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Trace fossils of insect feeding have contributed substantially to our understanding of the evolution of

insect–plant interactions. The most complex phenotypes of herbivory are galls, whose diagnostic

morphologies often allow the identification of the gall inducer. Although fossil insect-induced galls over

300 Myr old are known, most are two-dimensional impressions lacking adequate morphological detail

either for the precise identification of the causer or for detection of the communities of specialist parasitoids

and inquilines inhabiting modern plant galls. Here, we describe the first evidence for such multitrophic

associations in Pleistocene fossil galls from the Eemian interglacial (130 000–115 000 years ago) of The

Netherlands. The exceptionally well-preserved fossils can be attributed to extant species of Andricus

gallwasps (Hymenoptera: Cynipidae) galling oaks (Quercus), and provide the first fossil evidence of gall

attack by herbivorous inquiline gallwasps. Furthermore, phylogenetic placement of one fossil in a lineage

showing obligate host plant alternation implies the presence of a second oak species, Quercus cerris,

currently unknown from Eemian fossils in northwestern Europe. This contrasts with the southern

European native range of Q. cerris in the current interglacial and suggests that gallwasp invasions following

human planting of Q. cerris in northern Europe may represent a return to preglacial distribution limits.
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1. INTRODUCTION
Trace fossils made by feeding insects have played a major

role in our understanding of the evolution of insect–plant

interactions (Labandeira & Phillips 1996; Wilf et al. 2001,

2006; Currano et al. 2008). The most structurally complex

signs of insect activity in plant tissues are galls, plant tissues

whose development is controlled by the gall-inducing

organism (the galler) and which provide the galler with

nutrition and protection (Cornell 1983; Price et al. 1987;

Stone & Schönrogge 2003). The insect control of gall

morphology is such that galls are the extended phenotypes

of galler genes (Crespi & Worobey 1998; Stone & Cook

1998), and many gallers can be identified to species on the

basis of gall morphology alone (Raman et al. 2005).

Although three-dimensionally preserved insect-induced

galls, dated at ca 305 Myr, are known, most are two-

dimensional impressions whose lack of morphological

characters precludes more specific identification of the

causer (e.g. Scott et al. 1994; Labandeira & Phillips 1996).

However, the inducers of well-preserved and structurally

complex galls can sometimes be identified with high

taxonomic resolution (e.g. Dieguez et al. 1996; Waggoner

1999; Erwin & Schick 2007).

In addition to the causer, many galls support commu-

nities of specialist herbivorous inquilines and natural

enemies. The herbivorous inquilines are obligate inhabi-

tants of galls induced by specific host galler species, and

though they do not feed on the galler, their activities can

cause its death either directly or indirectly (Shorthouse

1980; Washburn & Cornell 1981; Askew 1984;
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Wiebes-Rijks & Shorthouse 1992; Ronquist 1994). The

inquilines are often closely related to the gall inducers

whose galls they attack (Ronquist 1994; Crespi & Abbot

1999; Miller & Crespi 2003), and this association (termed

agastoparasitism by Ronquist 1994), closely parallels true

parasitism. Both gall inducers and inquilines are attacked

by natural enemies, particularly parasitoid wasps, and all

three trophic groups commonly leave characteristic

signatures in gall tissues (Stone et al. 2002; Raman et al.

2005). Fossil galls thus have the potential to provide direct

evidence of within-gall multispecies associations. Here, we

describe the first evidence for such associations, in

Pleistocene fossil galls from the Eemian interglacial

(130 000–115 000 years ago) whose excellent three-dimen-

sional preservation not only allows precise identification of

the causers but also provides the first fossil evidence of gall

attack by specialist inquilines. Furthermore, phylogenetic

placement of one of the Eemian gall causers in a lineage

showing highly conserved host plant associations allows

new palaeobotanical inferences for northwestern Europe

that provide a striking contrast with the current interglacial.
2. FOSSIL MATERIAL STUDIED
The fossil galls (figures 1 and 2) were discovered in a

gravel pit near Raalte, Overijssel Province, The Netherlands

(see van der Ham et al. (2008) for a description of the

site and associated biological material). Theywere preserved

in Late Eemian (ca 125 000 BP) sediments of the

Kreftenheye Formation (de Mulder et al. 2003) laid down

by the ancient Rhine in the valley of the present river

IJssel (van der Ham et al. 2008). Eemian vegetation at

the site comprised temperate woodland including wetland
This journal is q 2008 The Royal Society
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Figure 1. Type 1 gall fossils. (a) External views (scale in cm). (b) Longitudinal section showing internal airspace, with inner
larval chamber missing. The gall’s point of attachment is to the left. (c) Two halves of a sectioned compressed gall, showing
the larval chamber in the left of the section. (d ) A larval chamber, with the adult emergence hole to the right and (inset) in
end-on view (scale in mm). (e, f ) Two views of the same fossil gall, showing multiple emergence holes (arrowed). In (e), two of
the small emergence holes are shown in enlarged view (boxed).

