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Abstract
Previous research has disagreed about whether a difficult cognitive skill is best learned by
beginning with easy or difficult examples. Two experiments are described that clarify this debate.
Participants in both experiments received one of three types of training on a difficult perceptual
categorization task. In one condition participants began with easy examples, then moved to
examples of intermediate difficulty, and finished with the most difficult examples. In a second
condition this order was reversed, and in a third condition, participants saw examples in a random
order. The results depended on the type of categories that participants were learning. When the
categories could be learned via explicit reasoning (a rule-based task), all three training procedures
were equally effective. However, when the categorization rule was difficult to describe verbally
(an information-integration task), participants who began with the most difficult items performed
much better than participants in the other two conditions.

Conventional wisdom suggests that the best way to learn a difficult cognitive skill is to
begin with easy examples, master those, and then gradually increase example difficulty. A
variety of evidence supports this general hypothesis. For example, a popular training
procedure, called the method of errorless learning (Baddeley, 1992; Terrace, 1964), adopts
an extreme form of this strategy in which the initial examples are so easy and each
subsequent increase in difficulty is so small that participants never make errors. The basic
assumption of this method is that errors that occur during training strengthen incorrect
associations and are therefore harmful to the learning process. Errorless learning has proven
to be an effective training procedure in a wide variety of tasks (e.g., Squires, Hunkin, &
Parkin, 1997; Wilson, Baddeley, Evans, & Shiel, 1994). Similar results have been reported
in perceptual learning tasks (e.g., Ahissar & Hochstein, 1997).

On the other hand, other studies have reported opposite results. For example, Lee et al.
(1988) trained separate groups of participants to classify a variety of stimuli. Each
successive group began with the stimuli that the previous group had classified incorrectly.
Presumably, these were the more difficult items in the two categories. In all experiments,
later groups made fewer errors than earlier groups, thus suggesting that learning may be
better when training begins with the most difficult items and concludes with the easiest.

We report the results of two experiments that clarify the role that initial difficulty plays in
category learning. Participants in both experiments received one of three types of training on
a difficult perceptual categorization task. In one condition participants began with easy
examples, then moved to examples of intermediate difficulty, and finished their training
with the most difficult examples. In a second condition this order was reversed, and in the
third condition, participants saw examples in a random order. Our results suggest that the
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effect of these different training orders depends on the type of categories that participants
are learning. When the categories can be learned via explicit reasoning (i.e. a rule-based
task), all three training procedures were equally effective. However, when the categorization
rule was difficult to describe verbally (i.e., an information-integration task), participants who
began with the most difficult examples performed much better than participants in the other
two conditions.

There is now good evidence that humans have multiple category learning systems, which are
each best suited for learning certain types of category structures, and are each mediated by
different neural circuits (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby &
O’Brien, 2005; Erickson & Kruschke, 1998; Nosofsky, Palmeri, & McKinley, 1994; Reber,
Gitelman, Parrish, & Mesulam, 2003). In rule-based category-learning tasks, the categories
can be learned via some explicit reasoning process. Frequently, the rule that maximizes
accuracy is easy to describe verbally (Ashby et al., 1998). In information-integration (II)
category-learning tasks, accuracy is maximized only if information from two or more
stimulus components (or dimensions) is integrated at some pre-decisional stage, and the
optimal strategy is difficult or impossible to describe verbally (Ashby et al., 1998).

The II and rule-based categories used in Experiments 1 and 2 are described in Figure 1. Note
that each category contains 15 circular sine-wave gratings that vary in the width and
orientation of the dark and light bars. The solid lines denote the category boundaries. On
each trial in both experiments, one randomly selected disk was shown to the participant,
whose task was to press a response key to indicate category membership. Each response was
followed by feedback indicating whether that response was correct or incorrect. In the case
of the II categories, note that no simple verbal rule correctly separates the disks into the two
categories. Nevertheless, many studies have shown that people reliably learn such
categories, provided they receive consistent and immediate feedback after each response (for
a review, see Ashby & Maddox, 2005). With the rule-based categories, the correct rule is the
logical conjunction: respond A if the bars are wide and the orientation is steep; otherwise
respond B. Despite depending on both dimensions, this is a rule-based task because the
optimal rule is easy to verbalize.

