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Minimum mass vascular networks in
multifunctional materials
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A biomimetic analysis is presented in which an expression for the optimum vessel diameter
for the design of minimummass branching or vascular networks in engineering applications is
derived. Agreement with constructal theory is shown. A simple design case is illustrated and
application to more complex cases with branching networks of several generations discussed.
The analysis is also extended into the turbulent flow regime, giving an optimization tool with
considerable utility in the design of fluid distribution systems. The distribution of vessel
lengths in different generations was also found to be a useful design variable. Integrating a
network into a structure is also discussed. Where it is necessary to adopt a non-optimum
vessel diameter for structural integration, it has been shown that small deviations from the
minimum mass optimum can be tolerated, but large variations could be expected to produce
a punitive and rapidly increasing mass penalty.
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1. INTRODUCTION

Multifunctional engineering materials can be defined as
imparting the ability for the material to perform some
useful secondary function as well as achieving the
primary, usually structural, requirement. Several
examples of multifunctional materials have been
reported, including self-heating (Chung 2004; Santos
et al. 2004), electromagnetic functionality (Nemat-
Nasser et al. 2002; Plaisted et al. 2003) and self-healing
(e.g. Dry 1996; Bleay et al. 2001; White et al. 2001;
Trask & Bond 2006). Both animals and plants use a
fluid transport system to perform several roles.
Containing a network of vessels within a structural
material is a biomimetic way of adding functionality to
a material. Such vascular-scale fluid flow has potential
applications in multifunctional materials for self-heal-
ing, thermal control and adaptive stiffness structures.
Examples of these applications are discussed below.

Self-healing has received considerable recent atten-
tion in the literature, as a means to mitigate subcritical
damage in composite materials, such as fatigue or
impact. Liquid-based self-healing approaches involve
fluid release from damaged microcapsules (Kessler &
White 2001; White et al. 2001; Brown et al. 2002;
Kessler et al. 2002, 2003) or hollow glass fibres (Bleay
et al. 2001; Pang & Bond 2005; Trask & Bond 2006;
Trask et al. 2007b). In liquid-phase self-healing, the
storage and delivery of repair agent could disrupt the
laminate structure and may incur a mass penalty.
Microcapsules and hollow glass fibres couple both
delivery and storage functions, an elegantly simple
orrespondence (i.p.bond@bristol.ac.uk).
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approach but one in which there is a risk that neither is
performed optimally. Disruption to the structural role
of the material tends to drive the selection of smaller
vessels, limiting the available fluid volume. A recent
review of biomimetic self-healing (Trask et al. 2007a)
has identified that a branched or vascular network
approach would allow the contents of a remote reservoir
to be delivered into a zone of damage anywhere in a
material. Philen et al. (2006) have analysed the concept
of an adaptive stiffness structure consisting of flexible
matrix composite tubes with different fibre orientations
in which the internal pressure can be adjusted via
valves to change the overall stiffness by a factor of 3000.
In theory, a higher base pressure supplied through a
network of channels could expand the available stiffness
ratios. There is also interest in microfluidic devices for
applications such as enhanced mixing (Therriault et al.
2003, 2005) and ‘lab-on-a-chip’ systems, where fluid
handling systems are miniaturized for chemical and
biomedical applications (Lim et al. 2003; Emerson et al.
2006). Any high-performance engineering application
of a branched network for fluid flow will carry a mass
implication, and there is a very real need to optimize
any such networks for minimum mass.

The driver for the current work is to optimize the
diameter of vessels in an engineering vascular network,
especially where the network bifurcates, since it is this
feature thatallowsa large area tobe supplied fromasingle
reservoir or pump. A biomimetic approach is adopted
whereby the branching of a natural vascular network is
investigated to apply a principle fromanatomy or biology
to the design of vascular networks in high-performance
engineering applications. The paper begins with a review
of vascular flow in natural and engineering contexts.
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The literature discussing the applications of Murray’s
law, a biological optimization principle, to engineering
applications is reviewed and found to be limited in scope.
The inclusion of a branching network of fluid vessels
within a structural material has applications in self-
healing, thermal control and adaptive structures but
carries an implicit mass penalty. Mass is the prime driver
in the structural design of many high-performance
engineering systems including multifunctional
structures, and using the basic assumptions of Murray’s
law to develop an engineering method of determining
optimum diameters for a minimummass vasculature has
not been considered in the literature. In a structural
context, it is also important to consider whether the
vascular network could degrade the primary mechanical
properties of the material. Finally, a study is undertaken
to examine the compromise in structural performance
(mass penalty) by varying the structure or vessel
diameter from an optimum design. This is linked back
to the conclusions of several studies on Murray’s law in
plants and animals.
2. REVIEW OF VASCULAR FLOW