2214 G. N. Stone et al. Fossil multispecies interaction
trees (e.g. Alnus, Populusand Salix) and upland forest species

(e.g. Abies alba, Acer, Carpinus betulus, Ilex aquifolium and

Quercus). The fossils are of two types.

(i) Type 1. The most abundant type (nZ47; figure 1) is

preserved as a slightly (figure 1b) to moderately

(figure 1c) compressed structure, originally approxi-

mately spherical and 37–57 mm in diameter. The

original outer gall surface is exceptionally well

preserved and marked with small regularly spaced

tubercles or parallel ridges (figure 1a). The fossils have
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a hollow interior (figure 1b,c) and, when complete,

contain a single thin-walled chamber 5–6 mm long

(figure 1d ) that in some cases is attached to the interior

wall on each side of its long axis (figure 1c). In all cases,

this chamber has a smooth-edged hole 2 mm in

diameter at one end. Three fossils have holes in the

exterior (arrowed in figure 1e, f ); each has a single

larger slightly lenticular hole (figure 1 f ; dimensions

1.9!0.8 mm, 3!1.2 mm and 1.9!1.0 mm), while

two galls have 1–3 smaller circular holes 0.6–0.8 mm

in diameter (figure 1e, f ).
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Figure 2. (a) Type 2 fossil external view, showing small emergence holes (arrowed, scale bar in mm). (b) Internal view of the
same specimen, showing aggregated larval chambers (scale bar in mm). (c) A sectioned asexual generation gall of the modern
oak gallwasp A. quercusradicis (scale bar, 1 cm). (d ) Mature asexual generation gall of the modern oak gallwasp Andricus
hungaricus. (e) The same in cross-section, showing the suspended inner larval chamber (c–e, courtesy of Dr György Csóka).
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(ii) Type 2. A single example (figure 2a,b) was found of a

second type. One surface lacks obvious structure but

bears several small holes approximately 1 mm in

diameter (arrowed, figure 2a). The opposite surface

comprises an aggregation of thin-walled chambers

(figure 2b) approximately 5 mm long, joined in one

case by a smoothly rounded hole 2 mm in diameter

(arrowed, figure 2b).

3. DIAGNOSIS
Both fossil types can be unambiguously identified as galls

induced by oak gallwasps (Hymenoptera: Cynipidae) on

the basis of striking similarity to modern forms. No other gall

inducers produce galls of this size and complexity in the

Western Palaearctic (Docters van Leeuwen 1957; Buhr

1964–1965). Oak cynipid galls are diagnostic not only of

the gallwasp species but also of alternating sexual and asexual

generations in a parthenogenetic life cycle (Stone & Cook

1998; Stone et al. 2002, 2008). Phylogenetic relationships,

oak host associations and associated gall communities of

the Western Palaearctic gallwasp fauna have been studied

in depth (Stone & Cook 1998; Cook et al. 2002; Rokas et al.

2003b), allowing extensive inference of biology and associ-

ated communities from gall structures. Studies of within-

species genetic diversity show that all modern Western

Palaearctic oak gallwasp species so far studied are at least

1–2 Myr old, and so long predate the Eemian (Rokas et al.

2001, 2003a; Stone et al. 2002, 2007; Challis et al. 2007).

The Raalte fossils are thus certainly young enough to be

attributable in principle to extant species.
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(i) Type 1. Only oak cynipid gallwasps induce galls of this

size and complexity and the presence of a single larval

chamber within an internal airspace places the galler

with certainty within the quercuscalicis clade of the

genus Andricus (figure 3). More significantly, these

fossils are identical in size, external structure

(figure 2d ) and the suspension of the larval chamber

within an internal airspace (figure 2e) to the asexual

generation galls of extant Andricus hungaricus (Hartig

1843). These are the first fossil galls ever to be so

clearly attributable to an extant gall inducer. The

asexual generation galls of A. hungaricus are among

the largest in the Western Palaearctic, and develop on

shoot buds only of Quercus robur. They comprise up to

20% tannin dry weight (Ambrus 1974) and are

resistant enough to decay that gallwasps diapause up

to 6 years (Stone et al. 2002)—properties that may

predispose these galls to fossilization.

