). However, they are not so different

in absolute terms. The aforementioned frequency
Proc. R. Soc. B (2008)
interval of 10–15 cycles per face height transforms into

approximately 9–13.5 cycles per face width for females

and approximately 9–13.6 cycles per face width for males,

respectively, which is still in good agreement with the

psychophysical data.

Psychophysical thresholds for face recognition are not

significantly affected by the structure of the background in

which a face is embedded (Collin et al. 2006). Therefore,

although the faces used in this study are shown against a

uniform background, the validity of results should extend

to arbitrary backgrounds. However, note that amplitude

spectra consider the complete frequency content of an

image, whereas humans have attentional mechanisms that

allow them to process only a region of interest, and ignore

background effects. Windowing the face images with a

B.H. window achieves the same computational purpose:

anything but the internal face features are suppressed.

A follow-up paper examines in more detail the properties

of internal face features by means of a model of simple and

complex cells.

The statistical prediction of a preferred band of spatial

frequencies may also have implications for artificial face

recognition systems. Future experiments should system-

atically address the question whether the recognition

performance of artificial systems is optimal at spatial

frequencies similar to those used by humans.
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