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Genetic instability in cancer is a two-edge sword. It can both increase the rate of cancer
progression (by increasing the probability of cancerous mutations) and decrease the rate of
cancer growth (by imposing a large death toll on dividing cells). Two of the many selective
pressures acting upon a tumour, the need for variability and the need to minimize deleterious
mutations, affect the tumour’s ‘choice’ of a stable orunstable ‘strategy’.As cancerprogresses, the
balance of the two pressures will change. In this paper, we examine how the optimal strategy of
cancerous cells is shaped by the changing selective pressures.We consider the twomost common
patterns in multistage carcinogenesis: the activation of an oncogene (a one-step process) and an
inactivation of a tumour-suppressor gene (a two-step process). For these, we formulate an
optimal control problem for the mutation rate in cancer cells. We then develop a method to find
optimal time-dependent strategies. It turns out that for a wide range of parameters, the most
successful strategy is to start with a high rate of mutations and then switch to stability. This
agrees with the growing biological evidence that genetic instability, prevalent in early cancers,
turns into stability later on in the progression. We also identify parameter regimes where it is
advantageous to keep stable (or unstable) constantly throughout the growth.

Keywords: multistage carcinogenesis; chromosomal instability; somatic evolution;
telomeres; optimization, bang-bang control; nonlinear control
1. INTRODUCTION

Genetic instability is found in a greatmajority of cancers,
in very small lesions as well as in relatively advanced
tumours. Twomain types of genetic instability have been
described (Lengauer et al. 1998; Sen 2000). One type,
termed microsatellite instability (or MSI; Kinzler &
Vogelstein 1996; Perucho 1996), is caused by a deficiency
in the mismatch repair system and is characterized by an
elevated rate of errors in the so-called microsatellites
(which are stretches of DNA in which a short motif,
usually one to five nucleotides long, is repeated several
times). The other broad type of instability is chromo-
somal instability or CIN. It is characterized by gross
chromosomal abnormalities in cancerous cells such as
losses and gains of chromosomes, translocations, etc. The
causes for MSI are relatively well understood: it is
triggered by an inactivation of one of the mismatch
repair genes such as hMSH1 and hMLH1. The origins of
CINare still unknown. Several gene candidates have been
found whose inactivation causes chromosomal aberra-
tions of cells (Cahill et al. 1998; Bardelli et al. 2001;
Nasmyth 2002; Yarden et al. 2002; Rajagopalan et al.
2004); another possible reason for CIN may be the
orrespondence (komarova@math.uci.edu).
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telomere crisis (Maser & DePinho 2002, 2004; Bailey &
Murnane 2006).

The question whether genetic instability is a driving
force or a consequence of cancer is as controversial today
as it was three decades ago (Loeb et al. 1974; Breivik &
Gaudernack 1999; Tomlinson & Bodmer 1999; Li et al.
2000; Shih et al. 2001; Marx 2002; Breivik &Gaudernack
2004). Analytical and computational approaches have
been used to define the timing and other parameters of
genetic instability as well as to study its role in
carcinogenesis (Breivik & Gaudernack 1999; Breivik
2001, 2005;Komarova etal. 2002, 2003;Nowak etal. 2002;
Little & Wright 2003; Michor et al. 2003, 2005; Nowak
et al. 2006). A commonmotif of many of these papers is a
microevolutionary nature of carcinogenesis.

All types of genetic instability are characterized by an
increased rate of change of the cell’s genome. This
produces at least two effects. One is a possibly increased
probability for a cell to experience an advantageous,
malignant mutation which can increase the cell’s fitness
and lead to further growth. The other is an increased
chance of deleterious, unwanted changes in the cell’s
genome which can reduce the cell’s fitness or lead to the
cell’s death. These considerations suggest that, in
principle, genetic instability can both increase the rate
of cancer progression (by increasing the probability of
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cancerous mutations) and decrease the rate of cancer
growth (by imposing a large death toll on dividing cells).
The question central to this paper is whether instability
helps cancer, in the sense of Darwinian microevolution
inside one organism.

The microevolutionary forces that act on cancer cells
during multistage carcinogenesis can be modelled by
taking into account these effects (Wodarz & Komarova
2005). In previous work, it was possible to recast the
problem by formulating the question from the view-
point of ‘selfish’ cancerous cells (Komarova 2004;
Komarova & Wodarz 2004). What is the optimal
level of instability which makes the cancer progress in
the fastest way? The mathematical problem is finding
the most efficient (from the point of view of cancer) rate
at which genetic changes occur in cells. It was shown
(Komarova &Wodarz 2004) that ‘too much’ instability
is detrimental for the cells due to an increased death
rate. ‘Too little’ instability also slows down the progress
because the basic rate at which cancerous mutations are
acquired is low. An optimal level of genetic instability
has been identified which maximizes the rate of
progression. This was quantified in terms of the
probability of chromosomal loss per cell division and
compared with available in vitro experimental
measurements of this rate. The mathematical result
turned out robust (it depended only logarithmically on
parameter values), and its order of magnitude was
consistent with the data (Lengauer et al. 1997).

In this paper, we take this model a step further and
study the temporal change of the level of instability.
As cancer progresses, the microevolutionary pressures
inevitably change.Whatmight have been a good strategy
at the beginning of the growthmay be detrimental for the
colony later on. This time dependence finds experimental
support: a recent paper by Chin et al. (2004) argues that
the level of genetic instability in breast cancers first
increases, reaches a peak and then decreases as the cancer
passes through telomere crisis. A paper by Rudolph et al.
(2001) reports data on intestinal carcinoma in mice and
humans which is consistent with a similar model:
telomere dysfunction promotes chromosomal instability
which drives carcinogenesis at early stages; and telomer-
ase activation restores stability to allow further tumour
progression.Themechanismof telomerase activationand
subsequent prevention of chromosomal instability is also
described in the papers by Samper et al. (2001) and
Artandi & DePinho (2000). It is shown that short
telomeres can make mice resistant to skin cancer due to
an increased cell death rate (Gonzalez-Suarez et al. 2000)
which also suggests that telomerase activation and
reduction in the level of chromosomal instability may
be a necessary step for cancer to develop.

The idea that instabilitymaybebeneficial for cancer at
an early stage and can become a liability later on is
developed in the present paper. We formulate the time-
dependent optimization problem to investigate the way
to maximize cancerous growth. To model growth and
mutations, we employ ordinary differential equations
(ODE) similar to quasispecies equations (Eigen &
Schuster 1979), widely used in modelling (micro-)
evolutionary processes. Usingmethods of optimal control
theory, we find strategies most advantageous for the
J. R. Soc. Interface (2008)
tumour’s growth. The degree of instability (the rate of
mutations) appears as an unknown function of time,
sought to maximize the growth of the mutants.

Mathematical theory of optimal control has been
used in many areas of biosciences (Sontag 2004;
Lenhart &Workman 2007). In biomedical applications,
control theory has usually been employed to design
treatment strategies by methods of optimization (Swan
1990; Kirschner et al. 1997; de Pillis et al. in press). In
this paper, we apply optimal control theory to studying
cancer in a very different way. We solve an optimi-
zation problem for the dynamics of cancerous growth in
order to understand why cancer behaves the way it
does. This approach is similar in spirit to the work of
Iwasa & Levin (1995) that analysed the optimal timing
of life strategies of breeding and migrating organisms.
In a sense, we study the ‘ecology’ of cancer, based on
our current knowledge of carcinogenesis, to see that the
observed behaviour of tumours is essentially a conse-
quence of the process of optimization.

Our main findings are as follows.

—For a wide range of parameters, the most successful
strategy is to keep a high rate of mutations at first and
then switch to stability. This explains much of the
biological data (Rudolph et al. 2001; Chin et al. 2004).

—The time of the switching depends, to a small degree,
on the ‘target’ tumour size. It is independent of the
basic mutation rate or of the maximum rate of change
caused by the instability (as long as the latter is much
greater than the former, which is the biologically
relevant scenario). The time of the switching is
sensitive to the rate of growth of the mutants and is a
decaying function of this parameter.