A prominent neuropsychological theory of category learning, called COVIS (Ashby et al.,
1998; Ashby & Waldron, 1999), proposes that II categories are learned via procedural-
learning, whereas rule-based categories are learned via logical reasoning, and that both types
of learning depend on the same memory systems that have been identified by memory
researchers (Ashby & O’Brien, 2005). COVIS correctly predicts many of the empirical
dissociations between rule-based and II tasks that have been reported. First, II category
learning requires immediate feedback after the response, whereas rule-based learning is
relatively unaffected if the feedback is delayed by as much as 10 sec (Maddox, Ashby, &
Bohil, 2003), or if the category label is shown before stimulus presentation (Ashby,
Maddox, & Bohil, 2002). Rule-based learning is even possible in the absence of any
feedback (Ashby, Queller, & Berretty, 1999). Second, effective II learning requires a
consistent mapping between category and response, whereas rule-based learning does not
(Ashby, Ell, & Waldron, 2003; Maddox, Bohil, & Ing, 2004). Third, rule-based learning
requires working memory and executive attention, whereas II learning does not (Maddox,
Ashby, Ing, & Pickering, 2004; Waldron & Ashby, 2001; Zeithamova & Maddox, 2006).

EXPERIMENT 1
COVIS predicts that when participants begin with easy examples in an II task, they will use
simple explicit rules that succeed with the training examples, but might not work as well
with the difficult examples. In contrast, when participants begin with difficult examples,
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they should quickly realize that no explicit strategies will succeed, which should facilitate
procedural learning. The following experiment provides a strong test of this prediction.

Method
Participants—There were 26, 24, and 31 participants respectively in the Hard-to-Easy,
Easy-to-Hard, and Random conditions. All participants were from the UCSB community
and they all reported 20/20 vision or vision corrected to 20/20. Each participant completed
one 60 minute session.

Stimuli—Each stimulus was a circular sine-wave grating of constant size and contrast.
Stimuli varied across trials in bar width (i.e., spatial frequency) and bar orientation. The
categories were created from the values in Table 1. We hereafter refer to the 5 stimuli in
each outer row as Easy (stimuli 1-5 and 26-30), the 5 stimuli in each middle row as Medium
(stimuli 6-10 and 21-25), and the 5 stimuli in the inner rows as Hard (stimuli 11-20). The
diagonal line shown in the top panel of Figure 1 denotes the category boundary. The most
accurate one-dimensional categorization rule (i.e., a vertical or horizontal line in Figure 1),
would achieve 60%, 80%, and 100% correct, respectively, for the Hard, Medium, and Easy
stimuli. Each grating subtended a visual angle of approximately 3.3°, and was generated
using Brainard’s (1997) Psychophysics Toolbox and displayed on a 21-inch monitor with
1280 × 1024 resolution.

Procedure—Participants were tested individually in a dimly lit room. They were told to
emphasize accuracy without worrying about response time. On each trial, a stimulus and
category labels were presented on the screen until the participant responded by depressing a
computer key labeled “A” or “B”. Participants were given 5 sec to respond. If they did not
respond within 5 sec a message appeared on the screen, “PLEASE RESPOND FASTER”,
accompanied by a saw-tooth tone. Immediately following the response, corrective audio
feedback was presented for 500 ms. Feedback was a sine-wave tone for a correct response
and a saw-tooth tone for an incorrect response. The feedback was followed by a pause of
1500 ms.

During training, each stimulus was presented 15 times. In the Easy-to-Hard condition, Easy
stimuli were shown first in random order, then Medium stimuli, and finally Hard stimuli. In
the Hard-to-Easy condition, this ordering was reversed. In the Random condition, all stimuli
were presented in random order. During transfer, each stimulus was presented 5 times in
random order in all three conditions.

