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Aromatic and heterocyclic amine carcinogens present in the diet

and in cigarette smoke induce breast tumors in rats. N-acetyltrans-

ferase 1 (NAT1) and N-acetyltransferase 2 (NAT2) enzymes have

important roles in their metabolic activation and deactivation.

Human epidemiological studies suggest that genetic polymorphisms

in NAT1 and/or NAT2 modify breast cancer risk in women exposed

to these carcinogens. p-Aminobenzoic acid (selective for rat NAT2)

and sulfamethazine (SMZ; selective for rat NAT1) N-acetyltransfer-

ase catalytic activities were both expressed in primary cultures of rat

mammary epithelial cells. PABA, 2-aminofluorene, and 4-amino-

biphenyl N-acetyltransferase and N-hydroxy-2-amino-1-methyl-6-

phenylimidazo[4,5-b] pyridine and N-hydroxy-2-amino-3,8-dime-

thylimidazo[4,5-f]quinoxaline O-acetyltransferase activities were

two- to threefold higher in mammary epithelial cell cultures from

rapid than slow acetylator rats. In contrast, SMZ (a rat NAT1-

selective substrate) N-acetyltransferase activity did not differ

between rapid and slow acetylators. Rat mammary cells cultured

in the medium supplemented 24 h with 10mM ABP showed

downregulation in the N-and O-acetylation of all substrates tested

except for the NAT1-selective substrate SMZ. This downregulation

was comparable in rapid and slow NAT2 acetylators. These studies

clearly show NAT2 acetylator genotype–dependent N- and O-

acetylation of aromatic and heterocyclic amine carcinogens in rat

mammary epithelial cell cultures to be subject to downregulation by

the arylamine carcinogen ABP.
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N-acetyltransferase 1 (NAT1) and N-acetyltransferase

2 (NAT2) catalyze the N-acetylation of aromatic amines and,

following N-hydroxylation, the O-acetylation of N-hydroxy

aromatic and heterocyclic arylamines (Hein, 2002; Hein et al.,
2000). Genetic polymorphism in NAT2 segregates humans

and other mammals such as rats into rapid and slow

acetylators (Boukouvala and Fakis, 2005; Hein et al.,
1997). Homozygous rapid (F344) and slow (WKY) Nat2
acetylator inbred rats have been characterized as an animal

model for investigations of the N-acetylation polymorphism

(Hein et al., 1991a,b; Juberg et al., 1991). (RAT)Nat1 and

(RAT)Nat2 genes from rapid and slow acetylator rats each

contain an intronless 870-bp open-reading frame (ORF) (Doll

and Hein, 1995). Rats also possess a third N-acetyltransferase

locus (RAT)Nat3 (Walraven et al., 2006). Nat1 and Nat3 are

identical in F344 and WKY inbred strains (Doll and Hein,

1995; Walraven et al., 2007). However, WKY inbred rats are

homozygous for a rat Nat2 allele with four single-nucleotide

polymorphisms: G361A (Val121/ Ile), G399A (synonymous),

G522A (synonymous), and G796A (Val266/ Ile), as compared

to the Nat2 allele in the F344 rapid acetylator inbred rat (Doll

and Hein 1995; Hein et al., 1997). WKY rats exhibit

significantly lower N-acetyltransferase activities than F344 in

liver, kidney, colon, prostate, and urinary bladder (Hein et al.,
1991a,b). Nat1 and Nat2 mRNA are widely expressed in rat

tissues (Barker et al., 2008; Walraven et al., 2007), but

expression in rat breast tissue has not been reported. Human

breast has been shown to express much higher levels of NAT1
(Husain et al., 2007a) and NAT2 (Husain et al., 2007b)

mRNA and catalytic activity (Sadrieh et al., 1996).

