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The p53 cofactor Strap (stress responsive activator of p300) is
directly targeted by the DNA damage signalling pathway where
phosphorylation by ATM (ataxia telangiectasia mutated) kinase
facilitates nuclear accumulation. Here, we show that Strap
regulation reflects the coordinated interplay between different
DNA damage-activated protein kinases, ATM and Chk2 (Check-
point kinase 2), where phosphorylation by each kinase provides a
distinct functional consequence on the activity of Strap. ATM
phosphorylation prompts nuclear accumulation, which we show
occurs by impeding nuclear export, whereas Chk2 phosphoryl-
ation augments protein stability once Strap has attained a nuclear
location. These results highlight the various functional roles
undertaken by the DNA damage signalling kinases in Strap
control and, more generally, shed light on the pathways that
contribute to the regulation of the p53 response.
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INTRODUCTION
Strap (stress responsive activator of p300) is a p300-interacting
protein that is required for an effective p53 response (Demonacos
et al, 2001). Strap has an unusual structure consisting of a tandem
array of tetratricopeptide repeat motifs (Demonacos et al, 2001) that
function in the assembly of multiprotein complexes (D’Andrea &
Regan, 2003). Strap interacts with various components of the p53
co-activator complex, including JMY (junction mediating and
regulatory) and p300, which facilitate p53 activity. This occurs
in part because Strap increases the half-life of p53 by preventing
the downregulation of p53 by Mdm2 (murine double minute 2).
These findings, together with the fact that Strap is DNA damage
responsive (Demonacos et al, 2001, 2004), suggest that Strap, as a

component of the p53 co-activator complex, has an important
function in regulating the cellular response to DNA damage.

Strap is a direct target for the DNA damage signalling pathway;
ATM (ataxia telangiectasia mutated) kinase phosphorylates Strap
in response to DNA damage, and phosphorylation is required for
protein stabilization (Demonacos et al, 2004). It is consistent with
the function of ATM kinase in the control of Strap stability that
a Strap mutant devoid of the S203 phosphorylation site and
endogenous Strap in ataxia telangiectasia cells fail to undergo
nuclear accumulation and stabilization in response to DNA
damage (Demonacos et al, 2004). However, in the context of
the DNA damage signalling cascade, it is widely accepted that
Chk2 (Checkpoint kinase 2) lies downstream from ATM, where it
becomes activated, in part, through phosphorylation by ATM
(Bartek et al, 2001). In turn, Chk2 phosphorylates several effector
targets, including p53 and E2F-1, and has a crucial function in
mediating the checkpoint response (Hirao et al, 2000).

Here, we report that the response of Strap to DNA damage
reflects the coordinated interplay between ATM and Chk2 kinase,
each of which phosphorylates Strap on different residues and
has distinct functional consequences on Strap activity. Although
phosphorylation by ATM kinase causes nuclear accumulation,
most probably by impeding nuclear export, Chk2 augments protein
stability once Strap has attained a nuclear location. These results
highlight the interplay between the main DNA damage signalling
kinases in Strap control and, more generally, the intricate pathways
involved in cofactor control during the p53 response.

RESULTS
Strap undergoes regulated nuclear export
The nuclear accumulation of Strap is influenced by the
phosphorylation of residue S203 by ATM kinase (Fig 1A;
Demonacos et al, 2004). To explore the mechanisms involved
in the control of nuclear accumulation, we studied the properties
of a panel of Strap mutant derivatives with the objective of
defining motifs and signals that have an impact on the localization
of Strap. We confirmed the distribution of the Strap mutant S203A,
which, in contrast to wild type, was located mainly in the
cytoplasm (Fig 1B; Demonacos et al, 2004). Consistent with the
function of S203 phosphorylation in controlling nuclear location,
the phospho-mimic S203D mutant was nuclear (Fig 1B). The
possibility that Strap contains a nuclear export signal (NES) was
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investigated by studying the effect of the nuclear export inhibitor,
leptomycin B (Ossareh-Nazari et al, 1997), on S203A. In the
presence of leptomycin B, S203A underwent significant nuclear
accumulation (Fig 1B), suggesting that the activity of NES
resides in Strap.

