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Introduction
The past twenty years have witnessed tremendous advances in the understanding of the central
mechanisms regulating food intake and energy balance, perhaps in response to the accelerated
increase in the incidence of obesity in industrialized nations. Some of the most striking
discoveries have included descriptions of hypothalamic neuropeptidergic circuits that respond
to changes in peripheral metabolic signals, and that regulate metabolism through their multiple
output pathways. In addition, the sophistication of research tools afforded by genetically
engineered animals has provided a degree of certainty to the data that is unparalleled. Finally,
much insight has been gained of the potential mechanisms that underlie the dynamic
functioning of hypothalamic circuits. This chapter will attempt to provide a synopsis of these
advances, leading to the idea that synaptic plasticity as an important factor in the regulation of
food intake and energy homeostasis.

Hypothalamic Homeostatic Circuits
It is now well established that the hypothalamus plays a critical role in the regulation of energy
balance. This was first suspected after descriptions of obesity in patients with hypothalamic
tumors over a hundred years ago [1], but at the time, it was thought that the pituitary gland
regulated most endocrine functions and that alterations of the pituitary lead to metabolic
disorders [1]. Confirmation of the hypothalamus as important for regulation of food intake and
energy balance was obtained from animal studies using brain lesions of hypothalamic structures
[2–4]. In essence, evidence obtained from both the clinical descriptions in tumor patients, and
from the lesion work, showed that gross damage to mediobasal hypothalamic areas, in
particular the ventromedial hypothalamic nucleus (VMH), was clearly associated with
increased food intake, morbid obesity and insulin resistance, while damage to more lateral
hypothalamic structures was associated with anorexia and adipsia [5]. In turn, electrical
stimulation of the VMH resulted in decreased feeding, whereas stimulation of the lateral
hypothalamic region increased appetite [6–8]. As a whole, these data suggested that the
mediobasal hypothalamus was a satiety center, and that the lateral hypothalamus was an
orexigenic center [9,10].

This dual center hypothesis dominated the field for several decades until a number of studies
began to trickle data showing that neither the VMH and adjacent structures were solely satiety
centers, nor was the lateral hypothalamus uniquely involved in appetite [11,8]. For example,
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it was found that knife cuts that separated the ventral from the lateral hypothalamus without
damage to the VMH were sufficient to cause hypothalamic obesity [12]. Similarly, vagotomy
appeared to ameliorate obesity caused by VMH destruction [13,14]. Finally, destruction of
dopaminergic fibers of the medial forebrain bundle (mfb), which course through the lateral
hypothalamus, resulted in animals that showed similar anorexic and adipsic symptoms as
animals with lesions to the lateral hypothalamus [15]. Indeed, it seemed that disconnections of
pathways coursing through these regions were as effective in inducing obesity or anorexia as
the lesions themselves. For many years, the study of ingestive behavior and obesity focused
on exploring the relative contribution of different neurotransmitter systems on the regulation
of energy balance.

While a tremendous amount of data was obtained during this time, the discovery of
neuropeptide Y (NPY) and leptin can be regarded as the most important discoveries in the past
25 years. First, NPY, a 36-amino acid peptide homologue of the pancreatic polypeptide family
[16], was found to be produced within the brain primarily (although not uniquely) in the arcuate
nucleus (ARC), a hypothalamic nucleus ventral to the VMH previously implicated in the
regulation of body weight and energy balance [17]. When injected into the ventricles of rats
or within other hypothalamic nuclei, NPY potently elicited food intake [17–21]. Moreover,
NPY synthesis and content within the ARC was elevated in fasted and in genetically obese
animals [22,23]. NPY infusions also increased fat deposition and decreased brown fat
thermogenesis and oxygen consumption, suggesting that NPY was not only an orexigenic
peptide but also one important in the regulation of metabolism [24,25].

A few years later, Dr. Jeff Friedman and his associates cloned the gene that produced leptin,
a peptide hormone produced in adipocytes, and that was mutated in the ob/ob line of genetically
obese mice [26]. Treatment with leptin reversed the phenotypic abnormalities seen in ob/ob
mice and was also effective in reducing body weight and food intake while increasing energy
expenditure in normal animals [27–29]. A second line of genetically obese and diabetic mice
known as the db/db, was soon after found to be the result of a deletion of the gene encoding
the long form of the leptin receptor (ObRb) [30–32]. Finally, it was established that leptin
targeted NPY neurons within the ARC to produce these dramatic changes in metabolism
[33]. These groundbreaking discoveries laid the foundation of what could be termed as a
renaissance in the study of neural control of obesity and energy balance. Reports of other
peptides with either anorexic or orexigenic properties began to routinely appear in high impact
journals, and continue to make headlines.

