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Abstract
Kennedy Disease (KD, or spinal and bulbar muscular atrophy) is caused by a CAG/polyglutamine
expansion in the androgen receptor (AR) gene. Both motoneurons and muscles are affected by KD,
but where mutant ARs act to initiate this disease is not clear. We discuss recent insights into this
disease with two main themes. 1) KD is androgen-dependent, suggesting that blocking androgen
action may be an effective treatment. 2) Androgens may trigger KD by acting in muscles, which
indirectly affects the motoneurons, suggesting that blocking AR function in muscles may rescue
motoneurons from disease and provide an effective treatment. Future research will provide a better
understanding of how androgens trigger KD and the relative contributions of motoneurons versus
muscles in this disease.

Introduction
Many disorders exhibit striking sex-biases in the human population, with some more common
in males and showing an X-linked pattern of inheritance. One such disease affecting only men
is spinal and bulbar muscular atrophy or Kennedy disease (KD), a so-called “lower motoneuron
disease” characterized by an adult-onset, slowly progressing loss of motor function. In 1991,
Kenneth Fischbeck and colleagues made the landmark discovery that individuals with KD have
an expansion of a polymorphic CAG/glutamine tract in the first exon of the androgen
receptor (AR) gene (normal range 9 – 37 CAG repeats; disease > 40 CAG repeats). [1]. The
100% concordance between disease occurrence and these expanded CAG alleles provided
strong evidence that the cause of KD had been identified. Since then, comparable CAG repeat
expansions in the coding regions of unrelated genes have been linked to eight other
neurodegenerative diseases (Huntington disease, dentatorubropallidoluysian atrophy, and
spinocerebellar ataxias 1, 2, 3, 6, 7, and 17). These nine disorders are commonly referred to as
“polyglutamine (polyQ) diseases”, emphasizing the disease-causing role of the expanded
glutamine tract in each mutant protein [2].

Identifying these mutations has allowed development of animal and cell models in which the
human disease gene is expressed. These models provide powerful inroads to our understanding
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of disease-causing mechanisms, and have provided compelling evidence that elongated polyQ
tracts lead to protein misfolding, a critical step in disease pathogenesis. We begin by outlining
key features of KD in humans, since the first question asked of any new animal model is how
well it mimics the human disease. We then discuss new insights based on these models and
the therapeutic approaches they suggest.

Characteristics of SBMA in humans: Symptoms and underlying cellular
pathology
Muscle weakness and reduced androgen sensitivity in men are core features of Kennedy
disease (KD)

First described by William Kennedy and colleagues in 1968 [3], a core feature of KD is a
progressive weakness and wasting of muscles, which interferes with the performance of routine
motor tasks such as walking, lifting and climbing stairs. Although symptoms of KD typically
lead to diagnosis in mid-life (between 30 – 50 years), men with KD often report experiencing
frequent muscle twitching and/or cramping for a decade or more prior to diagnosis, suggesting
that the disease process begins well before reaching the threshold of clinical muscle weakness.
In addition to affecting limb muscles, bulbar symptoms of KD include difficulty swallowing,
chewing and enunciating clearly. While individuals with longer CAG repeats tend to develop
the disease earlier, there is marked variation in disease onset even among related individuals
with the same CAG repeat size [4,5]. Female carriers with one or two copies of the KD allele
commonly experience subclinical symptoms (e.g., muscle twitching) without significant loss
in muscle strength [5,6]. Another core feature of KD is reduced androgen-sensitivity, such as
gynecomastia and testicular atrophy [3,5,7,8], suggesting a partial loss of normal AR function
in individuals with KD. However, it is not this loss of normal function but rather a gain of new
and toxic functions conferred by the expanded glutamine tract that causes the neuromuscular
pathology of KD, since humans inheriting completely dysfunctional AR do not appear prone
to such weakness. Finally, blood creatine kinase levels are consistently elevated in KD patients,
suggesting that muscle damage is significant in this disease.

Neurophysiological measures indicate loss of motor and sensory axons and compensatory
sprouting in KD

Nerve conduction and electromyographic studies suggest that the muscle atrophy and weakness
in KD are caused by a progressive loss of motor axons, resulting in denervation and atrophy
of muscle fibers [5,8]. High amplitude motor unit potentials are also detected, suggesting that
as muscle fibers are denervated, nearby surviving motor axons sprout to re-innervate them.
Such studies also indicate a robust loss of sensory axons in men with KD. Which sensory
neurons are affected and the degree of loss within different populations are not well
documented, but the consistent absence of tendon reflexes in men with KD suggests that the
sensory neurons most affected are the large caliber 1A afferents that relay information to the
motoneurons about muscle stretch. Thus, it is likely that losses in both motor and sensory
neurons contribute to the loss of motor function in KD.