A candidate NES, characterized by a high leucine content
(Stommel et al, 1999), is present in the amino-terminal region of
Strap (Fig 1A). To test whether the motif provides NES activity,
we made a mutant derivative in which the candidate NES was

deleted. In a side-by-side comparison with wild-type Strap, which
was predominantly nuclear with some cytoplasmic staining, DNES
showed increased nuclear localization (Fig 1B), suggesting that
the sequence deleted in DNES provides functional NES activity.
As S203A localizes to the cytoplasm, but undergoes nuclear
accumulation on leptomycin B treatment (Fig 1B), we reasoned
that the activity of NES might be influenced by S203 phospho-
rylation. Therefore, we combined both mutations in S203A/DNES
and found that the combination mutant underwent more marked
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nuclear accumulation than S203A (Fig 1B). These results suggest
that the control of Strap nuclear accumulation occurs indirectly
through a process that affects nuclear export.

The nuclear accumulation of Strap is necessary for DNA
damage-dependent stabilization of protein (Demonacos et al,
2004). For each Strap mutant derivative, we correlated nuclear
location with protein stabilization. As expected, S203A underwent
limited DNA damage-dependent stabilization when compared with

wild-type Strap (Fig 1C,D; Demonacos et al, 2004). By contrast,
both S203D and DNES showed DNA damage stabilization of
a similar magnitude to wild-type Strap (Fig 1C,D). In a similar
manner, S203A/DNES also underwent DNA damage-responsive
stabilization (Fig 1C,D). Taken together, these results show that the
nuclear location of Strap coincides with DNA damage-induced
stabilization, and argue that nuclear accumulation occurs through a
mechanism dependent on phosphorylation at S203.
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Chk2 kinase phosphorylates Strap
The properties of the Strap mutants raised the possibility that other
signalling events are also involved in Strap control. For example,
S203A/DNES undergoes protein stabilization in response to DNA
damage, even though it lacks the S203 phosphorylation site
(Fig 1C,D). Similarly, NLS-S203A lacks the same phosphorylation
site but attains a nuclear location owing to the artificial NLS and
undergoes DNA damage-responsive stabilization (Demonacos
et al, 2004). As Chk2 is activated by DNA damage and lies
downstream from ATM (Bartek et al, 2001), we reasoned that
Chk2 might be a candidate kinase.

In vitro recombinant His-Strap was phosphorylated by
Chk2 kinase (Fig 2A). An established substrate for Chk2, p53
(Hirao et al, 2000), acted as a positive control and glutathione
S-transferase protein as a negative control (Fig 2A). A comparison
of the Strap sequence with the Chk2 consensus (LXRXXS; Ahn
et al, 2004) identified two possible phosphorylation sites: one
located at S221 and the other centred around S276; both sites
show similarity with physiological Chk2 substrates (Fig 2B). To
ascertain whether these residues could be phosphorylated directly
by Chk2, we analysed in vitro phosphorylated Strap by reverse-
phase liquid chromatography coupled with electrospray ioniza-
tion tandem mass spectrometry (LC-MS/MS), and detected
significant phosphorylation at S221 (Fig 2C).

To determine whether the same residue was phosphorylated in
cells, we analysed ectopic Strap protein that had been affinity
purified from a conditionally inducible TET-ON stable cell line
treated with etoposide (Fig 2D). Strap accounted for the main
polypeptide purified from doxycycline-induced cells (Fig 2E).
Purified Strap was subjected to LC-MS/MS, whereupon S221 was
also seen to be the site of phosphorylation (Fig 2F). Thus,
Strap is phosphorylated at S221 in cells. Although these results do
not exclude the possibility that S276 is phosphorylated, it is
most likely to occur at reduced efficiency or under different
cellular conditions.