Results
Accuracy-Based Analyses—Average accuracy is shown in Figure 2. The data of most
interest are from the transfer block (i.e., block 4), where all groups categorized all stimuli.
Block 2 is also of interest because the Hard-to-Easy and Easy-to-Hard participants received
training on the exact same stimuli during this block (i.e., Medium stimuli). A visual
inspection of Figure 2 indicates that accuracy was highest in the Hard-to-Easy condition
during both of these blocks (i.e., blocks 2 and 4). This conclusion is supported by 1-way
ANOVAs [with 3 levels of condition (Hard-to-Easy, Easy-to-Hard, and Random)], in which
both main effects were significant [Block 2: F(2, 80) = 6.15, p = .003, prep = .98; Block 4:
F(2, 80) = 8.05, p < .001, prep = .99]. Post hoc tests revealed a significant accuracy
difference in both blocks between the Hard-to-Easy and Easy-to-Hard conditions [Block 2:
F(1,50) = 8.39, p = .018, prep = .97; Block 4: F(1,50) = 5.96, p = .018, prep = .94] and
between the Hard-to-Easy and Random conditions [Block 2: F(1,55) = 7.11, p = .010, prep
= .96; Block 4: F(1,55) = 19.23, p < .001, prep > .99]. In addition, neither accuracy
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difference between the Easy-to-Hard and Random conditions was significant [Block 2:
F(1,55) = .35, p = .554, prep = .46; Block 4: F(1,55) = 1.39, p = .24, prep = .68].

Figure 3 shows how each group performed on the easiest items (stimuli 1-5, 26-30), the
items of intermediate difficulty (stimuli, 6-10, 21-25), and the most difficult items (stimuli
11-20). Note that the Hard-to-Easy group performed substantially better than either other
group on all items, except for the most difficult items during training. These, of course, were
the first stimuli the Hard-to-Easy group saw, so their undifferentiated performance here is
not surprising. During the critical transfer block, Hard-to-Easy accuracy is significantly
better than either other group on all three types of items [3 × 3 ANOVA, main effect of
condition: F(2, 78) = 8.45, p < 0.001, prep = 0.999; post hoc tests: all p < .001, prep > 0.99].

Model-Based Analyses—The accuracy-based analyses suggest that performance in the
Hard-to-Easy condition was better than in the Easy-to-Hard or Random conditions. Before
concluding that Hard-to-Easy training is superior, however, it is important to confirm that
the Hard-to-Easy participants used an II strategy. To answer this question, we fit three
different types of decision bound models (e.g., Maddox & Ashby, 1993) to the data from
each individual participant: II, rule-based, and random response models (see the Appendix
for details). The random response models assume participants guess randomly on every trial.
The II and rule-based models make no detailed process assumptions, but they assume that
each participant’s responses are compatible with either an II or rule-based strategy,
respectively.

Figure 4 shows the percentage of participants in each condition whose data were best fit by a
model that assumed an II strategy, separately for block 2 and for the transfer block. In both
blocks, participants in the Hard-to-Easy condition were significantly more likely to use an II
strategy than participants in the Easy-to-Hard condition [binomial test; Block 2: t(50) = 1.97,
p = .05, prep = .87; Block 4: t(50) = 2.53, p = .015, prep = .94] or in the Random condition
[Block 2: t(57) = 5.37, p < .001, prep > .99; Block 4: t(57) = 4.071, p < .001, prep > .99].
Also in both blocks, the percentages of participants using an II strategy in the Easy-to-Hard
and Random conditions were not significantly different [Block 2: t(55) = 3.73, p < .001, prep
= .99; Block 4: t(55) = 1.50, p = .140, prep = .77].

Overall, II models gave good accounts of the data. For example, during the transfer block,
the best fitting II models accounted for an average of 97.8%, 96.3%, and 94.6% of the
variance in the data from the Hard-to-Easy, Easy-to-Hard, and Random conditions,
respectively. In addition, the mean preps on all decisions that a data set was best fit by an II
model was greater than .999 for block 4 in all three conditions (i.e., preps computed using
the method of Ashby & O’Brien, 2008). In block 2, mean prep was greater than .999 in the
Hard-to-Easy condition and .777 in the Easy-to-Hard condition. Thus, we can be highly
confident that participants were using an II strategy when their data were best fit by an II
model.

Discussion
The Hard-to-Easy group had dramatically higher transfer accuracy on all stimuli than either
other group. In fact, Hard-to-Easy transfer accuracy was about 15 percentage points higher
than Easy-to-Hard accuracy, and the Hard-to-Easy advantage over the Random group was
greater still. In addition, participants in the Hard-to-Easy condition were also much more
likely to use a decision strategy of the optimal type - that is, an II strategy - than participants
in either other group. Further, these dramatic differences were already apparent by block 2.