4-Aminobiphenyl (ABP) is a widespread environmental

carcinogen present in cigarette smoke and cooking oil fumes

(Chiang et al., 1999; Luceri et al., 1993; National Toxicology

Program, 2005; Stabbert et al., 2003). Heterocyclic amine

carcinogens such as 2-amino-1-methyl-6-phenylimidazo[4,5-

b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]qui-

noxaline] (MeIQx) are heterocyclic amine pyrolysis products

found at highest concentrations in well-done meat and fish

(Keating and Bogen, 2004;National Toxicology Program,

2005). Administration of ABP or PhIP results in mammary
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tumors in the rat (el-Bayoumy, 1992; Ito et al., 1991;

Snyderwine et al., 2002; Tanaka et al., 1985). PhIP- and

ABP-DNA adducts have been detected in human breast tissue

(Ambrosone et al., 2007; Faraglia et al., 2003; Gorlewska-

Roberts et al., 2002; Zhu et al., 2003).

Human epidemiological studies show that NAT1 and/or

NAT2 acetylator genotypes modify associations between

smoking (Ambrosone et al., 2008; Krajinovic et al., 2001;

Millikan et al., 1998; van der Hel et al., 2003; Zheng et al.,
1999) or well-done meat intake (Deitz et al., 2000; Gallicchio

et al., 2006) with breast cancer. Interindividual variation in

activity within a phenotype has been observed, suggesting that

nongenetic factors may modify catalytic activity (Butcher et al.,
2008; Minchin et al., 2007; Rodrigues-Lima et al., 2008). Since

ABP-DNA adducts have been detected in human breast

(Ambrosone et al., 2007; Gorlewska-Roberts et al., 2002),

particularly in smokers (Faraglia et al., 2003), we hypothesized

that N-acetyltransferase expression in mammary epithelial cells

is modified both by genotype and exposures to carcinogens such

as ABP.

MATERIALS AND METHODS

Animals. F344 (homozygous rapid Nat2 acetylator genotype) and WKY

(homozygous slow Nat2 acetylator genotype) rats were purchased from Charles

River Laboratories (Wilmington, MA). The rats were bred and housed at the

University of Louisville School of Medicine, and all protocols were approved

by the Institutional Animal Care and Use Committee.

Chemicals. p-Aminobenzoic acid (PABA), sulfamethazine (SMZ),

2-aminofluorene (AF), ABP, collagenase type 1, hyaluronidase, insulin, hydro-

cortisone, glutamine, epidermal growth factor, cholera enterotoxin, dithio-

threitol, and acetyl coenzyme A were obtained from Sigma (St Louis, MO).

Dulbecco’s modified Eagle’s medium (DMEM)-F12 was purchased from

Fisher (Pittsburgh, PA). Fetal bovine serum and fungizone were obtained from

Harlan Bioproducts for Science (Indianapolis, IN). Matrigel matrix was

purchased from BD Biosciences (Bedford, MA). Penicillin, streptomycin, and

nonessential amino acids were obtained from JRH BioSciences (Lexena, KS).

N-hydroxy-2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (N-OH-PhIP)

and N-hydroxy-2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (N-OH-

MeIQx) were purchased from Toronto Research Chemicals (Toronto, ON,

Canada).

Mammary epithelial cell digestion solution. Mammary epithelial cell

digestion solution (100 ml) was prepared with 243 mg DMEM-F12, 200 mg

sodium bicarbonate, 463 mg collagenase type 1, 142 mg hyaluronidase, 1 ml

penicillin (10,000 IU/ml) and streptomycin (10,000 IU/ml), 1 ml insulin (1 mg/

ml), 100 ll hydrocortisone (1 mg/ml), and 10 ml bovine calf serum.

Mammary epithelial cell culture medium. Modified DMEM-F12 culture

medium (500 ml) used for mammary epithelial cell cultures contained 50 ml of

fetal bovine serum, 5 ml of 200mM glutamine, 10 ml of 503 amino acids, 25

lg of fungizone, 0.5 mg of hydrocortisone, 10 lg of epidermal growth factor,

13.5 ml of 7.5% sodium bicarbonate, 5 ml of 10,000 IU/ml of penicillin and

streptomycin, and 100 lg of cholera enterotoxin.