To clarify the relevance of Chk2 to physiological control, we
assessed the level of phosphorylation on both endogenous and
ectopic Strap. The phosphoserine detected on endogenous Strap
increased under DNA damage response conditions (Fig 3A; about
sixfold when normalized with the level of Strap), indicating that,
as anticipated from previous results (Demonacos et al, 2004),

Strap phosphorylation is under DNA damage response control.
Furthermore, the phosphorylation of endogenous Strap was
dependent on the activity of Chk2 because treating cells with a

Fig 2 | Strap is phosphorylated by Chk2. (A) Recombinant Chk2 protein (200 ng) was incubated with His-tagged Strap (100 ng; lane 3) and

phosphorylation (32P) assessed by using SDS–PAGE as described. Recombinant GST-p53 (lane 1) was used as a positive control and GST (200 ng;

lane 2) as a negative control. (B) Comparison of putative Chk2 kinase sites in Strap when compared with known phosphorylation sites of Chk2 in

E2F-1 and Cdc25C. (C) His-tagged Strap was incubated with recombinant Chk2 protein and analysed by LC-MS/MS using the Mascot Software package

(Matrixscience, London, UK). Both the peptides (Mþ 2H)2þ 716.5 and (Mþ 3H)3þ 477.7 (data not shown) were identified as KASSNPDLHLNR (MW

1430.7) containing a phosphoserine at position 3 (S221). The unmodified peptide KASSNPDLHLNR (Mþ 2H)2þ 676.5 (MW 1351.1) was also detected.

(D) Cell lysates from the Strap cell line treated with etoposide (þ ; 20 mM for 12 h; lanes 1–4) and doxycycline (þ ; 1mg/ml for 36 h; lanes 1, 2, 5 and

6) or untreated (–; lanes 7 and 8) were immunoprecipitated (IP) with anti-Flag (lanes 2, 4, 6 and 8) and then blotted with anti-Strap peptide 510.

The level of input protein is shown (lanes 1, 3, 5 and 7) by immunoblotting with anti-Strap peptide 510 where equal amounts of protein (50 mg) were

loaded. (E) An extract prepared from the Flag-Strap stable cell line treated with etoposide (20 mM for 12 h) and doxycycline (1 mg/ml for 36 h) was

immunoprecipitated with anti-Flag, and the immunoprecipitate was separated by using SDS–PAGE and silver stained as described. Flag-Strap is

indicated. (F) Flag-tagged Strap (E) purified from the Flag-Strap stable cell line was subjected to in-gel trypsin digestion. Analysis by LC-MS/MS

showed not only the unmodified ASSNPDLHLNR peptide (HþH)2þ 612.5 (MW 1222.9) but also the same species with phosphoserine (S221)

represented by (MþH)2þ 666.9 (MW 1331.8). Cdc25C, cell division cycle 25C; Chk2, Checkpoint kinase 2; E2F-1, E2F transcription factor 1;

GST, glutathione S-transferase; LC-MS/MS, liquid chromatography coupled with electrospray ionization tandem mass spectrometry; MW, molecular

weight; SDS–PAGE, SDS–polyacrylamide gel electrophoresis; Strap, stress responsive activator of p300.
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Fig 5 | Control of Strap stabilization. (A) U2OS cells were transfected with the indicated Strap expression vector (200 ng). Cells were treated with either

vehicle or etoposide (10mM) for 16 h before fixation and processing for immunofluorescence. Strap was detected using anti-HA and DAPI staining was used

to visualize nuclei; n¼ 5. (B) U2OS cells were transfected with the indicated Strap expression vector (WT and S221A; 500 ng) and treated with etoposide

(þ ; 10mM) for 16 h before collection. Cell extracts were loaded on the basis of b-galactosidase activity and Strap was detected using anti-HA. The fold

increase in wild-type Strap levels on DNA damage was about twofold; n¼ 4. (C) (a) U2OS cells were transfected with pBB14 (Us9-GFP; 500 ng) as an

internal transfection marker and the appropriate expression vector (500 ng). Cells were treated with or without etoposide (10mM for 16 h) as indicated

and then collected for flow cytometry analysis as described. The graph represents cell-cycle profiles of transfected cells only. (b) Immunoblot from the

cells used in the FACS profiles shown in (a). Cells were loaded on the basis of b-galactosidase activity and Strap was detected using anti-HA HA11.