2.1. Optimum vascular networks in nature

Murray (1926) described a theoretical analysis of the
distribution of blood vessel sizes in humans. This work
centred on the premise that the human vascular system
would have evolved to minimize the power required to
maintain and circulate blood. He argued that there
were two main components of the power loss: the power
required to overcome the friction losses in the vessels
and pump the fluid; and the metabolic cost associated
with maintaining the blood, a living fluid. The former
was modelled using Poiseuille’s law, which is stated in
appendix A and was reviewed by Sutera & Skalak
(1993). The latter, metabolic power, was assumed to be
directly proportional to blood volume. Simple calculus
was used to demonstrate that a minimum power is
required at some given blood vessel size. Qualitatively,
smaller blood vessels would require a larger pumping
power due to friction losses and larger blood vessels
would increase the volume of blood to the point where
the metabolic power, required to maintain the blood,
competes with the power required for flow. The
relationship known as Murray’s law followed from
this analysis: it was shown that where vessels subdivide,
the sum of the cubes of the daughter vessel radii (rd1
and rd2) should equal the cube of the parent vessel
radius rp for minimum power

r 3p Z r 3d1 Cr 3d2: ð2:1Þ

Sherman (1981) has reviewed Murray’s derivations
andphysiological studies onvariousmammals.Thiswork
has brought out some subtle points in Murray’s work.
Murray’s lawwasderivedassuming that themaintenance
‘cost’ was a function of the contained volume of the vessel
wall, rather thanthe includedvolumeand thevessel itself.
In practice, there will also be a maintenance cost
associated with the wall tissue and Sherman showed
that Murray’s law can also hold for this case if the vessel
wall thickness is proportional to internal radius. It was
J. R. Soc. Interface (2008)
assumed that the vessel wall has the same maintenance
cost per unit volume as the included fluid. Physiological
studies showed that barring some anomalies (that are
explicable in relation to sample preparation or the
difference between arterial and venous flow), selected
mammalian vascular specimens revealed reasonable
agreement with equation (2.1). Later work reported by
Sherman & Popel (1989) and originally derived by
Milsum & Roberge (1973) showed that the predicted
total power demand is relatively insensitive to radius
close to the Murray optimum; a 10% change in radius
from the optimum was found to increase the power
requirement by only 3–5%.Bejan (2000, 2005;Bejan et al.
2000) has used constructal theory—the concept that the
survival of a flownetwork relies on continued evolution to
minimize flow resistance—to theoretically investigate
fluid flow in networks by minimizing the hydraulic
resistance with the network volume constrained. Agree-
ment with Murray’s law was shown. This conclusion was
independent of network geometry, which verifies the
practical utility of Murray’s law.

There is a considerable mass of literature comparing
Murray’s law to physiological studies in animals. Taber
and colleagues (Taber et al. 2001) provide a wide
selection of references in their paper showing good
agreement in the chick embryo. McCulloh has pub-
lished several papers (McCulloh et al. 2003, 2004;
McCulloh & Sperry 2005) discussing the applicability
of Murray’s law in plants. Broadly, these studies show
good agreement except where the vascular conduits
provide a direct structural role. In certain cases, the
works support Popel & Johnson’s (2005) argument that
since the penalty of deviating from Murray’s law may
be small, structural constraints are likely to influence
the evolution of these features significantly.
2.2. Vascular networks in engineered structures

Lim et al. (2003) have developed ‘multi-width multi-
depth’ miniature fluid channel networks in silicon
wafers that effectively follow Murray’s law, albeit
with a non-circular channel cross-section. Four-gener-
ation branching networks were compared by measuring
the velocity of fluorescent microbeads suspended in the
flowing fluid. One network was multi-width only and
does not obey Murray’s law, while the other is depth
tapered to follow Murray’s law. The velocity changes
were found to be smaller in the latter network and it is
stated that the resistance should be significantly
reduced, although measurements are not reported. It
is stated that the use of Murray’s law to design a
vascular network should result in a significantly
reduced hydraulic resistance. This is not strictly
accurate; Murray’s law geometry was derived to obtain
minimum system-level power demand and if lowest
resistance is required then the largest vessel diameter
should be selected at all points.

Emerson et al. (2006) have performed analytical and
numerical simulations of microvascular networks, with
particular emphasis on the microvascular lab-on-a-chip
systems such as those discussed previously (Lim et al.
2003). Analytical expressions for networks of square or
trapezoidal cross-section are developed and the total
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resistance of the flow is considered in an idealized
system where the length of each segment scales linearly
with the diameter. The use of non-circular cross-
sections required a correction based on the equivalent
hydraulic diameter. The analysis uses Poiseuille’s law
(see appendix A) expressed using a resistance analo-
gous to the well-known Ohm’s law by assuming that the
pressure difference is analogous to a potential difference
and the flow rate is equivalent to electrical current.
Resistances can then be summed in series and their
reciprocals summed in parallel to assemble the total
resistance of any network. These expressions were
expanded into an elegant method of analytically
following the trends and comparing with computational
fluid dynamics (CFD) simulations. The latter part of
the paper compares the analytical and CFD analysis of
flow resistance and shows excellent agreement over a
four-generation network, where the junctions obey
Murray’s law and where the daughter vessels are larger
or smaller than the Murray’s law optimum. The simple
analytical model diverges from the CFD above a flow
Reynolds number of approximately 30 due to losses in
the 908 bends in the network. The experimental mean
flow velocity reported by Lim and colleagues (Lim et al.
2003) was also compared to analytical and numerical
simulations using this method. Agreement was reason-
able; however, the velocity measurement approach
produced a large scatter. This work provides important
validation of the engineering application of Murray’s
and Poiseuille’s laws. An assumption made in this
analysis is that the length of each section scales with the
diameter; this has also been justified in Bejan’s studies
(Bejan 2000, 2005; Bejan et al. 2000). However, it may
be necessary to deviate from this biomimetic principle
in practical designs.