— It turns out that, depending on the concavity of the
functional form chosen to express the death rate as a
function of the mutation rate, the corresponding
optimal strategies are qualitatively different. If the
death rate is a linear or concave function of the
mutation rate, then the optimal strategy is an abrupt
(discontinuous) change from maximum instability to
maximum stability. If the function is convex, the
transition is more gradual.

—For someparameter regimes, the optimal strategy is to
remain maximally unstable throughout the growth.
This occurs, for example, if the magnitude of
mutation-related death rate is small, while the gain
in the mutation rate due to instability is large. On the
other hand, a very large death rate and a small gain in
mutation rate make instability disadvantageous at all
times, and the best strategy then is to remain stable.

The rest of the paper is organized as follows. In §2,
we formulate the biologically based mathematical
model which describes cells’ growth and mutations.
Section 3 introduces the formalism of optimal control
theory and summarizes the maximum principle for the
optimal strategy. Section 4 is a detailed study of a
subset of biologically relevant parameters. Optimal
strategies are found for different choices of functional
form of the death rate of cells. Section 5 considers the
entire parameter space of the system and identifies in
which cases instability is advantageous. Section 6
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contains conclusions and discussion; it also provides
suggestions for several experiments that may confirm or
refute our theory and guide us in further research of the
functional role of genetic instability in cancer.
death death
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Figure 1. Mutation diagrams for (a) the one-step process and
(b) the two-step process.
2. THE MODELS

Wemodel a birth and death process with mutations in a
hypothetical setting where the mutation rate can be set
to arbitrary (biologically admissible) values at each
instant of time. Cells go through a sequence ofmutations
until an advantageous phenotype is achieved. Until this
happens, the colony is subject to a regulatory process
which keeps its size constant. The colony must escape
this regulation in order to initiate the first wave of
clonal expansion; it must ‘overcome selection barriers
in the race to tumorigenesis’ (Cahill et al. 1999). Once
advantageous mutants are produced, they have the
ability to overcome the regulation and spread.

The mutation rate can have two effects. On the one
hand, a large mutation rate leads to a high death toll in
the population thus reducing the fitness of the cells. On
the other hand, an increased mutation rate can lead to a
faster production of the advantageous mutants, thus
accelerating the net growth of the colony.
1The inactivation of the TSG itself may actually be responsible for the
change in p directly. It has been suggested (Fodde et al. 2001) that the
inactivation of the APC plays a role in triggering genetic instability in
colon cancer. This scenario remains controversial and is not included
in the paper.
2.1. A one-step system

Let us suppose that a colony of cells is currently at a
constant population size near a selection barrier. The
growth is stalled and the cellular population remains near
the ‘carrying capacity’ which is defined by the available
space, nutrients and the cells’ ability to divide and die.
This barrier can be overcome by the offspring of amutant
whose properties are different. For instance, the mutant
cells could have an activated oncogene and show an
increased division rate or a decreased death rate. We
assume that such transformed cells are created by means
of one molecular event, genetic or epigenetic.

Let us denote by x1 the population of cells that have
not undergone cancerous mutations and by x2 the
mutated type. The probability for a cell to acquire an
inactivating mutation of a particular gene upon a cell
division is denoted by �m; this quantity is called the
‘basic mutation rate’. The probability p is an additional
transformation rate resulting from genetic instability.
This quantity measures the degree of genetic instability
in cells. It is low in stable cells (cells without CIN), but
it can be highly elevated in chromosomally unstable
cells. Effectively, if p/ �m, then there is no genetic
instability; p[ �m means a genetically unstable cell
population. Both probabilities �m and p are measured per
gene per cell division.

With these notations in mind, we can present the
processes of growth and mutations described above by
means of a mutation diagram, figure 1a. This mutation
diagram is of the same type as used in Nowak et al.
(2002) and Komarova et al. (2003). The probability p is
the parameter of optimization in our problem. We will
try to find a strategy (i.e. the function p(t)) that
maximizes the growth of cancer.

Before we go on, we would like to comment further on
the biological meaning of the quantity p. The mechanism
J. R. Soc. Interface (2008)
of mutations resulting from genetic instability, which is
quantified by p, can be the same as or different from that
of the basicmutations. For instance, one can assume that
the transformation is a small-scale change in the DNA
sequence, and the genetic instability is characterized by a
deficiency in the nucleotide repair system (Benhamou &
Sarasin 2000),which results in an increase (by anadditive
term p) of the basic mutation rate.

In other scenarios, the molecular mechanism of
genetic instability can be different from that of the basic
mutations. This is typical for the initiating events of
familial colorectal cancers (familial adenomatous poly-
posis, FAP). Each gene is normally present in two
copies (or alleles), a paternal and a maternal one. FAP
patients are born with one of the copies of the
adenomatosis polyposis coli (APC) gene inactivated
in all cells. Then, an inactivation of the second copy
eventually causes early lesions and further disease
progression. The second copy of the APC gene can
become inactivated by a point mutation or by a loss-
of-chromosome event. The rate of chromosomal loss is
often greatly elevated in colon cancers as a result of
genetic (chromosomal) instability or CIN (Lengauer
et al. 1998). In this situation, �m is the basic point
mutation rate and p is the rate of chromosomal loss.

The rate of chromosome loss, p, is a quantity which
depends on many factors. No single gene responsible for
chromosomal instability has been found; instead, a lot
(of the order of hundreds) of genes have been shown to
participate in various ways in the process of chromo-
some duplication, segregation, etc. A defect in any of
those genes can change the resulting probability of
chromosomal loss. Apart from that, the telomeres
(regions of highly repetitive DNA at the end of a linear
chromosome that function as disposable buffers) have
been shown to play a role in genomic stability.
Therefore, a change in any of these factors may be
responsible for a change in the level of chromosomal
instability and, therefore, can control the value of p.1

The dynamics of the cells is modelled here as follows.
Cells reproduce and die, and the rate of renewal is taken
to be 1 for the type x1. In the absence of dangerous
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mutants, x2, the total number of cells, x1, is assumed to
obey the well-known logistic growth law, that is, near
the equilibrium the population stays constant, with a
positive growth rate for the number of cells below the
equilibrium, and a negative growth rate above the
equilibrium. The mutants x2 expand at the rate aO1.

Mutation diagram in figure 1a translates into the
following ODEs describing the rate of change of the two
cell populations,

x 0
1 Z ð1K �mKpKdðpÞÞx1Kfx1; ð2:1Þ

x 0
2 Z ðpC �mÞx 1 Cað1KdðpÞÞx 2Kfx 2; ð2:2Þ

where ($)0Zd($)/dt, fZð1KdðpÞÞx1=N , and x1(0)Z
N, x2(0)Z0. The term f is similar to logistic growth in
the absence of mutants, and accounts for the homeo-
static control present in a system of x1-cells. x2-cells
break out of regulation and enter a phase of exponential
growth. The term with x1 in the equation for x2 is added
to represent a partial, non-symmetric, homeostatic
control that may play some role at the beginning of the
growth of x2 cells. Later on that term is simply a
correction to the growth rate of the x2 cells. This way of
modelling the dynamics is not unique, and in fact the
f-term may be removed from the equation for x2.
A more detailed discussion of the robustness of the
model is presented in the context of the two-step model,
§§2.2 and 4.3.
2.2. A two-step system

In this section, we investigate another model where an
inactivation of a tumour suppressor gene (TSG) leads
to a clonal expansion. This is a two-step molecular
process, whereby the two alleles of the gene are
inactivated one at a time. The inactivation of just one
allele does not result in any phenotypic changes. The
inactivation of the second allele leads to the cells’
unchecked growth. These processes can be summarized
by a mutation diagram, figure 1b. There, x0 is the
population of TSGC/C cells (i.e. cell with both copies
of the TSG intact), x1 is the population of TSGC/K

cells, where one of the copies of the TSG has been
mutated, and x2 is the population of TSGK/K cells,
where the remaining copy of the TSG has been lost.