(D) (a) U2OS cells were transfected with Strap small interfering RNA (siRNA) or control non-targeting (NT) siRNA (25 nM) for 48 h and then treated

with etoposide (þ ; 10mM) for 16 h. Cells were then collected for flow cytometry analysis as described. The graph represents the percentage change in

G2 of Strap siRNA relative to the control NT siRNA-treated cells. (b) Immunoblot from the cells used in the FACS profiles shown in (a). Extracts were

loaded on total protein content. Strap was identified by immunoblotting and b-actin was used as a loading control. (E) U2OS cells were transfected

with the indicated Strap expression vectors (WT and S221A) and vector alone (500 ng), and treated with etoposide (þ ; 10 mM) for 16 h before

collection. Extracts were loaded on total protein content. PARP was identified by immunoblotting and b-actin was used as a loading control. The

asterisk indicates the cleaved PARP polypeptide; n¼ 3. (F) Model for the dual regulation of Strap by ATM and Chk2: phosphorylation of ATM results

in increased nuclear presence of Strap, whereas subsequent phosphorylation by Chk2 augments Strap stabilization. ATM, ataxia telangiectasia mutated;

Chk2, Checkpoint kinase 2; DAPI, 4,6-diamidino-2-phenylindole; FACS, fluorescence-activated cell sorting; GFP, green fluorescent protein; HA,

haemagglutinin; PARP, poly(ADP-ribose) polymerase; Strap, stress responsive activator of p300; WT, wild type.
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activator of p300; WT, wild type.
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small molecule Chk2 inhibitor (Sharma & Tepe, 2004) reduced
phosphorylation (Fig 3B). Furthermore, the increased level of
phosphorylation that occurred on Strap in the inducible cell line
(Fig 2E) was dependent on Chk2 activity because, in the presence
of the Chk2 inhibitor, phosphorylation also occurred at a reduced
level (Fig 3C). It is consistent with these results that, when
compared with wild-type Strap, a mutant derivative that lacked
the phosphorylation site of Chk2, S221A, showed low levels of
phosphorylation (Fig 3D; about fivefold lower than wild-type
Strap). Thus, Chk2 kinase phosphorylates Strap in cells.

Chk2 regulates Strap protein stability
As Chk2 is a nuclear phosphokinase (Matsuoka et al, 1998), it
might be responsible for the nuclear stabilization of Strap (Fig 1C).
To establish the function of Chk2 in Strap control, we studied Strap
stabilization in HCT15 cells, which lack Chk2 kinase activity
(Grigorova et al, 2004). In contrast to the DNA damage-dependent
stabilization in U2OS cells, both ectopic and endogenous
Strap stabilization were compromised in HCT15 cells (Fig 4A).
Furthermore, when Chk2 was reinstated in HCT15 cells by
expressing ectopic Chk2, both ectopic and endogenous Strap were
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upregulated (Fig 4B,C). We verified the function of Chk2 in Strap
stability control by using the Chk2 inhibitor, which resulted in
poor stabilization of Strap under DNA-damaging conditions;
both ectopic and endogenous Strap behaved in a similar manner
(Fig 4D,E). Finally, although the effect of expressing ectopic
wild-type Chk2 was to increase Strap levels, ectopic dominant-
negative Chk2 (Chehab et al, 2000) decreased Strap levels under
DNA-damaging conditions (Fig 4F). Taken together, these results
argue that the phosphorylation of Strap by Chk2 is required
for protein stabilization.