Because the ARC contains the largest concentration of cells that produce NPY and have the
densest concentration of leptin sensitive neurons in the brain, it is generally accepted that this
region is key to the regulation of energy balance (Fig. 1). This is supported by the fact that, in
addition to NPY, the ARC also contains a second set of neurons that produce α?melanocyte
stimulating hormone (α-MSH), an anorectic peptide formed from the cleavage of the
proopiomelanocortin (POMC) protein [34]. This protein acts on melanocortin receptors types
3 and 4 (MC3/4, respectively) present in various hypothalamic nuclei to reduce food intake
and energy expenditure in a manner similar to leptin [35]. Moreover the pharmacological
blockade of MC3/4 receptors or the deletion of the gene encoding the MC4 receptor, result in
obesity and leptin resistance in rodents and primates [36–38]. In addition, NPY neurons
produce a second orexigenic peptide, the agouti related peptide (Agrp), an endogenous
antagonist to the MC3/4 receptor [38]. This peptide, like NPY, increases food intake
dramatically, but the increase in food intake produced by this peptide is long lasting, and effect
that is still not well understood [39]. Similarly, POMC cells also synthesize a second anorexic
peptide, the cocaine and amphetamine related transcript (CART) [40]. The relative contribution
of CART versus α?MSH in the regulation of food intake and energy expenditure remains
unexplained. What is known is that both NPY/Agrp and POMC/CART neurons within the
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ARC appear to primarily modulate food intake via their output targets (Fig. 1). Both POMC
and NPY cells have a widespread projection field that has been implicated in a variety of
physiological and behavioral events that include reproduction, water balance, body
temperature and energy balance. The main output of both NPY/Agrp and POMC/CART cells
appears to be the PVN where NPY, α-MSH and Agrp have strong effects on food intake and
body temperature. These cells, however, target other hypothalamic nuclei like the VMH,
dorsomedial hypothalamus (DMH), and LH among others to potentially modulate food intake
end energy expenditure, and the relative contribution of these nuclei to produce the orexigenic
or anorexic effects of these peptides continues to be investigated [41–43]. Finally, NPY/Agrp
neurons the ARC appear to synapse onto neighboring POMC/CART cells to inhibit them using
GABA as a neurotransmitter [44,45].

While the lateral hypothalamus had been previously described as a “hunger” center, it was not
until recently that two orexigenic peptides, hypocretin/orexin and melanin concentrating
hormone (MCH), were identified and localized within this area [46,47]. Interestingly, both
hypocretin/orexin and MCH increase food intake via different mechanisms. In the case of
hypocretin/orexin neurons, their role in the regulation of food intake has been questioned given
that their effects on food intake are short lived [48], and that ob/ob and db/db mice show lower
levels of hypocretin/orexin mRNA and peptide content than their wild type littermates [49].
Nevertheless, mice with genetic deletion to the gene encoding the prepro-orexin peptide are
hypophagic [50]. Hypocretin/orexin cells send projections to the ARC where they synapse onto
NPY/Agrp cells, which in turn project back to hypocretin/orexin cells [51]. This particular
circuit is thought to play an important role in hypocretin/orexininduced food intake [51–54].
Moreover, the presence of receptors for signals like leptin and ghrelin, as well as changes in
electrophysiological activity of hypocretin/orexin neurons in response to these signals
demonstrates that hypocretin/orexin cells can be directly modified by peripheral signals [55,
51]. Sakurai and his associates have determined that hypocretins/orexins play a crucial role in
activating arousal circuits in response to energetic challenges resulting in food seeking
behaviors and in food anticipatory behaviors [56,57].

In contrast, the role of MCH hypothalamic neurons in the regulation of energy balance appears
to be more straight forward. For example, ob/ob, db/db mice have high levels of MCH
expression in the hypothalamus, and MCH transgenic mice are overweight and gain more
weight under a high fat diet [58,46]. In contrast, MCH or MCH receptor knockout mice are
leaner, eat less and have increased metabolism than their wild type littermates [59,60].
Interestingly, α-MSH/POMC cells inhibit the activity of MCH neurons, and thus prevent
increases in food intake [61,62]. Given the widespread distribution of both hypocretin/orexin
and MCH projections [52], it has been suggested most aspects of food intake and energy
regulation could be modulated by the interaction between these two cells groups at these target
sites [63,64], and given their close proximity and synaptic interconnections, perhaps by
reciprocally modulating each other’s cellular activity [65–67].