The minimization of pumping power for tree net-
works has been studied by Gosselin & Bejan (2005).
This work used the concept of constructal theory to
develop a design tool for minimizing the pumping
power required to join arbitrary points. This was
demonstrated using networks joining 10 points. Con-
structal theory has also been used in the design of self-
healing applications (Bejan et al. 2006; Kim et al. 2006;
Wang et al. 2006). In the former two studies, a fully
interconnected grid of channels statically pressurized
with healing agent was considered, with damage
occurring at any point. Fluid from the rest of the grid
fills damage when it occurs. The global resistance of
flow from the grid into the damage was minimized by
numerical methods based on constructal theory, and it
was found that the use of two different alternating
vessel diameters in the grid approximately halved the
global flow resistance into the crack. Optimum ratios of
the two vessel sizes were developed, but the absolute
value of an optimum size was not considered. More
recently (Kim et al. 2006), a tree-shaped configuration
has been studied, which is closer to that considered in
this paper; it is designed to minimize the resistance of
continuous flow through a network with one entry and
one exit point. The optimum ratios of diameters in
different parts of different-sized and configured net-
works were studied. The overall choice of configuration
was driven by efficient space coverage. The methods all
J. R. Soc. Interface (2008)
rely on numerical optimization, making them very
effective in global system-level optimization, but they
do not offer intuitive insight into the basic factors at
play, especially in simple systems.
3. DERIVATION OF VESSEL DIAMETER FOR
MINIMUM SYSTEM MASS

The fundamental premise of the current work is that
every individual section of vessel in an engineering
vascular system needs to achieve some desired flow rate,
using a given fluid and pumping system, in a minimum
mass system. To achieve this, there will be some
optimum diameter for every section of vessel in the
system; the mass of the pump required to circulate the
fluid will increase as the resistance rises with falling
vessel diameter, but the mass of the tubing and fluid
itself will rise as the diameter increases. The derivation
of the optimum vessel diameter, d �

i , for a single section
of vessel is detailed in appendix A, and it yields the
following result:

d �
i
6 Z

1024 Q2m

p2k rtubeðc2 C2cÞCrfluid½ � ; ð3:1Þ

where Q is the volumetric flow rate; m is the fluid
viscosity; k is the power-to-mass ratio of the pumping
system; rtube is the density of the tubing material; c is a
constant of proportionality linking vessel wall thickness
with internal diameter and effectively incorporating the
strength of the tubing material; and rfluid is the density
of the circulating fluid. For reasons of completeness, it is
convenient to comment further on the derivation of
equation (3.1). After initial review, it was brought to the
authors’ attention that the conflict between system size
and overall weight had already been discussed in general
terms by Ordonez & Bejan (2003). More specifically, a
very similar expression to equation (3.1) has been
derived by Bejan & Lorente (2002) and Bejan et al.
(2004) using constructal theory. The derivation route
was different from that presented in appendix A,
assuming that a power penalty was incurred in
transporting the additional mass of a flow system in
an aircraft rather than a mass penalty in providing an
appropriately sized pump. In particular, the former
expression required knowledge of the thermodynamic
isentropic pump efficiency and the aircraft flight speed.
The selection of the cruise speed for an aircraft is an
exceptionally complex part of the conventional design
process. It is desirable to remove dependence on this
variable from the design of subsystems. In practical
aircraft or vehicle design, it is common practice to sum
the weight of individual components in a ‘mass budget’
rather than considering the individual power penalty of
each system. It could be argued that the variables in
equation (3.1) are more appropriate for the conven-
tional vehicle design process, since reducingmass is, to a
greater or lesser extent, desirable in the design of all
vehicles. Fundamentally, agreement has been shown
between constructal and biomimetic approaches, in that
an adaptation of the method reported byMurray (1926)
produces a result of the same form as that obtained
through constructal theory.



Table 1. Power–weight ratios for some commercially available pumps of different types.

type pump index k (W kgK1) reference(s)

DC peristaltic pump (approx. 7 ml minK1) 0.05 Williamson Pumps Ltd (2004)
VentrAssist artificial heart 10 Ayre et al. (2000), Ventracor Ltd (2002)
fixed displacement hydraulic pump (approx. 6 l minK1) 700 Technova (2006)
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Figure 1. Effect of pump mass index on optimum diameter
over a range of viscosities.
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This expression, therefore, gives an internal diameter
for the minimum system mass of a vascular network
carrying a volumetric flow rateQ. It is sufficiently general
to allow consideration of walled or channelled tubes, with
the tube and included fluids being of different densities.
Implicitly, it includes an optimization of the tubing wall
thickness. It shows agreementwith the conventional form
of Murray’s law, that of cubic scaling at a junction,