Histopathological correlates confirm loss of motor and sensory neurons in KD
Direct examination of tissues from KD patients reveals a significant loss of motor axons
accompanied by a marked and selective depletion of motoneuronal cell bodies in the spinal
cord and brain stem [3,8,9]. Moreover, large diameter sensory axons appear selectively
depleted from the dorsal roots and the sensory-rich peripheral sural nerve, consistent with the
idea that 1A afferents supplying muscle spindles may be selectively lost in this disease. Muscle
biopsies, however, suggest that two separate processes may be occurring: (1) ongoing
denervation and sprouting indicated by muscle fiber atrophy and fiber-type grouping, and (2)
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primary myopathy indicated by pathology (e.g., fiber splitting, centralized nuclei, fiber
degeneration) typical of diseases that originate in muscle [10]. Another hallmark of KD is an
accumulation of mutant AR into insoluble aggregates or inclusions in neuronal and
nonneuronal cells [11,12]. While the significance of these microscopically visible aggregates
is not clear [12,13**], experimental evidence indicates that toxicity is mediated by soluble
forms of the misfolded, mutant protein [14*].

Clinical reports describing KD raise questions
What factors besides CAG repeat size determine disease onset and progression?

Although individuals with longer CAG repeats tend to develop the disease at an earlier age,
disease onset can vary by a decade or more for a given CAG repeat size, even within a family
[1,5]. Moreover, females having one or both copies of the KD allele show only mild sub-clinical
symptoms and are not deemed as having KD [5,6]. These observations suggest that factors
other than the expanded CAG repeat affect expression of this disease.

Is KD a disease of motoneurons, muscles or both? In other words, where does the mutant
AR act to trigger KD?

Calling KD a “motoneuron disease” carries with it the implicit assumption that the mutant AR
acts in motoneurons to cause their death, resulting in denervation-induced atrophy of skeletal
muscles and loss of motor function. However, muscles affected by KD undergo deterioration
that is not solely attributable to denervation. In particular, men with KD generally show
significantly elevated levels of creatine kinase, questioning whether KD involves primary
myopathic processes, akin to the muscular dystrophies.

Experimental models of KD provide some answers and hope for treatment
Six different mouse models of KD have been described that express full length AR and largely
recapitulate the disease phenotype, with the first models described in 2002. Five are transgenic
(Tg) models [15–19] and one is a knock-in (KI) model [20]. Only one Tg model expresses
experimental AR in a cell-specific manner [19], thus allowing investigators for the first time
to address directly questions about which cells AR acts in to cause KD.

KD phenotype in mice
Despite various promoters and CAG repeat lengths, the different mouse models show
remarkably similar phenotypes, with each exhibiting core features of KD (Supp Table 1). For
example, the KD phenotype in mice shows a pronounced sex bias, with experimental males
affected more than females, reminiscent of KD in humans. Symptomatic male mice show a
marked loss of muscle strength, particularly in their hindlimbs, which impairs their ability to
walk normally. Affected males are also typically smaller than controls and are kyphotic
(showing a dorsal curvature of the spine), aspects of the KD phenotype that appear unique to
rodents. The age of onset of KD symptoms can vary widely among these mouse models, from
3 weeks to 6 months, and likely reflects differences in both the size of the CAG repeat and the
level of AR expression, but the rise in circulating androgens at puberty probably plays a role
in all the models.

KD models establish that testicular androgens are a key factor triggering disease
That only men develop KD suggested a role for androgens in this disease, but direct support
for this idea came only recently from cell and animal models. For example, castrating KD male
mice, either at puberty or as adults, can rescue them from disease [15,16,19,20]. Moreover,
testosterone (T) treatment has been shown in some models to “turn on” the disease in
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asymptomatic mutant females, inducing a KD phenotype comparable to that of gonadally intact
mutant males [16**,19].

Finding that KD is triggered by androgens represents a significant step in understanding disease
pathogenesis, and demonstrates that an expanded polyQ AR is not sufficient to trigger disease
but that male levels of androgens are also required. This explains why females, even when
homozygous for expanded CAG AR alleles, do not develop the disease. Moreover, differences
in androgen titers may account for some of the variability in the age of onset between
individuals that have comparable CAG expansions in their AR gene. Finally and most
significantly, the apparent androgen-dependence of KD indicates that giving androgens to men
with the disease to combat muscle atrophy is contraindicated. Although there are few
documented cases of how exogenous androgens affect men with KD, one recent report that
androgen treatment worsened symptoms in a patient with KD [21] indicates that the KD
phenotype in humans also depends on androgens. A clear implication of these data is that agents
that interfere with androgen action may reverse KD symptoms in men (discussed in more detail
below).