The list of peripheral factors that, like leptin, target the ARC to modulate energy balance has
also grown [68]. Metabolic signals such as glucose availability, insulin, cholecystokinin
(CCK), pancreatic polypeptides (PP and PYY) and ghrelin have, among others, all been found
to modulate NPY and POMC in the ARC to alter food intake and metabolism. Of these, ghrelin
has received special attention given that, in contrast to the other peptides, ghrelin acts in NPY
cells within the ARC to increase food intake, adiposity and the secretion of growth hormone
[69–72]. Although ghrelin is produced primarily in the stomach [71,73], a sub-set of ghrelin
secreting neurons has been identified in the dorsal portion of the ARC and in the spaces that
surround different hypothalamic nuclei implicated in the regulation of energy balance [55,
71]. The role of these neurons remains to be determined fully, but anatomically, it appears that
these cells integrate metabolic and circadian outputs to regulate energy balance [55].
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We are then left with a model where metabolic signals that monitor energetic state, signals like
leptin, ghrelin, insulin and PYY, target the hypothalamus, and particularly the ARC to modulate
the activity of NPY/Agrp and POMC neurons. The activation of these neurons by “satiety”
signals leads to a reduction in NPY/Agrp and an increase in the release of α-MSH from POMC
neurons. Consequently, α-MSH binds to MC3/4 receptors in MCH cells in the lateral
hypothalamus to reduce food intake and with thyroid hormone and corticotropin releasing
hormones (THS and CRH) in the PVN to increase energy expenditure. In contrast, hunger
signals like a reduction in the glucose availability, or increased circulating ghrelin will lead to
increases in ARC nucleus NPY release that inhibit POMC, THS and CRH and stimulate the
secretion of hypocretin/orexin and MCH from the LH to ultimately increase food intake and
reduce metabolic rate. The ARC appears to be, therefore, a brain nucleus orchestrating brain
responses to changes in energy demands [34].

Tools for the Study of Feeding Circuits
In addition to improved lesion techniques and increased availability of agonists or antagonists
that specifically target different neuropeptide receptors, the molecular biology and molecular
genetics revolution have proven pivotal for the unveiling of feeding circuits. Molecular
biological techniques have revealed that the ObRb leptin receptor belongs to the same family
(gp130) of receptors associated with cytokines such as the interleukins [32]. Activation of this
receptor by leptin can achieve gene transcription by at least three signaling cascades that include
the activation of the JAK2/STAT3, the ERK/MAP kinase and the phosphoinositol 3 kinase
(PI3K) pathways [74–76]. Much attention has been focused on the ability of leptin to activate
STAT3 that, in turn, will act as a transcription factor for several genes that include the
suppressor of cytokine signaling 3 (SOCS 3) gene, an intracellular protein that prevents further
activation of the ObRb [77,78]. The pivotal role of STAT3 as a transcription factor that
mediates the effects of leptin on energy balance has been highlighted recently by the generation
of mice with targeted deletions to different sites for STAT3 phosphorylation, rendering animals
with deficient STAT 3 signaling. These mice are severely obese and insulin resistant, and show
high expression of NPY and Agrp, and diminished expression of POMC in the ARC [79–81].
Several knock out mice lines have underlined the importance of the melanocortin system in
the regulation of leptin’s effects and in energy balance in general. Thus, targeted deletions to
the genes that encode α-MSH, MC4 receptor, and the specific deletion of the ObRb in POMC
neurons also result in obese, hyperinsulinimic and leptin resistant mice [82,83,37]. Moreover,
naturally occurring mutations of the Ob and α-MSH genes also produce the same symptoms
in humans [84].