The process described by the mutation diagram in
figure 1b contains two steps: an inactivation of one, and
then the other allele of the TSG. Note that the
probabilities at which the two inactivation events
occur are not equal. In the diagram of figure 1b, �m is
the basic mutation rate by which an allele can be
inactivated. Since there are two alleles of each gene, and
either of them can be inactivated first, the total
probability of the first inactivation event is 2�m. The
second inactivation event can happen by another
mutation (probability �m). As in the case of colorectal
cancer and the APC gene, there is a different
mechanism by which the second copy of the TSG can
be turned off. This is a ‘loss-of-chromosome’ event,
which is known to be responsible for the inactivation of
a large percentage of TSGs in cancers (Kinzler &
Vogelstein 2002). As a result of this event, the whole
chromosome corresponding to the TSG in question
J. R. Soc. Interface (2008)
becomes lost (or, more commonly, is replaced by a copy
of the other chromosome where the TSG is mutated).
This is a gross chromosomal change, whose probability,
p, is our optimization parameter.

Before we go on, we would like to address the question
of the asymmetry between the first and the second
inactivation events. Inprinciple, thefirst allele canalsobe
inactivated by a loss-of-chromosome event. However, the
fitness of a cell with amissing chromosome and one active
copy of theTSG is very low. Such cells will quickly die out
and will make no difference for the present analysis. On
the other hand, a cell with one chromosome missing and
both copies of the TSG inactivated has a selective
advantage, because we assume that the inactivation of
the TSG leads to an increase in the cell’s growth rate.
Such cells are produced by the sequence of events
depicted in figure 1.

A system of ODEs that describes all these processes
is as follows:

x 0
0 Z ð1K2�mKdðpÞÞx 0Kfx 0; ð2:3Þ

x 0
1 Z 2�mx0 Cð1K �mKpKdðpÞÞx 1Kfx 1; ð2:4Þ

x 0
2 Z ðpC �mÞx1 Cað1KdðpÞÞx2; ð2:5Þ

where

fZ
ð1KdðpÞÞðx0 Cx 1Þ

N
: ð2:6Þ

Cells reproduce and die, and the rate of renewal is taken
as 1 for types x0 and x1. In the absence of dangerous
mutants, x2, the total number of cells x0 and x1 stays
constant, i.e. the sum of equations (2.3)–(2.5) with
x2Z0. The mutants x2 expand at rate aO1.

This formulation for the two-step process is not
unique. We will refer to system (2.3)–(2.5) and (2.6) as
Model I. One possible modification is to replace the
expression for f, equation (2.6), with

fZ 1K
dðpÞðx 0 Cx 1Þ

N
; ð2:7Þ

system (2.3)–(2.5) and (2.7) will be referred to as Model
II. Also, we may include the f-term in the last equation,
that is, replace equation (2.5) with

x 0
2 Z ðpC �mÞx 1 Cað1KdðpÞÞx 2Kfx 2: ð2:8Þ

Wewill name systems (2.3), (2.4), (2.8), (2.6) and (2.3),
(2.4), (2.8), (2.7) Model I� and Model II�, respectively.
Such changes in the model equations will lead to
quantitative changes in the outcome, but, as we will
demonstrate below, the results remain qualitatively
robust with respect to such modifications.

Note that our formulation is similar to the well-
studied quasispecies model (Eigen & Schuster 1979) in
that the competition among cells is captured by means
of an additive term (f). This type of a description is
widely used in cancer modelling (Wodarz & Komarova
2005) and other areas of mathematical biology. If we
suppose aZ0 (i.e. that the double-mutants, x2, do not
reproduce), then the first two equations, (2.3) and (2.4),
are quasispecies equations. The inclusion of the non-
zero growth term for the mutants that are not subject



Table 1. Variables, model parameters and their definitions.

notation biological interpretation

x0(t), x1(t) pre-cancerous cell populations
x2(t) malignant cell population which escapes homeostatic control
�m basic mutation rate of genetically stable cells (probability of mutation per cell division)
p(t) the additional mutation rate resulting from genetic instability
pmin, pmax the range of p(t)
um pmaxKpmin

N the population size in the absence of malignant cells
M the target population size of a growing tumour colony
s M/N
T the time it takes the malignant colony to reach size M
m �mCpmin

u(t) ( pKpmin)/( pmaxKpmin), the scaled rate of genetic instability
A the exponential growth rate of malignant cells
d(u) the death rate of cells
a the exponent in the definition of the death rate as a function of the rate of instability, formula (2.9)
dm the magnitude of the death rate, formula (2.9)
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to competition reflects the escape of the biological
system from the homeostatic control.
2.3. The death rate parameterization

The death rate, d(p), is a function of the mutation rate,
p. If p is small then chromosome losses do not happen,
and if p is large a cell often loses chromosomes which
results in an increased death rate. Therefore, in general,
the function d(p) will be a monotonically increasing
function of p.

Here we present an example of a parameterization of
the death rate as a function of p. It is convenient to
introduce a normalized rate of chromosome loss, u, and
express the death rate in terms of this parameter

dðuÞZ dmð1Kð1KuÞaÞ; u Z
pK pmin

pmaxK pmin

;

pmin%p%pmax; aO0:

ð2:9Þ

The motivation for this particular dependency is as
follows. Let us suppose that a cell dies if it loses one of a
essential chromosome copies (out of the total of 2!23
copies in a human). Then, if we set pminZ0 and pmaxZ1,
the death rate (2.9) can be written in a form

dðuÞZ dm!½Probability of cell death by chromosome loss�:

The constant dm defines the magnitude of the death
rate, and is taken to be in the interval 0%dm%1. In this
paper, we use general values for pmin and pmax such that
0%pmin!pmax%1; these quantities define a biologically
relevant range of the mutation rate, u. We allow a, the
exponent in equation (2.9), to be a real positive
number. In particular, we investigate the influence of
the concavity of this function on the optimal solution
(cases a!1 and aO1). The special case aZ1 yields a
control problem where the controls enter linearly, a case
much studied in the optimal control literature and rich
with analytical results.

The variables and parameters used in our model, as
well as their scaled versions employed in the next
sections, are summarized in table 1.
J. R. Soc. Interface (2008)
2.4. Formulation of the optimization problem

In this paper, we adopt the theoretical framework
where it is possible to set the rate of genetic instability
to an arbitrary (but meaningful) value at each moment
of time. Mathematically, the above framework means
specifying the instability rate, p(t), as a function of
time. Every choice of such a function determines a
growth process of the tumour. We shall seek the choice
of p(t) that allows the cancerous population to reach a
given size, M, in the shortest possible time. In the
terminology of optimization and control theory, the
population size M is called the target, the possible
values of genetic instability rate p are called ‘admissible
controls’, and each choice of the function p(t) is called a
strategy. A strategy steering the system to the target
faster than any other strategy is said to be an ‘optimal
strategy’ or ‘optimal control’. In this terminology, we
seek a strategy for controlling the system to reach the
target as soon as possible. A meaningful qualitative
comparison between two strategies is now possible: the
‘better’, or ‘more advantageous’, strategy is the one
allowing the system to reach the target sooner. Thus, an
‘advantageous strategy’ is advantageous for the cancer
in the sense of Darwinian microevolution in an
individual organism.

To find the optimal strategy, we consider the
quantity, T, which is the solution of the equation

x2ðTÞZM ;

where x2 is the solution of system (2.1) and (2.2) or (2.3)–
(2.5). The growth time,T, depends on all the parameters
of the system, including the time-dependent mutation
rate, p. The optimal strategy is the one that minimizes
the value of T.