Preparation of primary cultures of mammary epithelial cells. Following

carbon dioxide anesthesia, mammary gland tissue from two to three adult rapid

or slow acetylator rats was removed rapidly, pooled in a sterile centrifuge tube,

excised aseptically in a laminar flow hood, placed in digestion medium, and

minced with scissors. After digestion at 37�C with constant shaking for about

2 h, the tubes were centrifuged at approximately 500 g for 5 min. Once the

tissue had been pelleted, the supernant (two layers consisting of fat, fibroblasts,

and digested collagen) was removed by aspiration. The cell clumps were

suspended in DMEM and filtered through 110-lm mesh nylon screen, followed

by centrifugation. After washing twice with basic DMEM containing 10%

serum, cells were resuspended in culture solution at a density of 2–3 3 106

cells/ml, seeded on tissue culture plastic dishes (Falcon, Franklin Lakes, NJ)

with overlay of 120 lg/ml of Matrigel matrix, and incubated in an atmosphere

of 5% carbon dioxide.

N-acetyltransferase assays. PABA, ABP, AF, and SMZ N-acetyltransferase

activities were measured in cell lysates as previously described (Hein et al., 2006a;

Leff et al., 1999a). The cell lysates were incubated with 300lM ABP, AF, or SMZ

or 1500lM PABA and 1mM acetyl coenzyme A at 37�C for 30 min. Reactions

were terminated by the addition of 1M perchloric acid. The pH was adjusted using

1M sodium hydroxide, and the proteins were precipitated by centrifugation. N-

acetyl-products were separated from substrates and quantitated by high-

performance liquid chromatography (HPLC). N-OH-PhIP and N-OH-MeIQx O-

acetyltransferase activity was determined by HPLC as previously described

(Fretland et al., 2001; Hein et al., 2006b; Leff et al., 1999b). Briefly, reactions

containing N-OH-PhIP (400lM) or N-OH-MeIQx (100lM), cell lysate (< 2.5 mg/

ml), and acetyl-coenzyme A (1mM) were incubated for 30 min at 37�C. N-OH-

PhIP reactions were terminated with 18 ll acetic acid (1M), while N-OH-MeIQx

reactions were terminated with 30 ll sodium hydroxide (1M). Reaction

supernatants were injected onto a Waters Bondapak C18 column (3.9 3 300

mm) with an Alltech Alphabond C18 guard column (7.53 4.6 mm). PhIP (317 nm)

and MeIQx (254 nm) were quantitated as surrogates for the formation of

N-acetoxy-PhIP and N-acetoxy-MeIQx, respectively (Saito et al., 1986). N- and

O-acetyltransferase activities were normalized to total protein determined using

the Bio-Rad protein assay kit (Bio-Rad, Richmond, CA).

Treatment with ABP. ABP or vehicle control (dimethyl sulfoxide; 0.5%

vol/vol) was added to 24-h cultures of mammary epithelial cells derived from

rapid or slow acetylator rats. Following 24-h treatment, the media were

removed from the dishes by aspiration, and the cells were washed with

Dulbecco’s PBS twice to remove any residual ABP or vehicle and harvested.

Cell viability was assessed by trypan blue exclusion and was > 95% for all

treatments.

Data analysis. Data are expressed as mean ± SE. Statistical comparisons

were assessed by Student t-tests. Values of p < 0.05 were considered

significant.

RESULTS

Nat2 Genotype–Dependent N- and O-Acetyltransferase
Activities in Mammary Epithelial Cells

PABA (selective for rat NAT2) and SMZ (selective for rat

NAT1) N-acetyltransferase activities were both expressed in rat

mammary epithelial cell cultures. PABA, AF, and ABP

N-acetyltransferase and N-OH-PhIP and N-OH-MeIQx O-

acetyltransferase activities were each significantly higher in

mammary epithelial cells from rapid than from slow acetylator

rats, whereas SMZ N-acetyltransferase activity did not differ

significantly between rapid and slow acetylator rats (Fig. 1).

Downregulation of N- and O-Acetyltransferase Activities in
Mammary Epithelial Cells

Cultured mammary epithelial cells from both rapid and slow

acetylator rats were cultured for 24 h in the presence of ABP

(10lM) or vehicle control (dimethylsulfoxide 0.5% vol/vol).
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Downregulation by ABP was observed in both rapid and slow

acetylators toward the N-acetylation of PABA, ABP, and AF,

and the O-acetylation of N-OH-PhIP, but not toward the

N-acetylation of the NAT1-selective substrate SMZ (Fig. 2).