The mechanism by which androgens stimulate toxicity is of great interest. Changes to AR
induced by androgens include translocation from the cytoplasm to the nucleus, altered post-
translational modifications, and less stable association with molecular chaperones including
Hsp70 and Hsp90. Evidence implicates each of these in contributing to pathogenesis [2]. The
nucleus appears to be a critical site for triggering KD pathology [22**]. Whether androgen-
driven transcriptional activation by the AR is also a requisite step in the pathogenic pathway
is less clear, given that AR antagonists fail to block androgens’ disease-promoting effects in
some models despite their ability to block normal transcriptional function via classical
androgen responsive elements [22,23]. It is possible that nuclear translocation of AR without
activation is sufficient to induce toxicity, or that transcriptional activity of AR is also required,
but is mediated via nonclassical regulatory elements, akin to tamoxifen-bound estrogen
receptors acting at AP1 sites [24]. That the length of the polyQ tract affects cofactor recruitment
is consistent with this view [25]. Clearly, considerably more work needs to be done to gain a
full understanding of androgens’ role in triggering KD.

Evidence from models shifts the focus from cell death to cell dysfunction as the proximate
cause of KD

Motoneuronal cell death has long been assumed to critically mediate the loss of motor function
in KD, but data from KD models suggest otherwise. While two of the six KD mouse models
show the expected motoneuronal loss [17,18], four do not [15,16,19,20]. Of these, all four
models show an androgen-dependent loss of motor function without any apparent loss of
motoneurons, with two providing evidence of a distal axonopathy [19,20]. Given that castration
can rescue KD male mice from the disease well after its onset [15,19], cell death is likely a late
event in KD and cell dysfunction may be at the root of this disorder.

Axonal trafficking defects have been implicated in many neurodegenerative diseases, including
KD. In KD Tg mice, abnormal accumulations of neurofilament occur in distal motor axons
before the onset of muscle weakness [26**]. Perhaps more tantalizing is finding the same
abnormal accumulation of neurofilament in muscle of a KD patient. Katsuno and colleagues
also show more directly that axonal trafficking is impaired, demonstrating androgen-dependent
deficits in retrograde labeling of motoneurons and dynactin 1 expression in motoneurons.
Dynactin 1 is part of the motor protein complex involved in retrograde trafficking in axons.
Alterations in anterograde and/or retrograde axonal transport are also suggested by findings in
other KD models [15,27,28]. Thus, an androgen-dependent failure in the trafficking of needed
cargo along axons, either anterogradely to motor synapses or retrogradely to motoneuronal cell
bodies, may be an early and pivotal event triggering the loss of motor function in KD.
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Androgens may act in muscles to trigger KD
One great challenge of any chemical intervention is to eliminate the disease-causing action of
an endogenous molecule while preserving its health-promoting actions. Thus, for KD, ideal
treatments will likely be aimed at reducing mutant AR action in the cells where the disease
begins while sparing the beneficial effects of AR in other tissues, such as those that support
reproduction. Knowing where mutant ARs act to trigger KD would greatly facilitate the
development of such treatments.

ARs are expressed by many cell types and tissues, including motoneurons and skeletal muscles
[29]. Thus, mutant ARs might act in motoneurons, skeletal muscles or both to cause KD (Fig
1). However, it has long been assumed that ARs act in motoneurons to cause the disease, an
idea driven by the fact that men with KD suffer what appears to be “neuogenic atrophy” of
skeletal muscles caused by a loss of motoneurons. However, there is little direct evidence to
support the idea that mutant ARs act only in motoneurons to initiate disease.

One Tg model of KD expresses wildtype AR only in skeletal muscle fibers, but nonetheless
shows an androgen-dependent motor phenotype, including the loss of motor axons akin to other
mouse models of KD [19**]. That over-expression of the wildtype AR with 22 CAG repeats
triggers disease similar to the expanded polyQ AR suggests that it is mediating toxicity by
similar mechanisms, and raises the possibility that over-expression of AR in muscle could lead
to human disease. Importantly, analysis of these Tg mice led to the conclusion that AR may
act in muscle rather than motoneurons to trigger disease. Given that expression of a growth
factor, vascular endothelial growth factor, is also reduced in muscles of these mice, the disease
process may entail a loss of trophic support to motonerons by muscles. A similar loss of trophic
factor expression has been documented in skeletal muscle from a KI mouse model of KD
[20**]. While it will be important to test the role of ARs in muscle in other models of KD,
these results provide the first direct demonstration that ARs acting in skeletal muscle fibers
can trigger a KD phenotype and indirectly cause disease in the motoneurons, including axonal
loss and defects in axonal transport (Kemp and Jordan, unpublished data). Such a scenario is
in line with the well established role of muscles in maintaining motoneurons [30], and suggests
that therapeutics preventing AR action in muscle may rescue both individuals and their
motoneurons from KD.