In contrast, deletions to the genes that encode NPY, ghrelin, or the active form of the ghrelin
receptor (growth hormone secretagogue receptor 1a or GHS-R 1a) result in few phenotypic
abnormalities [85–88]. Nevertheless, NPY /leptin double knockout animals show decreased
food intake, body weight, and adiposity in comparison to the regular leptin (ob/ob) deficient
mice [86], and ghrelin deficient animals appear to be slightly resistant to diet induced obesity
[88]. Physiological responses of NPY, ghrelin and GHS-R deficient animals remain to be fully
determined. In any event, there are a variety of mutations that lead to a lean phenotype (i.e.
MCH KO mice), and some like in the dopamine deficient mice, become completely aphagic,
needing dopamine replacement to continue eating [89,90]. The relative contribution of these
genes in the regulation of hypothalamic homeostatic circuits is a matter of continuous research
efforts.

Finally, the development of reporter genes that can be used as tags has become a welcome
addition to the study of hypothalamic circuits. For example, the gene that encodes the green
fluorescent protein (GFP), a protein that is produced in a specific species of jellyfish, has been
tagged onto the promoters of several of the peptides implicated in energy regulation. These
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gene “knock ins” have enabled the visualization of cells that synthesize neuropeptides such as
NPY and POMC, or neurotransmitters like GABA that are difficult to visualize using
immunocytochemical techniques. The use of mice with specific insertions of the GFP gene has
proven invaluable to the study of anatomical and physiological properties of specific
hypothalamic neuropeptides. For instance, Cowley and colleagues used mice with the GFP
gene inserted in the POMC promoter to unveil the electrophysiological properties of POMC
neurons in response to signals like leptin, NPY, ghrelin, and PYY [91,92]. Friedman and
colleagues have used mice with the GFP gene inserted in the NPY and POMC promoters to
determine the mechanisms by which different metabolic signals and neurotransmitters act on
NPY and POMC cells [93]. In collaboration with Friedman’s laboratory, we have used these
mice lines crossbred with ob/ob mice to describe the dynamic synaptic remodeling that occurs
in both POMC and NPY cells in response to leptin and ghrelin and that may be critical for the
regulation of energy balance, a mechanisms that will be described in ensuing pages.

Synaptic Plasticity and Energy Balance
The concept of homeostasis implies that physiological events in all organisms necessitate a
degree of plasticity or flexibility to allow for constant dynamic changes to achieve balance.
Within the brain, this plasticity is afforded by systems that can change in response to given
stimuli, and that rearrange in ways that allow for more efficient responses to future stimuli. In
contrast to old dogma, it is now well accepted that connections between cells within the adult
brain are capable to change in response to a variety of stimuli, and that these changes play an
important role in critical brain functions as learning, memory, and motivated behavior. Such
changes are referred to as synaptic plasticity.

Within the hypothalamus, synaptic changes have been implicated in a variety of processes that
include osmoregulation, lactation, circadian rhythmicity, and reproductive function [94–100].
Interestingly, proteins that are commonly found in the developing brain and that are associated
with the formation of new synapses are expressed selectively in the hypothalamus of adult
organisms, and particularly in the ARC [101]. Interestingly, ultrastructural studies of the ARC
revealed that synaptic remodeling occurs on cells within this region across the estrus cycle in
female rats [99]. Garcia ?Segura and his associates then revealed that this effect was produced
by estrogen, and that, in addition to rats, it was also observable across the reproductive cycle
of non-human primates [101]. The ARC contains both estrogen receptor alpha and beta
subtypes, yet the effects of estrogen on ARC nucleus cells can occur within minutes of the
presence of estrogen in the media, and mimic those elicited in cells by growth factors [102].
While these studies were correlated with the onset and termination of the preovulatory
luteinizing hormone surge, it has become clear that these changes may mediate the metabolic
effects of estrogen.

Coinciding with these data, researchers soon discovered that leptin, like estrogen, targeted
hypothalamic and extrahypothalamic structures that demonstrated a high degree of synaptic
remodeling, including the ARC, VMH, and hippocampus [103–105]. Within the hippocampus,
it has been demonstrated that leptin can lower the threshold for the induction of long term
potentiation (LTP) after activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate
receptors [106–108]. Because LTP is thought to result from synaptic changes, these data
suggest that leptin can induce synaptic remodeling to increase sensitivity to excitatory
stimulation.