In the simplest case, we restrict the class of admissible
controls, p(t), to constant functions. Then, the result of
the optimization problem is a single value, popt, which
will depend on the parameters of the system. A similar
problem was solved in Komarova & Wodarz (2004).
However, better growth times can be achieved if we
allow p to be a function of time. It seems intuitive and is
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evident from experimental results that higher initial and
lower subsequent values of p will facilitate the growth.
3. MATHEMATICAL APPARATUS

In this section, we develop a mathematical framework
for the one-step process. Similar calculations lead to the
corresponding formulation for the two-step problem to
be presented in appendix A.
3.1. Statement of the one-step problem
3.1.1. Equations of state. Let us define the following
parameter combinations: sZM/N, umZpmaxKpmin.
Introducing the scaled quantities x�1Zx1=N ,
x�2Zx1=M , and dropping the asterisks for simplicity,
we can rewrite system (2.1) and (2.2) as

x 0
1 ZKðmCumuÞx 1 C ½1KdðuÞ�ð1K x1Þx1
hg1ðx1; x2; uÞ; ð3:1Þ

x 0
2 Z

1

s
ðmCumuÞx 1 C ½1KdðuÞ�ðaK x1Þx2

hg2ðx1; x2; uÞ: ð3:2Þ
The death rate, d(u), is given by equation (2.9). Recall
that u is the normalized gross chromosomal change rate
with 0%u%1. As we show below, the three cases aO1,
aZ1 and a!1 may have to be treated separately.
3.1.2. Boundary conditions. The two ODEs (3.1) and
(3.2) are subject to the following three auxiliary
conditions:

x1ð0ÞZ 1; x 2ð0ÞZ 0; x 2ðTÞZ 1; ð3:3Þ
where T is the time when the dangerous mutant cell
population reaches the target size.
3.1.3. Problem. Choose the control function u(t) to
minimize the time T needed to reach the target
population size of the dangerous mutants subject to
the inequality constraint,

0%u%1; ð3:4Þ
on the control u(t) and non-negativity constraints on
the cell populations,

x 1R0; x 2R0: ð3:5Þ

3.1.4. Restatement of the optimal control problem. To
apply the usual Hamiltonian system approach, we
recast the problem described in §2.4 by choosing the
control function u(t) to minimize the performance index

J Z

ðT
0
1dt; ð3:6Þ

subject to the equations of state (3.1) and (3.2), the
boundary conditions (3.3) and the inequality constraints
(3.4) and (3.5) with TO0 as a part of the solution.
3.2. The maximum principle
3.2.1. The Hamiltonian and adjoint variables. Optimal
control problems can be effectively analysed through the
Pontryagin maximum principle and its associated
J. R. Soc. Interface (2008)
Hamiltonian formalism (Pontryagin et al. 1962; Bryson&
Ho 1969; Wan 1995). In this section, we develop
components of theHamiltonian formalism for our system.
The Hamiltonian for our problem is

H Z 1Cl1ðtÞg1 Cl2ðtÞg2; ð3:7Þ

where l1 and l2 are the two continuous and piecewise
differentiable adjoint (or costate) variables for the
problem chosen to satisfy two adjoint ODEs,

l01 ZK l1
vg1
vx1

Cl2
vg2
vx 1

� �
; ð3:8Þ

l02 ZK l1
vg1
vx2

Cl2
vg2
vx 2

� �
; ð3:9Þ

and (for the given auxiliary conditions on the state
variable x1 and x2) one transversality condition

l1ðTÞZ 0: ð3:10Þ

Note that (3.1), (3.2), (3.8) and (3.9) form a
Hamiltonian system for the Hamiltonian given in
(3.7). (More generally, the Hamiltonian should be
taken in the form

H Z l0 Cl1ðtÞg1 Cl2ðtÞg2;

for some non-negative constant l0. But with the
terminal time definitely having a role in the optimal
control problem, the additional (constant) adjoint
variable l0 does not vanish. We can rescale the
Hamiltonian and simplify it to (3.7).)

With the set of the admissible controls specified
by (3.4), an optimal strategy u(t) is continuous or
has finite jump discontinuities in [0, T ]. This follows
from the way how u(t) appears in the state and
adjoint ODE, (3.1), (3.2), (3.8) and (3.9), that the
state and adjoint variables are continuous in (0, T ),
including instances of jump discontinuities in the
optimal control.
3.2.2. Formulation of the maximum principle. The
optimal solution of our minimum terminal time
problem requires the optimal control function �uðtÞ to
satisfy the following necessary conditions, known as the
maximum principle (Pontryagin et al. 1962; Gelfand &
Fomin 1963; Wan 1995).
(i) Four continuous and piecewise differentiable
functions f�x1; �x2; �l1; �l2g exist and satisfy the
four differential equations (3.1), (3.2), (3.8) and
(3.9), and four auxiliary conditions in (3.3) and
(3.10) for the admissible control �uðtÞ.

(ii) The minimum terminal time T obtained with
uZ �uðtÞ, satisfies a free end condition

½H �tZT Z ½1C �l2�g2�jtZT Z 0; ð3:11Þ
with

�g2 Z g2ð�x1; �x2; �l1; �l2; �uðtÞÞ;
where the adjoint boundary condition (3.10) has
been used to simplify the expression for H.
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(iii) For all t in [0, T ], the Hamiltonian achieves its
minimum for uZ �uðtÞ, i.e.
Hð�x1ðtÞ; �x2ðtÞ; �l1ðtÞ; �l2ðtÞ; �uðtÞÞ

Z inf
v

Hð�x1ðtÞ; �x2ðtÞ; �l1ðtÞ; �l2ðtÞ; vÞ
� �

; ð3:12Þ

for all v in the set of admissible controls
restricted by (3.4).

(iv) If there should be a change in the control �u at the
instance Ts that involves a finite jump disconti-
nuity in the value of the control, optimality
requires that the Hamiltonian be continuous at
Ts (Bryson & Ho 1969; Wan 1995)

½H �tZTsC
tZTsK

Z 0: ð3:13Þ

Given the admissible controls as specified by (3.4), the
optimal control �uðtÞ can have finite jump discontinu-
ities in (0, T ). It follows from the way u(t) appears in
the state and adjoint ODE that the state and adjoint
variables are continuous in (0, T ), including instances
of a control jump discontinuity.

3.2.3. The interior control. Suppose the optimal control
strategy �uðtÞ satisfies 0% �uðtÞ%1 and the equation

vH

vu

� �
uZ�u

Z 0; ð3:14Þ

with

vH

vu
Z l1fK½um Cd$ðuÞ�x 1 Cd$x 2

1g

C
l2

s
fumx 1Ksd$x 2ðaK x 1Þg

Z umx1
l2

s
K l1

� �
Kfl1x 1ð1K x 1Þ

Cl2x2ðaK x1Þgd$: ð3:15Þ

Then we call ðx 1; x 2; l1; l2; �uÞ an interior solution for
which the optimal control �uZu intðtÞ is an extremum
(or, more correctly, an extremal) of the Hamiltonian.
The stationary condition (3.14) can be written as

fl1x1ð1K x 1ÞCl2x2ðaK x 1Þgd$ Z
um

s
x1fl2K l1sg:

ð3:16Þ
Using the expression for the death rate (2.9) with d$Z
a(1Ku)aK1, we obtain from condition (3.17) the
following formula for the interior solution,

uðtÞZ u intðtÞ

Z 1K
umx 1ðl2Ksl1Þ

asfl1x 1ð1K x 1ÞCl2x2ðaK x1Þg

� � 1
aK1

:

ð3:17Þ
It can be shown (Wan et al. in preparation) that the
interior solution above violates the inequality constraints
(3.2) in some part of the solution domain for some range
of system parameter values. Consequently, some com-
bination of the upper corner solution (u(t)Z1), the lower
corner solution (u(t)Z0) and the interior solution has to
be considered for the optimal solution.Whenever a corner
control is applicable, the adjoint variables (and the
J. R. Soc. Interface (2008)
corresponding adjoint ODE and auxiliary conditions)
may or may not play a role in the solution process since
the control variable u(t) is completely specified (and not
determined by the stationary condition (3.14)).
3.2.4. A vanishing Hamiltonian, H(t)Z0. For an autono-
mous control problem, the Hamiltonian is constant for
the optimal solution �uðtÞ (Wan 1995; Wan et al. in
preparation). The free-end condition (3.11) and the
continuity condition (3.13) then require H(t)Z0. This
result (together with the formula for the interior solution,
equation (3.17)) will be used to find an optimal control. It
can also be used to check how far a candidate control
function is from the actual optimal control.
4. THE OPTIMAL RATE OF INSTABILITY

In this section, we consider the special case, dmZ1, see
equation (2.9). We will examine the corresponding
problem in some detail and then turn to the analysis of
the general problem in the following section.