To address the function of Chk2 phosphorylation in Strap, and
more generally the function of S221 in regulating the DNA
damage response, we studied the properties of the Strap derivative
defective in Chk2 phosphorylation, S221A. The intracellular
distribution of S221A was very similar to wild-type Strap, being
localized mainly to nuclei (Fig 5A); this was the expected result
given the integrity of the S203 phosphorylation site and its
function in nuclear localization (Fig 1; Demonacos et al, 2004).
However, in contrast to wild-type Strap, under DNA-damaging
conditions, S221A failed to show any significant increase in
stability (Fig 5B). Furthermore, the ability of S221A to prompt
cell-cycle arrest in response to DNA damage caused by etoposide
treatment (which in U2OS (p53þ /þ ) cells results in G2 arrest;
supplementary Fig 1A online) was significantly impaired in
comparison to wild-type Strap (Fig 5C; 69% and 33% for wild
type and S221A, respectively). By contrast, in SAOS2 (p53�/�)
cells, Strap had a negligible effect on the cell-cycle profile
(supplementary Fig 1B online). Furthermore, the G2 arrest required
for Strap activity was investigated by depleting endogenous Strap
in etoposide-treated U2OS cells with siRNA, whereupon a reduced
population of G2 cells was evident (B40% reduction; Fig 5D;
supplementary Fig 1C online). The induction of poly(ADP-ribose)
polymerase cleavage, which occurs during the DNA damage
response (Satoh & Lindahl, 1992), was also compromised in
cells expressing S221A compared with wild-type Strap (Fig 5E).
Phosphorylation of Strap at S221 is most likely, therefore, to
augment the checkpoint response to DNA damage.

DISCUSSION
Phosphorylation control of Strap
By analysing the properties of a panel of mutants and the effect of
leptomycin B, it seems that Strap undergoes nuclear accumulation
by virtue of a mechanism that influences nuclear export. This idea
is supported by the cytoplasmic location of the S203A mutant that
became nuclear when combined with DNES or expressed in
the presence of leptomycin B, and the nuclear localization of
S203A/DNES coincided with DNA damage-responsive protein
levels. These results are consistent with a model in which the
ATM phosphorylation influences nuclear export, thereby favouring
nuclear accumulation (Fig 5F).

Regulated nuclear export of effector proteins targeted by the
DNA damage response pathway is becoming increasingly
recognized as an important mechanism of control. The activity
of NES in Mdm2 is involved in exporting p53 to the cytoplasm
(Freedman & Levine, 1998). In p53, two NES motifs have been
described: one in the N-terminal region and the other in the
oligomerization domain (Stommel et al, 1999). The N-terminal
NES is regulated through DNA damage-dependent phosphoryl-

ation, which assists p53 nuclear accumulation by hindering
nuclear export (Zhang & Xiong, 2001). Strap shows several
similarities to the control of p53 because DNA damage-dependent
phosphorylation by ATM kinase seems, as for p53, to hinder
nuclear export.

The interplay between ATM and Chk2 kinase
Our studies highlight the different functions of ATM and Chk2 in
controlling cofactor activity during the response of p53, and
suggest that Strap activity is influenced through a two-step
sequential phosphorylation mechanism (Fig 5F). The dependence
of nuclear location on ATM phosphorylation, as well as
stabilization of protein on the phosphorylation of Chk2 (which
requires Strap nuclear localization), ensures that Strap is activated
only once the DNA damage response is underway, when both
crucial DNA damage-responsive protein kinases, ATM and Chk2,
have been activated. It might also provide a mechanism through
which the response of p53 can be fine-tuned during the DNA
damage response; limiting the nuclear accumulation of Strap will,
in turn, affect the level of p53 activity.

METHODS
Plasmids and reagents. The Strap mutant derivative S221A was
created using oligonucleotides designed in accordance with
Stratagene’s QuikChanges Multi Site-Directed Mutagenesis kit
(Stratagene, La Jolla, CA, USA) using the following primer: S221A:
GTGGACAGGAAAGCAGCTAGCAACCCTGACCTTCATCTC. The
Strap mutant derivatives DNES and S203A/DNES were created by
deleting the appropriate region from wild-type or S203A Strap
in accordance with Stratagene’s QuikChange Site-Directed Muta-
genesis kit using the following primers: DNES: forward: GAAGCG
AAGCACGTCTACTGTTTTCGAGAC; reverse: GTCTCGAAAACAG
TAGACGTGCTTCGCTTC. The resulting constructs were all verified
by sequencing. The Strap siRNA sequence was CAGAGAAA
GUUGACAGAAAUU custom made from Dharmacon (Chicago,
IL, USA). Leptomycin B was supplied by Sigma (Dorset, UK)
and the Chk2 inhibitor (Sharma & Tepe, 2004) was from Merck
(Nottingham, UK).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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