DISCUSSION

The important role of mammary expression of xenobiotic

metabolizing enzymes and their potential role in breast cancer

have been reviewed (Williams and Phillips, 2000). Rat NAT1

and NAT2 have characteristics similar to human NAT2 and

NAT1, respectively (Table 1). The highest nucleotide and amino

acid identities (both ORF and catalytic core) and substrate

selectivity is observed between human NAT1 and rat NAT2. In

particular, human NAT1 and rat NAT2 both are selective for the

N-acetylation of PABA but not SMZ. Both human NAT1 and

NAT2 (Hein et al., 1993) and rat NAT1 and NAT2 (Walraven

et al., 2006) catalyze the N-acetylation of ABP.

Nat1 and Nat2 mRNA are widely expressed in rat tissues

(Barker et al., 2008; Walraven et al., 2007), but expression in rat

breast tissue has not been reported. NAT1 and NAT2 mRNA and

NAT1 but not NAT2 catalytic activity has been reported in human

mammary cells (Sadrieh et al., 1996). In contrast to the previous

report in human mammary cells, both PABA (selective for rat

NAT2) and SMZ (selective for rat NAT1) N-acetyltransferase

activities were expressed in rat mammary epithelial cell cultures.

Human epidemiological studies show that NAT1 and/or

NAT2 acetylator genotypes modify associations between

smoking (Ambrosone et al., 2008; Krajinovic et al., 2001;

Millikan et al., 1998; Zheng et al., 1999) or well-done meat

intake (Deitz et al., 2000; Gallicchio et al., 2006) with breast

cancer. Human breast tissue expresses higher levels of NAT1

(Husain et al., 2007a) than NAT2 (Husain et al., 2007b)

mRNA and catalytic activity (Sadrieh et al., 1996). Thus, our

laboratory and others have hypothesized that hepatic NAT2

competes with cytochrome P450–catalyzed N-hydroxylation

providing a deactivation pathway for arylamine-induced breast

cancer. In contrast, once N-hydroxylated in the liver, NAT1

catalyzes the O-acetylation of the N-hydroxy-arylamine

metabolite to form DNA adducts in the target organ (e.g., the

mammary epithelial cell).

PABA, AF, and ABP N-acetyltransferase and N-OH-PhIP and

N-OH-MeIQx O-acetyltransferase activities were each signifi-

cantly higher in mammary epithelial cells from rapid than from

slow Nat2 acetylator rats, whereas SMZ N-acetyltransferase

FIG. 1. N-acetyltransferase (PABA, ABP, AF, SMZ) and O-acetyltransferase

(N-OH-MeIQx and N-OH-PhIP) activities in mammary epithelial cell cultures

derived from rapid (closed) and slow (open) acetylator rats. Each bar represents

mean ± SE for three to six individual determinations. Each enzyme activity except

SMZ N-acetyltransferase was significantly (p < 0.05) higher in rapid than slow

acetylator rats.

FIG. 2. N-acetyltransferase (PABA, SMZ, ABP, AF) and O-acetyltransferase

(N-OH-PhIP) activities in mammary epithelial cell cultures derived from rapid and

slow acetylator rats treated with vehicle or ABP (10lM). Each bar represents mean

± SE for three individual determinations. First bar (closed) represents rapid

acetylator cells treated with vehicle; second bar (open) represents slow acetylator

cells treated with vehicle; third bar (striped) represents rapid acetylator cells treated

with ABP; fourth bar (checked) represents slow acetylator cells treated with ABP.

Rapid acetylators (closed bar) significantly (p < 0.001) greater than slow

acetylators (open bar) for PABA, ABP, AF, and N-OH-PhIP but not SMZ (p >

0.05). ABP treatment significantly (p < 0.05) reduced PABA, ABP, AF, and

N-OH-PhIP but not SMZ (p > 0.05) acetyltransferase activities in both rapid and

slow acetylators.