The case dmZ1 corresponds to fixing the death rate
(relative to the cell division rate) at its highest possible
value. The other parameter in expression (2.9) remains
unspecified, such that aZ1 corresponds to the linear
dependence of the death rate on the mutation rate u,
aO1 gives a concave dependence and a!1 a convex
dependence. It turns out that the concavity of the
function d(u) is critical to the qualitative shape of the
optimal control function. We will examine the cases
aR1 and 0!a!1 separately.
4.1. Non-convex death rates, aR1
4.1.1. The case aZ1. In this special case, the control
variable, u, enters system (2.1) and (2.2) linearly.
It follows from the Pontryagin maximum principle
(Boltyanskii et al. 1962) that the optimal control in this
case is bang-bang (Wan 1995;Wan et al. in preparation),
i.e. piecewise constant switching between the values,
uminZ0 and umaxZ1. In that case, every such control
u(t) is completely determined by its initial value, u(0),
and the switching times s1; s2;.2ð0;TÞ at which u(t)
experiences a switching, i.e. a discontinuous change
of value.

For the problem stated in §§3.1 and A.1, the optimal
control is even simpler. It is possible to show (Wan
et al. in preparation) that the optimal control starts
with umaxZ1 for a period 0%t!Ts and then switches to
uminZ0 for the rest of the growth process, Ts!t!T;
there is only one switching in the optimal control
function �uðtÞ. Biologically, in order to maximize the
growth, it is reasonable to take u as large as possible,
namely, uZ1 at the start, such that some pool of
mutants is created quickly, and then to switch to uZ0
later on, to take advantage of the exponential growth of
x2(t). Therefore, the optimal solution has the form

�uðtÞZ qðTsKtÞ; ð4:1Þ
where q is the Heaviside function and Ts is some
switching time, 0!Ts!T, to be determined as a part of
the solution process.
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4.1.2. The case aO1. Next, we turn to strictly concave
death rates. For nonlinear control problems, the
optimal control is generally not bang-bang. One
normally attempts to solve equations (3.1), (3.2),
(3.8) and (3.9) with boundary conditions (3.3), (3.8),
and the conditions (3.11) and (3.13) at the terminal
time and at the switch points, Ts, by u(t), respectively,
with the control variable expressed in terms of the state
and adjoint variables by (3.17). For our problem, the
solution obtained by this method, however, violates the
constraint 0%u(t)%1, and thus is not applicable, at
least, initially. Therefore, an optimal solution is to
start with a corner control. It can be shown (Wan et al.
in preparation) that optimal controls are again bang-
bang, as in the case aZ1, starting with uZ1 and
switching to uZ0. In short, the nonlinear case aO1 of
the control problem is characterized by a bang-bang
solution of the form (4.1) just like the linear case aZ1.

Formula (4.1) shows that an optimal control is
completely determined by the value Ts of the switching
time. In theory, this value is determined by H(ts)Z0
which involves the solution for the adjoint variables. It is
simpler to find Ts using the following approach. Varying
Ts over a suitable interval [r1, r2], compute for each Ts

value the corresponding terminal time, T, by solving the
initial-value problem (3.1)–(3.3). This process yields a
function T(Ts), r1%Ts%r2. The value Ts at which T(Ts)
attains a minimum specifies an optimal control.

Figure 2 illustrates this procedure for a particular set
of parameters and shows that the function T(Ts) has
one minimum, given by the value TsZ �T sz1:04. This
value ofTs minimizes the time to target, and the control
function, �uðtÞ with TsZ �T s, equation (4.1), is the
optimal control for the set of parameter values shown in
the legend of figure 2.

We have also investigated how the switching time
depends on various parameters of the system. The
following are the results.

—Ts is a monotone, very gradually increasing, concave
function of s for sO1 (recall that sZM/N defines
the target colony size relative to the normal colony
size,N ), see figure 3a. The relative switch time,Ts/T,
is a decreasing function of s (not shown).

—Ts is a monotone, decreasing, convex function of the
parameter a, the growth rate ofmutants, see figure 3b.

—The value of Ts is a decreasing function of m. As m

decreases below the value um, the function Ts reaches
saturation and does not change much with the
value of m.

—Ts is an increasing function ofum, such that forum/0,
Ts/0. However, as um becomes greater than m, Ts

reaches saturation. Therefore, for the biologically
relevant regime of um[m, Ts is essentially indepen-
dent of um.

We can see that as long as um[m (a biologically
relevant parameter regime), the switching time of the
optimal control is effectively independent of themutation
rates m and um. The switching time also does not depend
strongly on s (it is a slowly increasing function of s).
Hence, the switching time essentially depends only on the
J. R. Soc. Interface (2008)
growth rate of themutant cells, a. The faster themutants
grow, the sooner the switch happens.
4.2. Convex death rates, 0!a!1

We now turn to the remaining case of 0!a!1. The
death rate d(u) is then a convex function of u. Optimal
controls are not bang-bang in this case, as shown in
Wan et al. (in preparation). This can also be seen from
the following numerical experiment. Let us first assume
that u(t) is given by formula (4.1) and find the value Ts

which minimizes the time it takes for x2(t) to grow to
size 1. The corresponding time, T, tells us how well a
bang-bang control does. Now, let us expand the class of
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possible control functions to a two-parametric family,

u1ðtÞZ 1K
1

2
1Ctan h

tKTs

w

� �
; ð4:2Þ

where Ts is the characteristic time of the ‘transition’
from high to low values of u, and w is the width of this
smooth transition. In fact, it is enough to leave only one
free parameter, w, and fix Ts to the ‘best’ switching
time obtained for the bang-bang control.

Now, let us vary the parameter w and calculate the
time T needed for the colony of mutants to grow to size
M. We will obtain a function T(w). The value w
corresponding to the minimum T gives the best
performance of family (4.2). If the best width is wZ0,
then we can conclude that the sharp, bang-bang-type
transition cannot be improved by smoothing it out.
However, as figure 4 illustrates for a particular set of
parameters, the best control for family (4.2) corre-
sponds to non-zero w. That is, a smooth transition can
do better than the best of the bang-bang family. This
means that the optimal control is not bang-bang.2

The next question is finding the actual optimal
control for a!1. Solving the boundary value problem
with the interior solution again does not work. In fact,
one can prove that (unless a is very small) the interior
solution, (3.17), fails at and near the terminal time
(Wan et al. in preparation).

In order to find the optimal control, we have
designed the following method.

(i) Start from any control, 0%u0(t)%1, e.g. u0(t)Z1.
(ii) Solve the initial value problem (3.1)–(3.3) for

0%t%T1 such that x2(T1)O1.
(iii) Find the solution, tZT0, of the equation x2(t)Z1.

This is the zeroth approximation to the best
terminal time.

(iv) Solve the boundary value problem (3.8)–(3.11) on
0%t%T0 with the functions x1(t), x2(t) known
from the previous step.

(v) Use the obtained state and adjoint variables to
calculate the function u(t) by formula (3.17). Call
this function �u1ðtÞ.