Taken together, this information made it plausible that leptin, like estrogen, could target the
ARC and other structures to modulate energy balance by actually remodeling inputs to the
different cell groups in the ARC. In collaboration with Jeff Friedman, our laboratory engaged
in a project examining the effects of leptin on the number and type of synapses contacting both
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POMC and NPY neurons [109]. To do this, mice in which the gene encoding the GFP protein
was inserted in the promoter for either NPY or POMC were cross-bred with heterozygous
leptin deficient (ob/ob) mice, to produce ob/ob GFP transgenic mice. Electron microscopic
examination, determined that NPY cells in the ARC of ob/ob mice had more synapses than
NPY cells of wild type mice. Surprisingly, POMC neurons of ob/ob mice had a lower number
of synapses than those of wild type mice. Nevertheless, synapses onto POMC cells of ob/ob
mice were predominantly putative inhibitory (symmetric), whereas NPY cells of ob/ob mice
primarily exhibited putative excitatory (asymmetric). These data were consistent with
electrophysiological recordings showing that the frequency of spontaneous inhibitory
postsynaptic currents (sIPSCs) onto POMC cells of ob/ob mice was higher than that on POMC
cells of wild type mice, with no significant differences in the frequency of spontaneous
excitatory postsynaptic currents (sEPSCs) on these cells. In contrast, the frequency of sEPSCs
was increased and that of sIPSCs was decreased in NPY neurons of ob/ob mice compared to
NPY neurons of wild type mice. Finally, leptin administration to ob/ob mice rapidly restored
the balance of excitatory and inhibitory synapses to the levels observed in untreated wild type
mice, whereas ghrelin treatment to wild type mice had just the opposite effect. The outcome
of these experiments provided anatomical and electrophysiological evidence of a dynamic
model of energy regulation in which hypothalamic neurons are in a constant “tug of war”
between inhibitory and excitatory synapses, and where peripheral signals like leptin, ghrelin
and estrogen shift the balance to ultimately increase or decrease food intake providing for a
dynamic framework we have termed the ‘floating blueprint” [110].

Plasticity and mitochondrial UCP2
The plastic nature of ARC nucleus cells, and indeed that of any system that is capable of actual
architectural remodeling, may involve high energy expenditure, which may be reflected in the
activity as well as in the proliferation of the mitochondria. The mitochondria are involved in
the generation of cellular metabolism, and optimal mitochondrial functioning determines the
fate of individual cells [111]. Increased mitochondrial activity may, however, also result in the
generation of free radicals that can lead to cellular stress and degeneration [111]. It has been
suggested that uncoupling proteins (UCPs) are capable of preventing cell damage by
dissociating the production of energy in the form of ATP and the resultant high levels of free
radicals by regulating the proton leak from the inner membrane of the mitochondria [112,
113].

Of the different UCPs identified, UCP2 has been shown to play an important role in
neuroprotection and may, as has been previously suggested, play a role in neurotransmission
[114,115]. This may indeed be the case in the mammalian hypothalamus, where UCP2 is
constitutively expressed [115–117]. Within the ARC, UCP2 appears to be present in NPY/
Agrp producing cells, as well as in estrogen and leptin sensitive cells, which could also be
POMC secreting neurons [115]. The role of UCP2 in these systems remains to be determined
although it has been suggested that locally produced active thyroid hormone (T3) activates
UCP2 in NPY/Agrp cells, a response that may be critical to activate these cells during negative
energy balance [110]. A role for UCP2 in obesity continues to be considered, although UCP2
knock out mice do not seem to be obese [113]. Nevertheless, spontaneously obese yellow agouti
mice have a leaner phenotype when crossbred with mice that overexpress the human form of
UCP2 (hUCP2) [118]. Interestingly, although these mice are heavier than their wild type
littermates at the age of three months, they appear to have less body fat. As they age, hUCP2
transgenics do not continue to gain weight, and by the age of 10 months they are leaner than
their wild type counterparts [118]. It is therefore tempting to suggest that UCP2 protects ARC
cells from free radical damage that results from the high metabolic rate of these cells. As
animals age, uncoupling mechanisms that include the induction of UCP2 and the production
of new mitochondria may become deficient leading to alterations in cell function and ultimately
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obesity. Finally, it could be argued that UCP2 is a potential factor sustaining synaptic plasticity
in the ARC. Recently, dendritic mitochondria have been directly implicated in the generation
and maintenance of new synapses following hippocampal stimulation. In general it appears
that increases the number of mitochondria present in dendrites is directly related to the number
of synapses that are formed [119–121]. Because the induction of UCP2 also increases the
number of mitochondria in hippocampal cells [122], one can speculate that UCP2 modulates
synaptic remodeling through increases in the number of mitochondria.