A finding of secondary interest was that the Easy-to-Hard group outperformed the Random
group, both in terms of transfer accuracy and probability of using an II strategy. Although
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these differences were not significant, this trend lends tentative support to the claim that
errorless learning techniques are superior to general random training.

Ahissar and Hochstein (1997) reported that in simple feature detection tasks the more
difficult the initial training, the more specific the transfer benefits. Consistent with this
result, Doane, Sohn, and Schreiber (1999) reported that initial training with difficult
perceptual same-different judgments led to improved transfer performance on difficult, but
similar judgments, relative to initial training with easy judgments. In other words, results
from the perceptual learning literature suggest that training on difficult items might prove
beneficial to subsequent testing on similar difficult items. Note however, that this result
cannot account for our block 4 results since prior to block 4 all three groups received an
equal amount of training on the most difficult category members (i.e., stimuli 11-20).

It is also important to note that our results are incompatible with the two most popular single
system theories of categorization - namely prototype theory and exemplar theory. Prototype
theory assumes that when an unfamiliar stimulus is encountered, it is assigned to the
category with the most similar prototype (Homa et al., 1981; Posner & Keele, 1968; Reed,
1972; Rosch, 1973; Smith & Minda, 1998). Exemplar theory assumes that when an
unfamiliar stimulus is encountered, its similarity is computed to the memory representation
of every previously seen exemplar from each relevant category (Brooks, 1978; Estes, 1986;
Hintzman, 1986; Lamberts, 2000; Medin & Schaffer, 1978; Nosofsky, 1986).

To see what these theories predict in the present experiment, consider block 2 where
participants in the Hard-to-Easy and Easy-to-Hard conditions only saw stimuli of medium
difficulty. Consider a trial when a stimulus is shown from category A. For the Easy-to-Hard
group the prototype will be somewhere near the center of the Easy stimuli and for the Hard-
to-Easy group it will be near the center of the Hard stimuli. Stimuli of medium difficulty
then will be equally near the category A prototype for both groups. However, medium
category A stimuli will be further from the B prototype for the Easy-to-Hard group than for
the Hard-to-Easy group. Thus, prototype theory predicts that categorization will be easier for
the Easy-to-Hard group and that they should therefore have higher block 2 accuracy than the
Hard-to-Easy group. Of course, this is exactly opposite to the observed results.

The argument is similar for exemplar theory. A category A stimulus of medium difficulty is
equally similar to the Easy and Hard category A exemplars. However, such stimuli are less
similar to the Easy category B exemplars than to the Hard category B exemplars. Thus,
exemplar theory also incorrectly predicts that block 2 accuracy should be higher in the Easy-
to-Hard condition.

EXPERIMENT 2
Experiment 1 strongly contradicts predictions of errorless training, but seems consistent with
the results of Lee et al. (1988). Of the four category structures studied by Lee et al. (1988),
at least one seemed like an II task (was the handwriting written by a man or a woman?), and
at least one seemed like a rule-based task (does the sentence indicate an upward or a
downward direction?). The results for these two category structures were similar. In both
cases, overall accuracy was higher for participants who first trained on stimuli that other
participants found particularly difficult. In contrast, COVIS predicts that the learning
advantage of the Hard-to-Easy group in Experiment 1 depends critically on the fact that II
categories were used. To clarify this issue, Experiment 2 replicates Experiment 1 exactly,
except using the rule-based categories shown in bottom panel of Figure 1.
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Method
Participants—There were 31 participants each in the Hard-to-Easy, Easy-to-Hard, and
Random conditions. All participants were from the UCSB community reported 20/20 vision
or vision corrected to 20/20. Each participant completed one 60 minute session.

Stimuli—The stimuli were constructed in the same manner as in Experiment 1. The exact
dimensional values are shown in Table 2.

Procedure—The procedures were identical to those outlined in Experiment 1 except
Experiment 2 used the stimuli and categories shown in Figure 4.

Results
Accuracy-Based Analyses—Mean accuracy is shown in Figure 5. The data of most
interest are again from the transfer block and from block 2. A visual inspection indicates that
accuracy was approximately the same during both of these blocks. This conclusion is
supported by 1-way ANOVAs, in which neither main effect was significant [Block 2: F(2,
90) = .045, p > .50, prep = .11; Block 4: F(2, 90) = .851, p > .40, prep = .55].