(vi) Take u1ðtÞZ �u1ðtÞqð�u1ðtÞÞ (again, q is the Heavi-
side step-function). That is, replace all negative
values of the control by zero.This gives us thenext
approximation to the optimal control, u1(t).

(vii) Go to step (ii) and repeat all the operations.

Numerical evidence suggests that this method con-
verges toafixedpointwhich is indeed theoptimal control.
To verify the optimality, we can evaluate the value of the
Hamiltonian, equation (3.7), at each step. According to
themaximumprinciple for our problem, theHamiltonian
must vanish for all t, see §3.2.4. A sample run of the
algorithm is presented in figure 5a, where we plot the
logarithm of the value jjHijjZ

ÐTi

0 jHðui; tÞjdt for
consecutive iterations. We can see that the Hamiltonian
converges to H(t)Z0, and therefore the corresponding
limiting function uN(t) is the optimal control for the
2If we perform the same operations in the aR1 case, we obtain that
wZ0 gives the best result. This of course does not prove that the
optimal controls are bang-bang, but it is consistent with the
conclusions of §4.1.2.
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problem. Figure 5b shows the values of the time to target
after each iteration. Figure 6 shows some examples of the
optimal control functions, ui(t) for large i, found by this
method for different a values.

We note that a control found by simply maximizing
x2(t) at each t is not optimal. This control is obtained
by solving vg2=vuZ0, see equation (3.2). This gives the
value of u maximizing the time-derivative of x2

u Z 1C
umx 1

asðaK x 1Þx 2

� � 1
aK1

: ð4:3Þ

We have solved the initial value problem obtained from
(3.1)–(3.3) with the above expression for u(t). The
solution x1(t), x2(t) can be inserted in the expression
(4.3). The resulting control is compared with the
optimal control in figure 7; we can see that the two
functions differ from each other. The performance of the
optimal control obtained from the maximum principle
is found to be better, as expected.

Wehave also employed sequential quadratic program-
ming (SQP) algorithm (Gill et al. 2005) with direct
collocation and automatic differentiation (implemented,
respectively, in the software packages SNOPT v. 7
(Gill et al. 2005), DIRCOL v. 2.1 (Von Stryk 2000) and
ADIFOR v. 2.0 (ADIFOR 1994)) to find an accurate
approximation to the optimal solution. A sample of such
numerical solutions is shown in figure 8a. We see that as
a/1 from below, the transition from uZ1 to uZ0
becomes sharper and sharper. The optimal control
becomes bang-bang control as a/1 from below.
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4.3. The two-step problem

Most of the qualitative conclusions obtained for the
one-step problem also hold for the two-step problem.
Namely, for aR1 we have a bang-bang optimal control,
and for 0!a!1 we have an interior solution for part of
the domain [0, T ]. This can be demonstrated again by
comparing the best bang-bang solution with a family of
continuous functions u(t) with a finite width. Note that
an improvement on the bang-bang control for 0!a!1
may not be found in the class of functions defined by
equation (4.2). In some instances, we have used the
function (4.2) multiplied by some small power of t. In all
J. R. Soc. Interface (2008)
cases, a non-zero width wO0 gives a better performance
than the bang-bang control.

The iterative method developed above for approxi-
mating the optimal control for the one-step model does
not work for the two-step problem. There, we do not
observe a convergence of the algorithm to a fixed point.
Instead, we used SQP algorithm to find the solution. An
example is shown in figure 8b, where the optimal control
is found numerically for different values of a!1. As in
the case of a one-step process, the control becomes
steeper as a/1.
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Table 2. Optimal controls (of the bang-bang type) for Models
I, II, I� and II�, for parameters aZ2, sZ10, umZ1, mZ0.1 and
aZ1.5.

model I II I� II�

TS 0.75 0.70 1.36 1.10
T 3.36 3.37 5.40 5.68

0.2

0.4

0.6

0.8

1.0

u
(t

)
u

(t
)

dm = 1

dm = 0.1

dm = 0.01

dm = 0.001

dm  = 0.0001

1 2 3 4

0.2

0.4

0.6

0.8

1.0

time (t)

dm = 1

dm  = 0.01

dm = 0.1
dm  = 0.0001

dm  = 0.001

(b)

(a)

Figure 10. The optimal controls �uðtÞ for a!1 and various
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Robustness of the model has been checked. We have
compared the qualitative shapes of the optimal controls
for Models I, II, I� and II�, formulated in §2. For all the
models, the optimal control withaR1 is of the bang-bang
type, and for a!1 it is a continuous monotonically
decaying function of time, starting at uZ1 at tZ0.
Figure 9 presents the optimal controls found by SQR
algorithm for the four models, for aZ0.5 (and all other
parameters taken the same for all models). The optimal
control (of the bang-bang type) foraZ1.5 is presented for
the four cases in table 2. We can see that there are
quantitative differences, but the qualitative behaviour is
the same.
5. THE OPTIMAL STRATEGY FOR CANCER

In what follows, we drop the restriction dmZ1 in
formula (2.9) and investigate the two-dimensional
parameter subspace of the problem, (um, dm). The
magnitude um tells us the maximummutation rate (due
to genetic instability) that is possible in the system.
The value dm characterizes the maximum magnitude of
the death rate associated with the instability.

Let us first take a!1, fix a value um!1 and find an
optimal control �uðtÞ for several values of the magnitude
of the death rate, dm. Figure 10 presents the functions
�uðtÞ obtained by means of the method described in §4.2
We have also used the SQP algorithm to double-check
the results. Figure 10a shows several runs for aZ0.1,
and figure 10b shows several runs for aZ0.9. We
observe the following trend: as dm becomes smaller, the
optimal controls become larger. In other words, for
small values of the death rate, optimal strategies tend
to favour large values of u(t) for a longer initial period of
time. For example, in the case aZ0.1 the transition to
uZ0 does not happen for dm!0.001. On the other
hand, for large values of dm, optimal controls decrease
J. R. Soc. Interface (2008)
continuously from their maximum value to zero very
early in the growth process. Note that increasing dm to
values larger than 1 will lead to an even sharper
decrease in �uðtÞ.

Next, we turn to the values aR1. In this case, the
results do not depend on the actual value of a; optimal
controls were found (Wan et al. in preparation) to be
bang-bang with exactly one switching. In other words,
the result that no feasible interior solution exists for
aR1 extends to the case dms1. The function �uðtÞ
assumes only one or both of the values uZ1 and uZ0
(with no more than one switching), and the value of the
death rate, dð�uÞ, satisfies d(0)Z0 and d(1)Z1 for all
aR1. This simplifies the problem because the form of
optimal controls for all aR1 is the same, and it is
enough to perform simulations for just one value aR1,
say, aZ1.

We therefore take u(t) to be of the bang-bang form,
given by equation (4.1), and find the optimal switching
time, Ts, for various points in the (um, dm) plane.
Figure 11 presents a two-dimensional density plot of
the quantities Ts/T, the relative switching time, for
various pairs (um, dm). The lighter shades correspond
to smaller values of the relative switching time. The
corresponding diagram for aR1 in the (um, dm)
parameter subspace for the two-step model looks
qualitatively the same and is not presented here.

As dm changes, the behaviour of the optimal controls
in the aR1 case follows the same trend as in the case
a!1. Namely, for large values of dm, the period of time
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where the maximum value of u is advantageous
becomes shorter. We now present a mathematical
explanation together with a biological interpretation
of the various regions in the parameter space of
figure 11, with aR1.

(i) Small values of um and large values of dm
correspond to Ts=T/1, the regime where
genetic instability is never advantageous, except
in a very short time-interval at the beginning of
the growth (the black cells in figure 11). This is
because the small gain in the mutation rate (um)
is not worth risking the penalty (the large death
rate), and the cells are better off without the
instability. Mathematically, there is one switch-
ing from uZ1 to uZ0 in the function �uðtÞ, but
this switching happens so early in the growth
that, biologically, the initial, unstable, period of
time (with uZ1) is negligible, and the cells are
characterized by low mutation rates at all times.