(ii) Type 2. The clustered cells in this fossil most closely

resemble the asexual generation galls of Andricus

quercusradicis (figure 2c). These galls comprise

multiple aggregated larval chambers within a woody

outer layer lacking distinctive surface sculpture,

reaching a total diameter of 80 mm (Docters van

Leeuwen 1957; Ambrus 1974). We interpret the

type 2 fossil as a fragment of such a gall, whose

exterior bears the small holes in figure 2a. The

quality of preservation of the type 1 galls suggests

that remnants at least of any more distinctive

surface structures would be visible. Other woody,

multichambered Western Palaearctic cynipid galls
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Figure 3. A phylogeny of the oak gallwasp genus Andricus, generated from DNA sequence data and showing the main species
groups found in the Western Palaearctic. The gall structures illustrated are for the asexual generation. The only group to contain
a separate larval chamber within an internal airspace is the Andricus quercuscalicis clade. The red bar shows the common ancestor
of the host-alternating Andricus clade. Phylogeny from Stone & Cook (1998) and Cook et al. (2002). 1, Andricus kollari;
2, Andricus lignicolus; 3, Andricus infectorius; 4, Andricus coriarius; 5, Andricus conificus; 6, Andricus curtisii; 7, Andricus hartigi;
8, Andricus gemmeus; 9, A. quercuscalicis (shown in cross-section); 10, Andricus dentimitratus; 11, A. hungaricus; 12, Andricus
coronatus; 13, Andricus quercustozae; 14, Andricus seckendorffi; 15, Andricus lucidus; 16, 17, Andricus grossulariae; 18,19,
Andricus foecundatrix; 20, Andricus malpighii.
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contain smaller larval chambers (approx. 2 mm long:

some Plagiotrochus and Pseudoneuroterus), comprise

larval chambers with no surrounding woody material

(Callirhytis asexual generation galls in acorns) or have

an outer surface ornamented with spines (the Andricus

grossulariae clade in Andricus; figure 3; Docters van

Leeuwen 1957; Ambrus 1974; Stone & Cook 1998;

Melika et al. 2000; Nieves-Aldrey 2001).
(a) Multispecies interactions

Both gall types show holes in the gall surface and, for the

type 2 fossil, between internal larval chambers. These holes

are characteristic of those made by emerging adult

members of the gall community. The single larger surface

holes on type 1 galls match the diameter of the aperture in

the single inner larval chamber (figure 1d ), and were

chewed by an emerging gallwasp. Gallwasps emerging from

multichambered galls commonly chew their way through

vacated surrounding chambers, explaining the larger

internal hole in the type 2 fossil. The smaller surface

openings are too small to have been made by the galler in

either case. Oak cynipid galls are commonly occupied by

inquiline cynipids (Cynipidae: Synergini) that cannot

induce their own galls but inhabit those induced by other

causers, predominantly gallwasps (Stone et al. 2002). The

inquilines are always smaller than the gall inducer and

induce their larval chambers either within the host larval

chamber (in which case the galler is always killed) or in the

outer gall tissues (Washburn & Cornell 1981; Askew 1984;

Wiebes-Rijks & Shorthouse 1992; Ronquist 1994; Stone
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et al. 2002). The presence of both large and small emergence

holes in a single type 1 gall can only be attributed to attack

by outer gall inquilines. All outer gall inquilines in modern

oak cynipid galls are species in the genus Synergus, and the

small emergence holes must lead to chambers induced by

Eemian Synergus. Synergus inquilines are themselves

attacked by chalcid parasitoids (Askew 1961, 1984;

Schönrogge et al. 1995, 1996a,b) and the smaller

emergence holes could thus have been made either by

emerging adult inquilines or parasitoids. Both of these

trophic groups are associated with modern A. hungaricus

galls (Melika et al. 1997). The many-chambered structure

of the type 2 fossil makes the identification of causers of the

smaller surface emergence holes less certain: though too

small to have been made by the galler, they could have been

made by emerging inquilines or by parasitoids of either

inquilines or gallers.
4. DISCUSSION
(a) Multispecies interactions

To our knowledge, this is the first concrete evidence for

multiple trophic groups in a fossil gall. Though fossil

inquiline cynipids are known as far back as the Middle

Eocene (45 Myr ago; Ronquist 1999), this is the first direct

fossil evidence of their presence in cynipid gall tissues.