Figure 6 shows how each group performed on the easiest items (stimuli 1-5, 26-30), the
items of intermediate difficulty (stimuli, 6-10, 21-25), and the most difficult items (stimuli
11-20). During training, the Hard-to-Easy group was worse than the other groups on the
most difficult items [F(2, 90) = 5.11, p < 0.01, prep > 0.95], but there was no difference
among any of the groups on the intermediate or easy items (p > 0.3, prep < 0.64). During
transfer, the Easy-to-Hard group performed best on all items, but none of these differences
reached significance [F(2,90) = .669, p = .515, prep = 0.49].

Model-Based Analyses—To confirm that all groups used similar decision strategies, we
fit the same decision bound models used in Experiment 1 to the responses of each
participant. Figure 7 shows the percentage of participants in each condition whose block 2
and transfer block data were best fit by a model that assumed a logical conjunction decision
rule. Note that in all blocks and conditions, a model of this type was the best fitting model
for at least 75% of participants. Furthermore, there were no significant differences in these
percentages across conditions [all p > 0.35].

Discussion
When the optimal rule was a logical conjunction, there was no difference in any of the
training procedures, either in overall accuracy or in the likelihood that participants learned
the correct categorization rule. There was a trend toward better performance by the Easy-to-
Hard group, as predicted by errorless learning, but this difference was not significant. These
results appear to contradict the results of Lee et al. (1988), who reported that overall
accuracy in a rule-based task was higher for participants who first trained on stimuli that
other participants found particularly difficult. One complication in interpreting the Lee et al.
results is that they did not include a transfer block, like our block 4. For this reason, they
were unable to assess whether there was any real learning advantage of their Hard-to-Easy
group. Unfortunately, the higher overall accuracy of this group does not necessarily imply a
learning advantage. For example, in a rule-based task where accuracy is at chance before the
correct rule is learned and where all-or-none learning occurs (i.e., in one trial), it is
straightforward to show that participants who begin with the most difficult items will have
higher accuracy than participants who begin with easy items. This is because beginning with
difficult items means more easy items later, after the rule is learned (and thus, more chances
to respond correctly). In summary, higher accuracy in the Lee et al. (1988) design does not
guarantee better learning.
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GENERAL DISCUSSION
The results of Experiments 1 and 2 were dramatically different. With II categories, initial
training on the most difficult items led to higher accuracy and a greater probability that the
correct rule was learned. With rule-based categories however, there were no differences
among any of the training methods, either in accuracy or the strategy that was learned. This
difference is especially striking since both category structures required participants to attend
to both stimulus dimensions, and the stimuli used in the two experiments were essentially
the same.

The COVIS theory of category learning (Ashby et al., 1998; Ashby & Waldron, 1999)
predicts that the advantage of the Hard-to-Easy group with II categories occurred because
the other groups were rewarded early in training for using simple explicit rules. For
example, participants using a one-dimensional rule in Experiment 1 could achieve perfect
accuracy during block 1 in the Easy-to-Hard condition, 80% correct in the Random
condition, but only 60% correct in the Hard-to-Easy condition. Participants who used a
simple rule during block 1 may then have persisted with explicit strategies in later blocks1.
This hypothesis is supported by the lower percentages of Easy-to-Hard and Random
participants whose data were best fit by a model assuming an II decision strategy in blocks 2
and 4. In contrast, the Hard-to-Easy group was punished from the outset (with low accuracy)
for using one-dimensional rules. This may have encouraged Hard-to-Easy participants to
quickly give up on explicit rules and instead use some nondeclarative similarity-based
strategy (which in this experiment was optimal).

The present results suggest that optimal training procedures in difficult categorization tasks
may depend on the nature of the categories that are being trained. In particular, our results
suggest that if the optimal rule is not easily verbalized and accurate performance requires
integrating information from different perceptual dimensions, then the most effective
training procedure might be to begin with difficult examples and only introduce easy
examples later, after participants have learned that no simple verbal rule will succeed.
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APPENDIX
This appendix describes the models that were fit to each participant’s data and the model
fitting procedure. For more details, see Maddox and Ashby (1993).