(ii) The opposite situation arises when instability is
advantageous and it does not become a liability
for the entire duration of the growth (until the
colony reaches size M, see white cells in
figure 11). This happens when um is large and
dm is small: a small penalty for a large gain in the
mutation rate. In this regime, j1KTs=T j/1,
that is, for most, or all, of the time the optimal
control is �uðtÞZ1.

(iii) The grey cells in figure 11 correspond to
intermediate values of Ts, such that Ts/T and
[1KTs/T ] are not too small. In this regime, the
optimal strategies are one-switch bang-bang
controls with an unstable strategy advantageous
at first and then becoming disadvantageous,
prior to reaching the target. The switching
occurs at some intermediate time, neither at
the very start nor close to the end of the growth.
This regime characterizes the middle portion of
the parameter space.

(iv) Finally, we have the white rectangle in figure 11
which corresponds to small values of dm and um.
In such cases, the shape of optimal controls is
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bang-bang with an intermediate switch, similar to
case (iii) above. However, in this regime, changes
in u(t) affect the time to target, T, only very
slightly. No matter what the shape of u(t) is, the
changes in the mutation rate and the death rate
are bounded by very small um and dm, respect-
ively, and cannot significantly alter the solutions
oftheODEs. Insidethewhiterectangle infigure11,
the difference between the maximum and the
minimum time to target, T, as a function of Ts, is
less than 1%. In this (biologically irrelevant)
region of the parameter space, genetic instability
is unimportant. The results for this region are
included for mathematical completeness only.

A more quantitative picture for optimal controls in
the aR1 case is presented in figure 12. There, we plot
the optimal time to target, T (thin black lines), and the
corresponding switching time, Ts (thick grey lines), as
functions of um, for different values of dm. The lines
corresponding to T are monotonically increasing,
concave functions of log um; the different lines corre-
spond to different values of dm; the direction in which
dm increases is marked by an arrow. The lines
corresponding to Ts have a one-hump shape; again,
different lines correspond to different dm.

For large values of um and small values of dm, the
lines for T and Ts coincide. In this case, no switching is
observed and instability is advantageous at all times.
As um decreases, the value Ts tends towards zero. This
means that stability throughout the growth is observed.
Intermediate values of um and dm correspond to a
switching sometime in the course of growth, not too
close to tZ0 or tZT.
6. DISCUSSION

6.1. Summary

We have examined optimal strategies for a cancerous
colony with respect to the magnitude of the mutation
rate, as the colony acquires carcinogenic mutations and
enters a phase of a clonal expansion. Biologically, a
large mutation rate corresponds to genetic instability



Optimal strategy of cancerous cells N. L. Komarova et al. 117
and a small mutation rate to stability of cancerous cells.
The two types of carcinogenic mutations that we
considered are activation of an oncogene (the one-step
model) or inactivation of a TSG (the two-step model).

In order for a cancer to progress, a cell colony first
has to generate carcinogenic mutants and then to grow.
Genetic instability may expedite the first of these
processes and slow down the second. Therefore, this
process can be examined as an optimization problem.

Genetic instability is ‘blind’, i.e. it does not
necessarily ‘hit’ the exact genes necessary for cancer
progression. It may cause defects in other genes thus
creating deleterious cells. The question is whether the
gain in progression speed due to the increased mutation
rate would outweigh the losses suffered by the cells as a
result of spurious, deadly mutations created by the
instability. In order to model this, we introduce two
parameters: um, the maximum rate of mutations; and
dm, the magnitude of the death rate. Small values of um

mean a small gain in creating cancerous mutations.
Large values of dm mean a large penalty paid by the
colony as a result of many mutation-related deaths.

First we examined in detail a subset of the (um,dm)
parameter space, namely, dmZ1. We found that large
mutation rates at first and lower mutation rates later on
constitute the optimal strategy. The exact shape of the
optimal mutation strategy depends on the concavity of
the function d(u), the instability-dependent death rate.
We distinguish two cases. For non-convex death rates
(§4.1), the best performance is achieved if the mutation
rate jumps (in a discontinuous, abrupt fashion) from
maximum to minimum. For convex death rates (§4.2),
the transition in an optimal control is gradual. In both
cases, having the highest possible mutation rate is
advantageous at first; later on, it pays off to switch to a
lower mutation rate.

We also performed numerical simulations to find
optimal strategies for all biologically reasonable values
of um and dm. We found three qualitatively different
forms of optimal strategies. In one scenario, the
instability makes a minimal contribution to creating
carcinogenic mutations (small um), but significantly
increases the death rate (large dm). Consequently, it
does not pay to be unstable at any stage of the growth in
this case. At the other extreme (large um and small dm),
instability is useful and it ‘comes cheap’; in other words,
the death toll paid by the affected cells is small.
Therefore, the colony is better off being unstable at all
times. Finally, between these two extremes, optimal
controls start at the maximum admissible mutation
rate and then drop to the lowest possible value at some
time during the dynamics. This corresponds to genetic
instability being advantageous at the beginning and
becoming a liability later. This explains the growing
experimental literature suggesting that tumours switch
from genetic instability to stability some time in the
course of cancer progression.

The advantage of our approach is that several results
can be obtained analytically. These first simple models
can be extended in many ways to include more
information about the biological reality. For instance,
the models have a stochastic version. That is, instead
of average quantities, one could use probability
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distributions. More details about specific mutations
can be included if one chooses to focus on a particular
case study. Various additional constraints on the
strategies can be imposed, reflecting the dependence
of the mutation rate on other characteristics of the
system, e.g. the system size. Finally, the parameteriza-
tion of the death rate as a function of the instability can
be generalized. However, the general trends found in
the simple models are biologically intuitive and
experimentally supported. With possible non-principal
modifications, they are likely to persist in certain more
sophisticated scenarios.
6.2. Does cancer solve an optimization problem?

Not literally, of course. However, by solving this
problem, one can obtain valuable information about
the growth of cancer. This is similar to the general
philosophy of the evolutionary game theory, as, for
example, in Maynard Smith (1982). In that paper,
different strategies are played against each other to see
which one wins. In principle, one could design an ‘ideal’
strategy which leads to the maximal pay-off in the
game. The game can be a model of something that
happens in nature, for instance the behaviour of
animals in different situations or adaptations of cells
in various environments. The ideal (optimal) strategy
may not even be realistic (there are many constraints in
nature which escape modelling, but can make a strategy
impossible). What occurs in reality, however, tends to
approximate an optimal strategy. Finding the
‘evolutionary stable strategy’ or the ‘Nash equilibrium’
in the system helps us understand the general
experimentally observed trend. A plausible explanation
for the survival of those animals is that they have won
the evolutionary game against other animals that used
an inferior strategy.

In the present paper, we use similar ideas. We solve
the optimization problem for cancerous growth and find
optimal strategies. Does cancer always use an optimal
strategy? Probably not. One obstacle to optimality is
that cancer is unable to adjust its level of instability
instantaneously throughout the entire population to
optimize the growth. However, a cancer which follows
the general trend, i.e. a strategy close to an optimal one,
will grow faster. These are the colonies that ‘succeed’
causing a disease. Other pre-cancerous colonies of cells
might exist in any organ of an organism, but if they do
not use a strategy sufficiently close to optimal, they do
not succeed with further growth and are not observed.
6.3. Implications for somatic evolution of cancer

In this paper, we formulate the problem of cancer
growth from the point of view of cancerous cells, in
order to find the most optimal mutation strategy. Here
we discuss our model in the context of somatic
evolution of cells.

Selection in this problem takes place on two levels.
One level is the level of individual cells, where normal
cells are competing for space and nutrients (this is one
of the mechanisms of homeostatic control), and
cancerous cells escape this control to enter a phase of
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exponential growth. The forces of selection are mani-
fested in the nonlinearities of the basic ODEs. The
second level of selection is the level of cell colonies.
Different colonies are characterized by different func-
tions u(t). They are not assumed to be in direct
interaction with one another. The competition in this
case manifests itself in whether a given colony will reach
a cancerous state quickly and become observable. The
mathematical problem we solve is to find the optimal
strategy u(t), such that the colony with this strategy
will be the first one to ‘make it’.