Parallel Systems Regulating Food Intake and Body Weight
While it appears that the hypothalamus and in particular, the ARC, are key regions regulating
energy balance, previous and emerging data demonstrate the existence of other circuits that,
when activated, modulate food intake and body weight [63,64,123–125]. The importance of
these circuits has often been overshadowed by the attention paid to hypothalamic homeostatic
circuits, yet their study may prove to be more relevant to human obesity [63,64]. In addition,
these systems are often viewed as either secondary or connected in series with the
hypothalamus, that is, they only function once the hypothalamus has been activated. Although
these systems cannot be fully considered homeostatic, they may be activated in parallel with,
and/or perhaps recruit homeostatic centers to modulate the ingestion of food. In addition,
activation of these pathways may override regulatory signals from hypothalamic homeostatic
centers to either increase or decrease appetite. For example, it is well established that rats whose
brain stem is isolated continue to regulate the food they consume and even show affective
responses to palatable foods [126]. Corticolimbic pathways are capable of integrating sensory
inputs and produce cognitive as well as affective representations that are stored and used for
making decisions, and lesions to various corticolimbic regions result in obesity [127–129].
Feeding is also associated with motivational mechanisms, the “liking” and “wanting”, which
are required for the behavioral responses that are necessary to seek and obtain food [130,
131]. These mechanisms are commonly associated with mid brain and forebrain centers that
regulate arousal, locomotor activity, mood, and reward. Reward pathways in particular have
received special attention given the universality of food as a natural reinforcer. Dopamine
produced in cells within the mid brain ventral tegmental area (VTA) is released into several
forebrain structures like the hippocampus, ventral striatum, and prefrontal cortex, and this
release is commonly associated with the experience or the expectation of reward [132–134].
Within the ventral striatum, dopamine release into the nucleus accumbens has been implicated
in the rewarding aspects of food, sex, and drugs of abuse [135,136]. Interestingly, genetic
deletion of dopamine markedly suppresses food intake in a manner that is similar to that of
lesions of the lateral hypothalamus [89,90]. Numerous papers have appeared suggesting that
hypothalamic peptides like NPY, α-MSH, Agrp, Orexin and MCH play an important role in
modulating the activity of dopaminergic cells targeting the nucleus accumbens [137]. The idea
in these papers is that the ARC funnels metabolic information from signals like leptin or ghrelin,
to modulate the activity of the mesolimbic dopaminergic system via direct projections to the
nucleus accumbens, or indirectly through the activation of hypocretin/orexin or MCH cells that
also project to both the VTA and nucleus accumbens [63,137]. Emerging evidence, however,
supports the notion that at least the VTA is sensitive to leptin, insulin and ghrelin, and that the
activity of dopaminergic cells within the VTA can be modulated by these signals [138,139].
Further research may reveal that, in contrast to the funnel hypothesis, metabolic signals may
act directly on reward systems to modulate motivational aspects of feeding in tandem with
homeostatic systems to increase or reduce food intake.

Future Considerations
We believe that the ability of the ARC to dynamically rewire in response to ever changing
signals is necessary for cells within this nucleus to efficiently modulate energy balance.
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Interestingly, synaptic plasticity also appears to be an important feature in extrahypothalamic
circuits affecting food intake. For instance, synaptic rearrangement within the VTA and nucleus
accumbens has been implicated in the mechanisms that lead to addiction to substances like
opioids, cocaine and amphetamine [140,141]. Within the VTA, the crosstalk between
astrocytes and dopaminergic neurons appears to be important in the sensitization to
amphetamine [142,143]. Chronic cocaine stimulation leads to long lasting changes in gene
expression within the nucleus accumbens that perhaps reflect permanent changes in the inputs
to cells within this region [144]. We know that, in addition to targeting the ARC to modulate
homeostatic pathways, leptin and ghrelin potentially reach cells in the VTA, where they may
also alter their synaptic inputs to enhance or decrease their activity. Whether the modulation
of synapses in the VTA and ucleus accumbens occurs in response to exposure to natural
rewards, or in response to changes in metabolic signals like leptin or ghrelin, remain to be
determined. In any event, the examination of this issue will lead to a better understanding of
the mechanisms that cause food cravings, and those that increase or decrease the incentive
value of palatable foods. They may also lead to insight in the study of eating disorders like
obesity and anorexia nervosa, and ultimately lead to more efficient treatments for these
disorders.
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Figure 1.
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