Molecular targets for therapy emerge from the study of KD models
Hormone dependence

Since the KD phenotype is androgen-dependent, decreasing androgen levels should reduce
disease severity. This notion was confirmed by treating KD Tg mice with leuprorelin, a
luteinizing hormone-releasing hormone agonist that reduces serum testosterone levels [23**].
Clinical trials to treat KD patients with anti-androgens have been initiated in the United States
and Japan, where modest results were reported after a short trial with leuprorelin [26]. The
efficacy of dutasteride, an inhibitor of 5 alpha-reductase, the enzyme that converts testosterone
to the more potent dihydrotestosterone, has not yet been reported.

Androgen receptor degradation
The misfolded, polyQ AR protein is the proximal mediator of toxicity in KD, and as such,
therapeutic strategies that promote its degradation have attracted considerable attention. ARs
associate with the molecular chaperones hsp90 and hsp70, components of the cellular defense
against unfolded proteins and possible therapeutic targets. Geldenamycin and its derivatives
that inhibit hsp90 impair ligand-dependent trafficking of the receptor, promote its degradation
[31] and improve the phenotype of KD Tg mice [32]. Over-expression of hsp70 [33] or the
chaperone-dependent E3 ubiquitin ligase CHIP (carboxy terminus of Hsc70-interacting
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protein) [34] similarly promote AR degradation to yield phenotypic improvement in KD Tg
mice. Additional strategies to promote AR degradation include novel small molecules that
disrupt the interaction of the receptor with co-regulators [35], and activation of protein turnover
through autophagy [36].

Histone acetylation
Changes in gene expression and chromatin modification accompany cellular dysfunction in
KD. These changes may be secondary responses to injury or manifestations of a primary
pathway leading to toxicity. In either case, treating cellular [37] and mouse models [38] with
histone deacetylase (HDAC) inhibitors, such as sodium butyrate, has proven effective in
ameliorating the disease phenotype. Notably, broad spectrum HDAC inhibitors may also
influence movement along microtubules that is influenced by HDAC6, a cytoplasmic HDAC.
Since this movement machinery is needed for protein degradation, the mechanisms underlying
HDACs’ therapeutic effects warrant further study.

Emerging targets
While small molecules offer great promise for treating KD, other strategies are under active
investigation. Gene silencing by RNA interference can decrease production of toxic proteins
and has proven to be effective in animal models of other polyQ diseases. Similarly, replacement
of dysfunctional or dead neurons by stem cells is an attractive strategy whose potential remains
to be fully explored.

Conclusion
Recent work in KD mouse models has identified a host of molecular pathways that modulate
toxicity. Furthermore, the cell types mediating pathogenesis are being defined to include
skeletal muscle fibers in addition to motoneurons. Given that skeletal muscles likely contribute
to the disease phenotype and may mediate early pathogenic events, they offer a therapeutic
target outside the blood brain barrier that is much more accessible to treatment than
motoneurons. It is likely that a combination of targets and treatment strategies will prove to be
the most effective therapeutic approach for KD and other chronic neurodegenerative disorders.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic showing two possible sites (motoneurons or muscle fibers) where mutant ARs might
act to trigger Kennedy Disease (KD). Because motoneurons and muscle fibers each express
ARs, each represents candidate sites for triggering KD. Mutant ARs could cause the same distal
axonopathy (depicted by dashed lines for some motor axons and their terminals) by directly
impairing the function of motoneurons or muscle fibers. In one case, distal axonopathy is
caused by altered anterograde signaling in the affected motoneuron (shown in red in left panel)
while in the other case, axonopathy is induced indirectly via changes in retrograde signals from
the affected muscle fibers (shown in red in right panel). Based on several mouse models of
KD, axonopathy occurs early in the disease process and may involve a perturbation in
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motoneuronal axonal transport. As this disease progresses, such axonopathy leads to
functionally denervated muscle fibers, triggering muscle atrophy and motoneuronal cell death,
two key pathological features of KD. It is also possible that AR acts in both cell types to induce
the full complement of disease symptoms underlying KD and that AR action at both sites are
critically involved. Studies are needed to fully discern the role of ARs in motoneurons and
muscle fibers in causing KD.
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