d �
i
6fQ2

d �
i
3fQ

: ð3:2Þ

A biomimetic engineering design tool has therefore
been developed from the study of a biological principle by
re-evaluating in terms of mass, a cost function that is
immediately applicable to high-performance engineering
systems.Avital distinctionbetween this and themajority
of the literature is that with the exception of the original
derivation (Murray 1926) and the recent constructal
result (Bejan&Lorente 2002;Bejan et al. 2004), focus has
been almost exclusively on testing or replicating Mur-
ray’s cubic scaling law at junctions. In the design of a
vascular network for minimum mass, an absolute
optimum diameter can now be calculated in terms of
accessiblequantities. Junctions can thenbedesigned such
that the daughter vessels sum to the cube of the parent
vessel, since this relationship holds regardless of the
absolute size of the vessels. Simply scaling vessels
cubically from some arbitrary original diameter will not
result in an optimized network. The use of a non-circular
channel cross-section based on a hydraulic diameter
would produce a different, but analogous, expression to
equation (3.1), but the same junction relationship in
equation (3.2).
4. APPLICATION

4.1. Design of a single section of tube

At the smallest scale, it is desirable to understand the
sensitivity of the optimum diameter of a single length of
network to certain variables. The key variables that can
be expected to influence the design of a section of
vascular network—whether for self-healing, thermal
control or adaptive structures—are likely to be flow
rate, Q, pump mass index, k, and fluid viscosity, m.
A range of practical values corresponding to low
Reynolds number flow were selected to establish ranges
of typical internal diameters. The variation of other
variables, e.g. material densities and tube wall thick-
ness, is likely to be well defined and influenced by wider
design factors and is thus fixed here.

The pump mass index, k, is simple to define but
difficult to implement owing to the wide range of
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possible pump designs. Some practical values for
mechanical pumps are given in table 1, and they show
the large range to be expected. The selection of a
specific value will depend on the type of pump chosen
and, ultimately, will be at least semi-empirical.

Figure 1 shows that for representative ranges of
viscosities and at an appropriate flow rate, the optimum
diameter shows onlyanorder ofmagnitudevariation over
five orders of magnitude of k. The variation in optimum
diameter was similar when the flow rate was varied
between 1 and 25 ml minK1. Over the range considered,
the effect of viscosity on optimum internal diameter is of
similar order of magnitude to the effect of pump index,
which is expected from equation (3.1). The values of
viscosity selected span the range from water to a typical
resin system for self-healing applications.Over the ranges
of pump index, k, and viscosity considered, the optimum
diameter remains in themillimetre scale for this flow rate.

Fordesign, itwill be necessary to obtain reliable values
of pump index andviscosity todetermine absolute system
mass, but these values are tolerant of uncertainties if an
optimum internal diameter is required.

Taking a mid-range viscosity of 400 cP and a pump
mass index of unity allows the effect of desired flow rate
on vessel internal diameter to be investigated. Figure 2
shows that the optimum diameter is highly sensitive to
flow rate at lower rates, but less so at higher rates.

The effect of the tubing mass is also shown in figure 2.
Adding the tube mass term (setting constant c to a non-
zero value) is seen to reduce the optimum diameter, as
would be expected. Intuitively, this can be seen as
accepting an increase in the pump mass to offset some of
the mass increase of the network itself. In absolute terms,
the effect on diameter is negligible at lower flow rates,
which can be seen by inspection of equation (3.1), but at
moderate flow rates the difference can exceed a milli-
metre. In a practical manufacturing environment, tubing
is supplied in a range of discrete sizes. This analysis,
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Figure 3. A simple vascular network with optimum vessel
diameters.
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Figure 2. Influence of desired flow rate on optimum vessel
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therefore, has a practical implication since the difference
is sufficient to justify the selection of a different tubing
diameter.
4.2. Tube length in network design

In principle, networks with multiple branches could be
optimized in this analysis. In practical applications, it
could be necessary to join tubing of different sizes using
joint fittings and this would raise additional optimi-
zation questions. At a bifurcation, a joint is a necessary
evil, but providing the tube length is much greater than
the diameter (l/diO30), the influence of the joint on
overall network design will be small because losses will
be dominated by those in the tube (Wang et al. 2006). It
has been shown that a network bifurcating on several
levels, forming a dendritic pattern, is the most efficient
way to ensure ‘access’ to an area from a point (Bejan
2000). In the work considered here, this takes the form
of supplying a fluid flow from a pumping source to
channels covering a wide area, and potentially return-
ing the flow to a single channel for return to the pump.
A branching system also has the added design freedom
of allowing the spacing between channels to be tailored
for different regions of a component. The degree of
branching will be driven by the component geometry
and the desired spacing between channels in each
generation. This will be highly application dependent,
but in simple cases will reduce to the number of
branches, the vessel diameters and the length of each
generation. The optimum diameter for each section is
independent of vessel length because both the terms in
the system mass expression rise linearly with length. In
a network with multiple generations, the lengths of
each section are, however, also design variables. The
total massmn per unit length l n of the nth generation is
derived in appendix A, yielding the following result:

mn

ln
Z 2n=3

128 Q2
0m

pd 4
i0k

C
pd 2

i0

4
½rtubeðc2 C2cÞCrfluid�

� �
:

ð4:1Þ

The coefficient, 2(n/3), shows that the total mass per
unit length increases through the network generations.
For a minimum mass network, the length of vessels in
generations with more numerous smaller vessels should
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always be minimized in favour of longer lengths in
generations with fewer larger vessels. It is noteworthy
that this conclusion represents a clear driver to keep the
degree of branching to the minimum required to
achieve the desired network coverage. This is an
intuitive but nonetheless important and simply applied
design principle. The development in appendix A
concludes with an expression for the mass of each
generation assuming that the vessel length at each
generation is directly proportional to the corresponding
diameter. This configuration is often found in natural
systems (West 1990) and has formed the basis of other
engineering applications of Murray’s law (Emerson
et al. 2006).

mn ZC
128 Q2

0m

pd 3
i0k

C
pd 3

i0

4
½rtubeðc2 C2cÞCrfluid�

� �
:

ð4:2Þ
In this special case, the mass of each generation is

constant and equal to the mass of the first generation.
This is not a minimum mass configuration, but the
constant generation mass may make it an elegant
solution for use in design. To illustrate the use of
equation (3.1) and the understanding of the effect of
vessel length, consider a four-level network of channels
with variables as given in figure 2, curve (I). If the
flow required through each of the smallest tubes is
5 ml minK1, the optimumvessel diameter for this level is
2.47 mm to three significant figures. Figure 3 shows a
schematic of the network designwith higher levels scaled
from this according to the sum of the cubes. Since the
volume flow rate sums at a junction (analogous to
electrical current), the optimum diameters can also be
obtained by reading from figure 2 at 10, 20 and
40 ml minK1. Section lengths have been chosen to be
approximately proportional to local diameter.
4.3. Advanced network design

The network shown in figure 3 is relatively simple
because it is symmetrical and unconstrained by
component geometry. Equation (3.1) has utility in
describing individual sections of more complex asym-
metrical networks such as those that might be required
in practical designs. The complication in these cases is
that the flow rate at each point cannot be determined
by inspection and will be a function of the diameters of
different parallel flow paths. An iterative solution will
be required in these cases since flow rate and optimum
diameter are coupled, with equation (3.1) applied
iteratively to each section. It is probable that, in
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practice, there will be many influences on the vessel
length required in each generation. Symmetrical
bifurcating branches were assumed in the derivation
of equations (4.1) and (4.2). In complex asymmetrical
networks, further work would be required to produce a
rigorous optimization. However, the general principle
that the length of the more numerous smaller vessels
should be minimized in favour of fewer larger vessels
stands. Clearly, other factors may drive long lengths of
numerous small vessels, at which point a trade-off
becomes necessary.
5. TURBULENT FLOW

Poiseuille’s law is valid only for laminar flow. The
applications envisaged in this study all require low flow
rates and small diameters and must allow for the use of
high viscosity fluids. They are all, therefore, well within
the laminar flow regime. However, an optimum
diameter could also prove a useful design tool for
applications with turbulent flow. Uylings (1977) has
extended the derivation of Murray’s law to include the
power dissipation in turbulent flow. Bejan et al. (2000)
has also used the constructal approach to arrive at the
same junction relationship as Uylings (1977) for
minimum pressure drop within a volume-constrained
network, and has suggested that the expression for
optimum tube diameter can also be obtained for
turbulent flow (Bejan & Lorente 2002; Bejan et al.
2004), although this has not been explicitly derived.
A mass-driven analysis that gives absolute values has
potential as a useful design tool in this case; hence, the
development of an expression for optimum diameter in
turbulent flow is detailed in appendix B and yields

d �
i
7 Z

80rfluidA

p3kðrtubeðc2 C2cÞCrfluidÞ
Q3; ð5:1Þ

where A is a constant, which is also a function of vessel
surface roughness and can be determined by numerical
methods or with reference to a Moody chart. An overall
trend can be established,

d �
i
7fQ3

d �
i
2:33fQ

: ð5:2Þ

As with the analysis for laminar flow, the first point
to note is that the scaling or junction relationship
agrees with those previously calculated using a
different, biologically driven, cost function and using
constructal theory. This scaling relationship at a
junction is different for turbulent flow when compared
with laminar flow. The biomimetic design tool derived
in equation (5.1) allows the absolute optimum vessel
size to be directly determined in terms of variables
accessible to a design engineer. Both terms of the mass
expression in equation (B 5) are linear functions of
vessel length. For brevity, the expressions will not be
developed in full because it can be seen by inspection
that the same conclusion regarding the lengths in
different generations will apply as in §4.2, namely that a
minimum overall mass is achieved with length shifted
towards the regions of the network with fewer larger
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vessels. The design of a minimum mass network with
turbulent flow conditions could have many engineering
applications incorporating fluid distribution, e.g.
hydraulic or pneumatic systems.
6. THE COST OF DEVIATION FROM
THE OPTIMUM DIAMETER

In a vascular system consisting of multiple levels, a
subtle point concerning the use of the scaling laws in
equations (3.2) and (5.2) should be considered. If the
optimum tubing diameter at a point is calculated but
structural or manufacturing constraints impose an
alternative vessel diameter, vessels above or below the
design section in the hierarchy must be cubically scaled
according to the optimum vessel size. If scaled from the
unoptimized size, the original mass penalty would be
compounded.