Several other papers have proposed evolutionary
models of genetic instability. An important component
of many such models is costs and benefits of cell repair,
(Breivik & Gaudernack 1999, 2004; Breivik 2001;
Komarova & Wodarz 2003; Breivik 2005). It is argued
that an evolutionary reason for instability is the fact
that cell repair is costly, and under some circumstances
it may pay off to avoid repair, which leads to genomic
instability. In this paper, we do not focus on the
detailed analysis of costs and benefits of cell repair;
instead, we concentrate on their effect on the choice of
the most advantageous strategy with respect to the rate
of chromosome loss. However, the model includes the
costs of repair in the following indirect way. Cells with
efficient repair have a disadvantage because repair is
costly (having to enter cell cycle arrest in order to
repair the genome decreases the growth rate of the
population). Cells with inefficient repair have a
disadvantage of creating deleterious mutations. The
difference between the two, that is, the relative
disadvantage of instability, is captured in the quantity
d(u). The function d(u) reduces the fitness of unstable
cells with respect to stable cells. We assume that this
quantity is positive, due to the large damage inflicted
by losses of ‘wrong’ chromosomes.
6.4. Suggestions for experiments

The theory developed here would greatly benefit from
further experiments that would aim at quantification of
the processes of tumour growth and mutation. We
propose two types of experiments.

The rate of instability as a function of the tumour
stage. Despite many reports that the degree of genetic
instability goes down as the tumour progresses (Rudolph
et al. 2001; Chin et al. 2004), a quantification of this
phenomenon is still lacking. The rate of chromosomal
loss has been measured by Lengauer et al. (1997). In a
similar way, a thorough study of the ‘natural history’ of
genetic instability can be performed. A systematic study
of cells harvested at different stages of tumorigenesis
would yield a curve, where the mutation rate is a
function of the tumour age. This study can be done in a
controlled manner with animal models.

The death rate of cells as a function of the mutation
rate. In our mathematical model, we postulate that the
death rate of cells is a function of the cells’ mutation
rate. In the presence of instability, we assume that the
death rate is elevated; this can be quantified experimen-
tally. In the last several years, much work has been
done to understand the role instability plays in
tumours, in particular, in the way it affects the death
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of cells (Lowe et al. 2004; Bartkova et al. 2005; Chen
et al. 2005; Gorgoulis et al. 2005; Deng 2006). However,
a detailed measurement of the death rate as a function
of a mutation rate has not been performed. One way to
do this is as follows, similar in spirit to previous work
(Marder & Morgan 1993; Nagar et al. 2003; Smith et al.
2003) on cells treated by radiation. As the amount of
radiation increases, the mutation rate increases and so
does the cell death. The dependence of the cell death on
the mutation rate could serve to improve our model of
the function d(u), and help us reason about optimal
strategies of tumours. Another way to quantify the
dependence of death on the degree of genetic instability
is to measure the death rate together with the degree of
instability in a series of experiments with cells
harvested at different stages of tumour growth.
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APPENDIX A. THE TWO-STEP PROBLEM: THE
MATHEMATICAL FORMALISM

A.1. Statement of the problem
A.1.1. Equations of state. Let x0(t) be the population
size of normal cells and x1(t) be the population size of
harmless mutants with only one functioning copy of its
TSG, both normalized by the initial normal cell
population size N. Let x2(t) be the population size of
dangerous TSG mutant cells normalized by its final
target population size M. With pminZ0, the time
evolution of the three cell populations is governed by
the following three first-order ODEs:

x 0
0 ZK2mx 0 Cx 0ð1KdðuÞÞð1K x 0K x 1Þ

hg0ðx 0; x 1; x 2; uÞ; ðA 1Þ

x 0
1 Z 2mx 0KðmCumuÞx 1 Cx 1ð1KdðuÞÞð1K x0K x 1Þ

hg1ðx0; x1; x2; uÞ; ðA 2Þ

x 0
2 Z

1

s
ðmCumuÞx1 Cx2ð1KdðuÞÞðaK x0K x1Þ

hg2ðx 0; x 1; x2; uÞ; ðA 3Þ

again with ðÞ0ZdðÞ=dt;sZM=N[1;aO1;0!um%1,
0%m/1; and the death rate (2.9) where the non-nega-
tive normalized gross chromosomal change rate u
is limited by the inequality constraint (3.4). System
(A 1)–(A 3) corresponds to system(2.3), (2.4) and (2.8) of
§2.2 of the main text.
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A.1.2. Boundary conditions. The three equations of
state (A 2)–(A 4) are subject to the following four
auxiliary conditions:

x 0ð0ÞZ1; x1ð0ÞZ0; x2ð0ÞZ0; x2ðTÞZ1;

ðA4Þ
where T is the time when the dangerous mutant cell
population reaches the target size.
A.1.3. Problem. Choose the control function u(t) to
minimize the time T needed to reach the target
population size of the dangerous mutants subject to
the inequality constraint (3.4), on the control u(t) and
the non-negative constraints

xkR0; k Z 0; 1; 2; ðA 5Þ
on the cell populations. The problem can be restated as
choosing the control function u(t) to minimize the
performance index J defined in (3.6) subject to the
equations of state (A 1)–(A 3), the boundary conditions
(A 4), the inequality constraints (3.4) and (A 5) with
TO0 as a part of the solution.
A.2. The Hamiltonian and adjoint variables

The Hamiltonian for the two-step problem is

H Z 1Cl0g0 Cl1g1 Cl2g2; ðA 6Þ
where lk are the three adjoint variables for the problem
described by three adjoint ODEs,

l
0
k ZK l0

vg0
vxk

Cl1
vg1
vxk

Cl2
vg2
vxk

� �
;

ðk Z 0; 1; 2Þ;
ðA 7Þ

and (for the given auxiliary conditions on the state
variable (xk)) two transversality conditions

l0ðTÞZ l1ðTÞZ 0: ðA 8Þ
For the optimal solution of our minimum terminal time
problem, it is customary to investigate first the
possibility of an interior solution, by seeking

(i) a control uZu int(t) to satisfy the optimality
condition (3.14),

(ii) six quantities fxiðtÞ; ljðtÞg to satisfy the six
differential equations (A 1)–(A 3) and (A 7) and
six auxiliary conditions in (A 4) and (A 8), and

(iii) the terminal timeT to satisfy a free end condition
which again becomes (3.11) after simplificationby
the adjoint boundary condition (A 8).

For the state equations (A 1)–(A 3), the three
adjoint differential equations (A 7) take the form

l00 ZKl0fð1K2x0K x1Þð1KdÞK2mg

K l1f2mK x 1ð1KdÞgCl2x 2ð1KdÞ; ðA 9Þ

l01 Z l0ð1KdÞx0K l1fð1K x0K2x1Þð1KdÞ

KðumuCmÞgK l2

s
fðumuCmÞKsx 2ð1KdÞg;

ðA 10Þ

l
0
2 ZKl2ðaK x 0K x 1Þð1KdÞ: ðA 11Þ
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Consider the interior control u(t) determined by the
optimality condition (3.15), vH=vuZ0, with

vH

vu
Z

umx 1

s
ðl2Ksl1ÞKfðl0x 0 Cl1x1Þð1K x0K x1Þ

Cl2x 2ðaK x 0K x1Þgd$; ðA 12Þ

where d$Zað1KuÞaK1 for the death rate (2.9). We have
from (3.14)

d$Zað1KuÞaK1

Z
x 1fl2Kl1sg

smfðl0x 0Cl1x1Þð1Kx 0Kx1ÞCl2x 2ðaKx0Kx1Þg
:

ðA13Þ
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