Rule-Based Models
The One-Dimensional Classifier assumes participants set a decision criterion on a single
stimulus dimension (i.e., bar width or orientation), and has two parameters (a criterion on
the relevant dimension, and perceptual noise variance). The General Conjunctive Classifier
assumes that the decision rule is a logical conjunction, and has 3 parameters (a criterion on
each dimension, and perceptual noise variance).

1It is difficult to test for strategy differences among conditions during block 1 because the exemplars from the contrasting categories
were so widely separated in the Easy-to-Hard condition. For example, II and rule-based models can both provide perfect fits to block 1
data from an Easy-to-Hard participant who had perfect accuracy.
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Information-Integration Models
The General Linear Classifier (GLC) assumes participants divide the stimulus space using a
linear decision bound. The GLC has 3 parameters: the slope and intercept of the linear
decision bound, and a perceptual noise variance.

Random Response Models
Two models assumed random responding - one with unbiased guessing (zero parameters)
and one with biased guessing (one parameter).

Model Selection
Parameters were estimated using the method of maximum likelihood, and the Bayesian
Information Criterion (BIC; Schwarz, 1978) was used for model selection:

where r is the number of free parameters, N is the sample size, and L is the likelihood of the
model given the data.
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Figure 1.
Stimuli and categories used in the Experiments 1 and 2. Each stimulus was a circular sine-
wave grating that varied across trials in bar width and bar orientation. The solid lines denote
the category boundaries. The stimulus numbers refer to Tables 1 and 2.
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Figure 2.
Proportion correct for Hard-to-Easy (empty squares), Easy-to-Hard (filled circles), and
Random (filled triangles) conditions in each block (with standard error bars) during
Experiment 1. Proportions from the transfer block are boxed.
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Figure 3.
Proportion correct for each group in Experiment 1 during training and transfer on easy,
medium, and difficult items.
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Figure 4.
Proportion of Experiment 1 participants whose data were best fit by a model assuming an II
decision strategy for blocks 2 and 4 in each of the three experimental conditions.
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Figure 5.
Proportion correct for Hard-to-Easy (empty squares), Easy-to-Hard (filled circles), and
Random (filled triangles) conditions in each block (with standard error bars) of Experiment
2. Proportions from the transfer block are boxed.
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Figure 6.
Proportion correct for each group in Experiment 2 during training and transfer on easy,
medium, and difficult items.
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Figure 7.
Proportion of Experiment 2 participants whose data were best fit by a model assuming the
decision rule was a logical conjunction for blocks 2 and 4 in each of the three experimental
conditions.
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Table 1

Stimulus Values

Category Stimulus Number Bar Width1 Orientation2

A

1 0.010 56.09

2 0.033 67.07

3 0.056 78.04

4 0.079 89.02

5 0.102 100.0

6 0.026 48.41

7 0.049 59.39

8 0.072 70.36

9 0.095 81.34

10 0.118 92.31

11 0.0424 40.73

12 0.065 51.70

13 0.088 62.68

14 0.111 73.65

15 0.135 84.63

B

16 0.074 25.36

17 0.098 36.34

18 0.121 47.31

19 0.144 58.29

20 0.167 69.26

21 0.091 17.68

22 0.114 28.65

23 0.137 39.63

24 0.160 50.61

25 0.183 61.58

26 0.107 10.00

27 0.130 20.97

28 0.153 31.95

29 0.176 42.92

30 0.200 53.90

1
cycles per degree

2
degrees counterclockwise from horizontal
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Table 2

Stimulus Values

Category Stimulus Number Bar Width1 Orientation2

A

1 0.103 90.00

2 0.116 90.00

3 0.128 90.00

4 0.128 98.89

5 0.128 107.78

6 0.100 76.67

7 0.123 76.67

8 0.147 76.67

9 0.147 93.33

10 0.147 110.00

11 0.103 63.33

12 0.134 63.33

13 0.165 63.33

14 0.165 85.56

15 0.165 107.78

B

16 0.103 36.67

17 0.153 36.67

18 0.203 36.67

19 0.203 72.22

20 0.203 107.78

21 0.106 23.33

22 0.164 23.33

23 0.221 23.33

24 0.221 64.44

25 0.221 105.56

26 0.100 10.00

27 0.170 10.00

28 0.240 10.00

29 0.240 60.00

30 0.240 110.00

1
cycles per degree

2
degrees counterclockwise from horizontal
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