Milsum & Roberge (1973) and Sherman & Popel
(1989) have shown that the sensitivity of the total power
to variation of diameter from the optimum is relatively
small close to the optimum value. Since the constants in
the power expression are shown to cancel, it can be seen,
almost by inspection, that the mass expression will be
directly analogous. The ratio of actual-to-minimummass
can, therefore, be expressed as

m

mmin

Z

di
d �
i

� �K4
C2 di

d �
i

� �2

3
Z

do
d �
o

� �K4
C2 do

d �
o

� �2

3
; ð6:1Þ

where di and d �
o are the optimum vessel diameters. Close

to the optimum diameter, a diameter 10% from optimum
will result in only a 3–5% mass penalty; however, this
penalty increases rapidly further away from the opti-
mum. Popel & Johnson (2005) state: ‘adherence to
Murray’s law (or similar minimization principles) could
not be expected because moderate deviations from the
minimumare not costly and other factorsmight affect the
structure of the network.’The analysis presentedherehas
incorporated mass, the prime driver in many engineering
applications. A 2–3%mass penalty could be significant in
high-performance applications and there is a clear need to
minimize this mass penalty, especially in load-carrying
structures containing a vascular network. Uylings (1977)
has also shown that a similar relationship exists for
turbulent flow, which is slightly more sensitive but still
shows low sensitivity close to the optimum value.
7. STRUCTURAL FACTORS

The inclusion of a vascular network within a structure
could be expected to have an adverse effect on the
structural properties since load-bearing material is
being replaced. For example, consider a sandwich
structure containing a vascular network within its
core cross-section. Sandwich structures are extensively
used in high-performance engineering applications
where structures are subject to bending or compressive
loads. They typically consist of thin skins of a high-
performance material separated by a lightweight core
material, such as a rigid foam (Zenkert 1995). Nature
has evolved sandwich structures extensively, most
notably bone, effectively a sandwich structure of
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Figure 4. Relative mass penalties for unoptimized tube
diameter and sandwich core thickness.
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cortical bone separated by honeycombed cancellous
bone (Kalfas 2001). In an engineering structure, the
core offers an ideal location for a vascular network,
since it can be easily incorporated into a rigid foam. If
the network is continuous, the shear connectivity
within the core has been compromised, which for
shear critical structures may be problematic. Such
considerations suggest that a discrete vascular network
of spaced vessels is more appropriate because shear
connectivity is retained through the core material
surrounding the vessels. Then, the key structural
properties that are affected are overall flexural stiffness,
shear stiffness and effective cross-sectional area of the
core. However, such reductions in performance are
slight, firstly because flexural stiffness is driven by
stiffness of the skins (which are largely unaffected by
the presence of a vascular network). Secondly, the
reduction in core cross-sectional area will be small if the
network density is low and is readily compensated by,
for example, slightly increasing the core depth. There
remains one further structural consideration that may
be of concern, which is fracture mechanics. To illustrate
the problem, we consider two hypothetical vascular
networks within an axially loaded structure. Contrast a
network of cylindrical vessels running parallel with one
in which the vessels run transversely to the loading
direction. Each may be thought of as introducing stress
raisers; in extreme cases, these could be considered
cracks. The former case introduces effectively smaller
cracks in comparison with the latter and suggests a
more favourable approach for design. In a branching
vascular network such as that proposed in figure 3,
some transverse vessels are unavoidable. These fracture
mechanics factors are therefore challenges of detailed
design: circular vessels are expected to impart less
stress concentration than those with sharper cross-
sections; and in a complex practical structure with
varying loading, locating the transverse branches in
areas of lower stress could alleviate peak stresses.

In summary, the interaction between a vascular
network and a structure in multifunctional materials
will be highly dependent on the specific configuration and
loading state of the structure and the network, with
network density being a key factor. To illustrate an
example of this interaction, the inclusion of a discrete
vascular network of low density (such that the penalty in
shear performance is negligible) in the core of a sandwich
structure can be considered in more detail. Recent pilot
studies of vascular networks in self-healing structures
have used this configuration (Trask et al. 2007a).

In engineering design, rules are often used to select the
appropriate thicknesses of the skins and core of sandwich
structures for given materials and applied loading
(Zenkert 1995). The optimum diameter for a vascular
network could be selected using equation (3.1). If the
optimum vessel outside diameter exceeds the design core
thickness of the sandwich structure, then either the core
thickness will have to be increased (resulting in a
structural mass penalty) or the vascular network
diameter must be decreased (resulting in a network
mass penalty). A trade-off is therefore required.

The relative mass penalty of increasing core thick-
ness, tc, of a constant density core above the design
J. R. Soc. Interface (2008)
value, t �c, is directly proportional to the ratio of the
thicknesses. Equation (6.1) gives the relative mass
penalty of reducing the vessel diameter. If the actual
diameter in equation (6.1) is set to the design core
thickness t�c , then figure 4 can be plotted to show this
relationship. The point at which the curves intersect is
found by equating the two terms. A numerical solution
to three significant figures gives

t�c
d �
o

� �
Z 0:794 for

t�c
d �
o

� �
!1: ð7:1Þ

Therefore, this analysis provides useful guidelines:

— for a dimension ratio (design core thickness to vessel
outside diameter) below 0.794, increasing the sand-
wich thickness incurs less relative mass penalty, and

— for a dimension ratio between 0.794 and 1, reducing
the vessel diameter will incur a lesser relative mass
penalty.