Inquilines in the outer tissues of cynipid galls support rich

communities of chalcid parasitoids that are often distinct

from those attacking the inducer in the same gall (Askew

1961, 1984; Schönrogge et al. 1995, 1996a,b). Though we

cannot distinguish emergence holes made by these two

trophic groups, it is highly probable that some of the
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Figure 4. Location of the Raalte sampling location (white circle) relative to modern natural distributions of the oak sections
Quercus sensu stricto and Cerris. Line 1 represents the northern limit of oaks in the section Quercus and of all oaks in the Western
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represents the southern limit of section Cerris oaks. Distributions are based on regional floras as explained in Stone et al. (2007).
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emergence holes in the Raalte fossils were made by chalcid

parasitoids. The precise identification of the gall inducer

from the gall phenotype, and hence a prior expectation of

the relative sizes of the gall inducer and other gall

inhabitants, was central to our interpretation of the trace

fossils. It is possible that other fossil galls showing apparent

emergence holes that are small relative to the size of the gall

may represent evidence of inquiline or parasitoid attack:

candidates include galls DT83 and DT84 in the web-based

Guide to Insect (and Other) Damage Types on Com-

pressed Plant Fossils at http://paleobiology.si.edu/insects/

index.html (Dr C. Labandeira 2008, personal communi-

cation). However, many large galls house multiple small

gall inducers (see Raman et al. (2005) for examples in many

arthropod groups), and the relative size of galls and

emergence holes may be an unreliable guide to the presence

of non-galling inhabitants. Nevertheless, we expect that the

examination of other fossil galls attributable to extant galler

taxa, whose associated communities are well known, will

yield further evidence of dependent trophic interactions.
(b) Oak gallwasps as indicators of past floras

Andricus hungaricus lies within a clade of Andricus species

whose lifecycles require obligate alternation between two

different taxonomic sections of the genus Quercus (Cook

et al. 2002; Stone et al. 2008). The asexual generation

always galls section Quercus sensu stricto oaks (such as

Q. robur and Quercus petraea), while the sexual generation

always galls section Cerris oaks (particularly Turkey oak,

Quercus cerris). The most recent common ancestor of

this host-alternating clade long predates the Pleistocene

(Cook et al. 2002), implying that the Eemian causer of

gall type 1 was also a host alternator. This allows a novel
Proc. R. Soc. B (2008)
palaeobotanical inference, because while the presence of

section Quercus oaks at the Raalte site is confirmed by

pollen and macrofossils (van der Ham et al. 2008), there is

no direct evidence for section Cerris oaks. The type 1 fossils

imply that during the relatively short (ca 15 000 years)

Eemian interglacial, both oak sections and their associated

insects escaped their southern European glacial refugia

(Petit et al. 2002) to colonize northern Europe. The

identification of the type 2 fossil provides additional

(though weaker) support for this conclusion, for although

both generations of A. quercusradicis can be found on

section Cerris and section Quercus, the sexual generation is

most commonly associated with section Cerris (Ambrus

1974; Melika et al. 2000).
(c) Implications for modern gallwasp distributions

The presence of section Cerris oaks inferred from the Raalte

fossils contrasts with the oak flora native to the same region

in the current interglacial. Only two section Quercus oaks,

Q. robur and Q. petraea, are native to northern Europe,

while section Cerris oaks (and hence associated gallwasps)

are restricted to southern Europe and predominantly to

regions south of the Pyrenees, Alps and Carpathians

(figure 4). More specifically, A. hungaricus is now restricted

to a region far to the south and east of its Eemian

distribution, in Hungary and the Balkan refugium (figure 4;

Ambrus 1974; Melika et al. 2000). However, over the last

500 years, human planting has extended the distribution of

Q. cerris far beyond its natural distribution, and it is now

naturalized as far north and west as Ireland and Scotland

(Walker et al. 2002). Northwards range expansion by

Q. cerris was thus prevented not by physiological limi-

tations, but by inability to escape its Pleistocene glacial

http://paleobiology.si.edu/insects/index.html
http://paleobiology.si.edu/insects/index.html
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refugia (Svenning & Skov 2004). The introduction of

Q. cerris has in turn triggered invasion of northern Europe

by multiple host-alternating gallwasps and their natural

enemies (Stone et al. 2002; Hayward & Stone 2006), with

potential for major direct (competition, parasitoid attack)

and indirect (apparent competition mediated by shared

enemies) impacts on native communities (Schönrogge et al.

1995, 1996a,b, 1999, 2000; Stone et al. 1995; Atkinson

et al. 2002). At least four host-alternating species are now

established in The Netherlands (Andricus corruptrix,

Andricus kollari (figure 3, gall 1), Andricus lignicolus (figure 3,

gall 2), Andricus quercuscalicis (figure 3, gall 9): Docters van

Leeuwen 1957; Stone & Sunnucks 1993; Stone et al. 2007).

The Raalte fossils imply that these gallwasps, though

anthropogenic invaders in the current interglacial, were

native to northwestern Europe in the previous interglacial.

Their current range expansion should thus perhaps

be considered as a return to preglacial distribution limits

and ecology.
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