TABLE 1

Comparisons between Human and Rat N-acetyltransferases

Comparison

of human and rat

N-acetyltransferases

Nucleotides

(873 NT ORF,

%)

Protein

(290 AAs,

%)

Catalytic

core

(AAs 63–

131, %)

Selective

substrate

Human NAT1/Rat NAT1 80.4 76.2 76.8 PABA/SMZ

Human NAT1/Rat NAT2 84.0 81.4 81.2 PABA/PABA

Human NAT2/Rat NAT1 79.2 74.5 76.8 SMZ/SMZ

Human NAT2/Rat NAT2 80.3 73.8 68.6 SMZ/PABA

Note. NT, nucleotides; AA, amino acids.
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activity did not differ significantly between rapid and slow

acetylators. This difference further confirms the substrate

selectivity of rat NAT1 for SMZ and is the first report, to our

knowledge, clearly showing NAT2-dependent expression of

N- and O-acetyltransferase activities in mammary epithelial cells.

The results also are consistent with previous studies in human

mammary epithelial cell cultures that reported higher levels of

PhIP-DNA adducts in rapid versus slow acetylators, although

enzymatic activities were not determined (Stone et al., 1998).

Previous studies (Wang et al., 2005) have shown irreversible

inactivation of human and Syrian hamster N-acetyltransferases

by N-hydroxy-4-acetylaminobiphenyl, via deacetylation of N-

hydroxy-4-aminobiphenyl to N-hydroxy-4-aminobiphenyl,

which after oxidative conversion to 4-nitrosobiphenyl reacted

irreversibly with Cys68 in the active site. Syrian hamster NAT1

was more susceptible to this irreversible inactivation than

Syrian hamster NAT2 or human NAT1.

ABP-induced downregulation was observed in primary

mammary epithelial cell cultures from both rapid and slow

acetylators toward the N-acetylation of PABA, ABP, and AF and

the O-acetylation of N-OH-PhIP but not toward the N-

acetylation of the NAT1-selective substrate SMZ. Human

peripheral blood mononuclear cells cultured in medium

supplemented with PABA for 24 h showed significant decrease

in NAT1 activity (Butcher et al., 2000). The reduction in human

NAT1 activity was posttranscriptional as it was not associated

with changes in mRNA but was associated with a parallel loss of

NAT1 protein. This effect was observed with other NAT1

substrates but not with NAT2 substrates such as SMZ, dapsone,

or procainamide and was not observed in vitro (Butcher et al.,
2000). Since human peripheral blood mononuclear cells do not

express human NAT2, they were not able to test for this effect on

human NAT2. However, since rat mammary epithelial cells

express both NAT1 and NAT2, we were able to test the effect of

ABP on the expression of both. We found that ABP (which is

a substrate for both rat NAT1 and NAT2) downregulated rat

NAT2 but not NAT1. Whether or not ABP downregulates human

NAT1 and/or NAT2 is yet to be investigated. Based on the

similarity between human NAT1 and rat NAT2 (Table 1), it

would seem likely that ABP also can downregulate human

NAT1. PABA induces ubiquitination and rapid degradation of

the usually stable human NAT1 4 enzyme via the 26S

proteasome pathway (Butcher et al. 2004). However, ABP is

a substrate for both rat NAT1 and NAT2 (Walraven et al., 2006),

and the downregulation effect was specific to rat NAT2 and not

NAT1, at least in mammary epithelial cells.

In conclusion, these studies clearly show NAT2 acetylator

genotype–dependent N- and O-acetylation of aromatic and

heterocyclic amine carcinogens in rat mammary epithelial cell

cultures. Our studies also illustrate that rat NAT2 in mammary

epithelial cells is subject to downregulation by the arylamine

carcinogen ABP. Since ABP is a widespread environmental

carcinogen present in cigarette smoke and cooking oil fumes

(Chiang et al., 1999; Luceri et al., 1993; National Toxicology

Program, 2005; Stabbert et al., 2003), it has the potential to

modify the relationship between N-acetyltransferase genotype

and phenotype and, thus, may modify relationships between N-

acetyltransferase genotype and individual susceptibility to

cancer and/or other toxicities.
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