The true optimum could, of course, be a compromise
between adjusting both the core thickness and the vessel
diameter. In addition, the absolutemasses of the baseline
systems are an additional factor and should be
considered. The model could also be refined to include
the influence of core shear properties, but this is beyond
the scope of the present work. However, this analysis
allows the key drivers to be understood and helps to put
the interaction of vascular and structural factors into
perspective. If a constraint drives a small deviation in
vessel diameter from the optimum (of the order of say
10–15%) or if the mass of the vascular network is much
less than that of the overall structure, then changes in
diameter offer a lower mass penalty. If the deviation is
likely to be larger or if the vascular network forms a
significant proportion of the total mass, then the penalty
in deviating from the optimum diameter will be more
significant. This analysis, therefore, agrees with biologi-
cal examples of where structural (or other) factors are
credited with driving deviation from an optimum vessel
diameter (McCulloh et al. 2004; Popel & Johnson 2005).
8. CONCLUSIONS

Previous biological, engineering studies and appli-
cations of Murray’s law have focused on minimizing
the power requirement of a vascular system, in most
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cases only using the junction ‘sum of the cubes’
relationship. In design of high-performance appli-
cations such as those for aerospace, minimum mass
will be the prime design driver and absolute values are
needed for design. In this work, expressions for a
minimum mass vascular network have been developed.
The cubic relationship between the diameters of parent
and daughter vessels originally identified by Murray
(1926) is shown to also hold for a minimum mass
network. A biomimetic relationship for absolute values
of optimum diameter has been derived in terms of
useful design variables. This analysis has suggested
that flow rate has the most significant effect on the
choice of vessel diameter. There is also a significant
difference between the optimum diameter of a tubed
system and channels within the parent material. In
principle, this method could be used in the design of
series or parallel vascular networks including any
number of branches. A similar relationship has been
shown to hold for turbulent flow. Use of this design
method to compute the absolute optimum diameter in
the turbulent regime requires further analysis but
would bring wider application of the method, since it
would allow minimum mass design of a wide range of
fluid distribution networks. The analysis has been
extended to consider the length of each generation of a
branching network; the mass per unit length of a
network increases with the number of branches, leading
to the conclusion that the length of the narrower, more
numerous vessels should be minimized.

Qualitatively, the least disruption to the structural
performance of a member loaded axially is achieved if
the vascular conduits are aligned with the loading
direction to avoid stress concentration effects. In a
flexural situation, placing a vascular network close to
the neutral axis minimizes the influence on structural
performance. A case study of a sandwich panel with a
vascular network in the core was studied in some detail,
in particular to evaluate the mass penalty incurred if
the optimum vessel diameter exceeded the thickness of
the host sandwich core. It has been shown in this case
that small deviations from optimum diameter can be
easily justified in terms of mass, whereas large
deviations could be expected to produce an increasingly
punitive mass penalty. There is a biological precedent
for moderate deviation from optimum vasculature for
structural reasons, so this final conclusion could itself
be considered biomimetic.
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APPENDIX A. DERIVATIONOFMINIMUMMASS
VESSEL DIAMETER WITH
LAMINAR FLOW

The relationship between pressure loss and flow rate of
a liquid in laminar flow within narrow bore tubes
was investigated by Poiseuille in the 1830s and 1840s.
A detailed review of the development of Poiseuille’s law
J. R. Soc. Interface (2008)
has been conducted by Sutera & Skalak (1993). This
work refers to several of the original French manu-
scripts. The relationship for the flow of a Newtonian
fluid through a circular conduit in laminar flow has
come to be used in the form

DpZ
128 Qlm

pd 4
i

; ðA 1Þ

where Dp is the pressure difference;Q is the volume flow
rate; l is the vessel length; m is the fluid viscosity; and di
is the vessel internal diameter. The power, PF, of a
flowing fluid is given by

PF ZQDp; ðA 2Þ

where Q is the volumetric flow rate and Dp is the
pressure difference. For flow through a narrow bore
tube, as described by equation (A 1), it follows that

PF Z
128 Q2lm

pd 4
i

: ðA 3Þ

These viscous power losses must be overcome by
some form of pump. Assuming that the mass of a pump
can be linearly related to its power such that

k Z
PF

mpump

; ðA 4Þ

wherempump is the mass of the pump and k is a constant
(intuitively the power-to-mass ratio of the range of
pumps on offer), then the mass associated with
achieving the desired flow rate can be expressed as

mpump Z
128 Q2lm

pd 4
i k

: ðA 5Þ

At this point in the derivation, Murray assumed that
the power cost function is related only to the blood
volume. Sherman (1981) noted that the vessel wall
would also require metabolic support. Analogously, it
will also inflict a mass penalty. It was assumed that the
vessel thickness varied linearly with internal radius.
This is a reasonable assumption since this maintains a
given wall tension regardless of the radius of the vessel.
A structural optimization strategy is therefore tied into
the analysis. This gives the vessel wall thickness twall as

twall Z c
di
2
; ðA 6Þ

where c is a constant of proportionality. The selection of
c incorporates the strength of the tubing material. This
allows the external diameter, do, of the tube to be
expressed as

do Z di C2c
di
2
Z dið1CcÞ: ðA 7Þ

Using equation (A 6), the mass mtube of the tube can
be expressed as

m tube Z
rtubelp

4
d 2
i ðc2 C2cÞ

� �
: ðA 8Þ

The overall system mass is given by a sum of the
pump, tubing and fluid masses. By summing these and
collecting terms in di

2, the relationship can be expressed
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in two terms,

msystem Z
128 Q2lm

pd 4
i k

C
lpd 2

i

4
rtubeðc2 C2cÞCrfluid
� �

:

ðA 9Þ
For a minimum mass vascular network with given

flow rate, fluid and tube and pump properties, the
expression is differentiated with respect to internal
diameter and the stationary point found. At this point,
the optimum internal diameter can be defined as d �

i :

dm system

ddi
Z

K4!128 Q2lm

pd �
i
5k

C
lpd �

i

2
rtubeðc2 C2cÞCrfluid
� �

Z 0;

ðA 10Þ
such that

d �
i
6 Z

1024 Q2m

p2k rtubeðc2 C2cÞCrfluid½ � : ðA 11Þ

This expression is independent of vessel length. It is
therefore necessary to suggest how the length of each
generation of a network will affect the overall system
mass. In the nth generation of a bifurcating network,
there will be 2n vessels. Assuming that the network is
symmetrical, the total mass of each generation is
therefore given by

mn Z 2n
128 Q2

nl nm

pd 4
ink

C
l npd

2
in

4
½rtubeðc2 C2cÞCrfluid�

� �
:

ðA 12Þ
The volumetric flow rate through each vessel of the

nth generation is given by

Qn Z
Q0

2n
; ðA 13Þ

where Q0 is the volumetric flow rate in the first
generation (nZ0). For a network obeying Murray’s
law, the diameter of the nth generation is given by

din Z
di0

2n=3
; ðA 14Þ

where di0 is the internal diameter of the first generation.
Substituting equations (A 13) and (A 14) into equation
(A 12) and simplifying gives

mn

ln
Z 2n=3

128 Q2
0m

pd 4
i0k

C
pd 2

i0

4
½rtubeðc2 C2cÞCrfluid�

� �
:

ðA 15Þ
This represents the mass per unit length of the nth

generation of the network in terms of that of the first
generation. In the biomimetic case where the length of
each generation is proportional to the vessel diameter,

l n ZC din ZC
di0

2n=3
: ðA 16Þ

Substituting equation (A 16) into equation (A 15)
gives

mn ZC
128 Q2

0m

pd 3
i0k

C
pd 3

i0

4
½rtubeðc2 C2cÞCrfluid�

� �
:

ðA 17Þ
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Therefore, for the special case where vessel length is
proportional to diameter, the mass of each generation is
the same.
APPENDIX B. DERIVATION OFMINIMUMMASS
VESSEL DIAMETER WITH
TURBULENT FLOW

The pressure drop of a steady fluid flowing turbulently in
a circular pipe is given by the Darcy–Weisbach equation,

DpZ
8f rfluidQ

2l

p2d 5
i

; ðB 1Þ

where f is the Darcy or Moody friction factor and is
commonly determined from a Moody chart (Moody
1944), as it is a function of the diameter and flow rate.
Uylings (1977) defined it as

f Z
A

ðReÞB
; ðB 2Þ

whereA and B are constants andRe is the flow Reynolds
number based on internal vessel diameter. The constant
BZ1 holds for laminar flow, decreasing as the flow
transits to fully developed turbulent flow withBZ0. The
constant A takes the value AZ64 for laminar flow, but
cannot be so simply defined in transitional or turbulent
flow; hence, reference must be made to numerical
methods or a Moody chart,

Re Z
rfluidVdi

m
Z

4rfluidQdi
mpd2

i

Z
4rfluidQ

mpdi
: ðB 3Þ

The total mass of the system can be estimated using
the pump mass metric k,

msystem Z
8f rfluidQ

3l

p2d 5
i k

C
lpd 2

i

4
½rtubeðc2 C2cÞCrfluid�:

ðB 4Þ

Substituting equations (B 2) and (B 3) into equation
(B 4) and rearranging gives

msystem Z
8rfluidlA

p2k

mp

4rfluid

� �B Q3KB

d 5KB
i

C
lpd 2

i

4

!½rtubeðc2 C2cÞCrfluid�: ðB 5Þ

Differentiating (B 5) with respect to internal diameter
to find the optimum internal diameter d �

i gives

dm system

ddi
ZKð5KBÞ 8rfluidlA

p2k

mp

4rfluid

� �B Q3KB

d �
i
6KB

C
lpd �

i

2
½rtubeðc2 C2cÞCrfluid�Z 0: ðB 6Þ

Substituting BZ1 and AZ64 for laminar flow gives
equation (3.1). TakingBZ0 gives the expression for fully
developed turbulent flow,

d �
i
7 Z

80rfluidA

p3kðrtubeðc2 C2cÞCrfluidÞ
Q3:
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