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Machine Learning and Rule-based Approaches to Assertion
Classification
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A b s t r a c t Objectives: The authors study two approaches to assertion classification. One of these
approaches, Extended NegEx (ENegEx), extends the rule-based NegEx algorithm to cover alter-association
assertions; the other, Statistical Assertion Classifier (StAC), presents a machine learning solution to assertion
classification.

Design: For each mention of each medical problem, both approaches determine whether the problem, as asserted
by the context of that mention, is present, absent, or uncertain in the patient, or associated with someone other
than the patient. The authors use these two systems to (1) extend negation and uncertainty extraction to
recognition of alter-association assertions, (2) determine the contribution of lexical and syntactic context to
assertion classification, and (3) test if a machine learning approach to assertion classification can be as generally
applicable and useful as its rule-based counterparts.

Measurements: The authors evaluated assertion classification approaches with precision, recall, and F-measure.

Results: The ENegEx algorithm is a general algorithm that can be directly applied to new corpora. Despite being
based on machine learning, StAC can also be applied out-of-the-box to new corpora and achieve similar
generality.

Conclusion: The StAC models that are developed on discharge summaries can be successfully applied to
radiology reports. These models benefit the most from words found in the � 4 word window of the target and
can outperform ENegEx.
� J Am Med Inform Assoc. 2009;16:109–115. DOI 10.1197/jamia.M2950.
Introduction
The narrative in patient records contains information about
the medical problems of patients. Given the medical prob-
lems mentioned in a record, for each mention of each
medical problem, assertion classification aims to determine
whether the problem is present (as stated by a positive
assertion), absent (as stated by a negative assertion), or
uncertain in the patient (as stated by an uncertain assertion),
or is associated with someone other than the patient (as
stated by an alter-association assertion).

Related Work
Extraction of key concepts from narrative medical records
requires studies of medical language. Medical language
processing systems enable studies of patient data reposito-
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ries (e.g., for developing decision support systems1 and for
automatic diagnosis)1,2 by extracting information from nar-
rative patient records. Determining the nature of the asser-
tion made on each mention of each medical problem is a step
towards interpreting medical narratives.1 To this end, there
have been some efforts in the literature.

Fiszman et al.1,2 developed the SymText system for encod-
ing information from chest x-ray reports. SymText processes
each sentence in a document independently, parses text
syntactically, and fills semantic templates either with words
extracted from the text or with broader concepts derived
from these words. Bayesian networks applied to these
templates can interpret one sentence at a time, e.g., can
determine based on a single sentence the probably that a
disease is present in the patient. Fiszman et al. used Sym-
Text’s output with a rule-based system for determining
whether a concept was present in a record. Identifying a
single mention of the concept (or a term related to the
concept) as present or possible was sufficient to qualify the
concept as present in the record. They found that SymText’s
performance on this task “was similar to that of physi-
cians”1; its performance was better than that of keyword
search systems when these systems considered a concept to
be present unless it was accompanied by an explicit nega-
tion.

Friedman et al.’s MedLEE3 uses domain-specific vocabulary
and semantic grammar to process medical record narratives.

It identifies the concepts in a report, maps the concepts to
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semantic categories, and maps the semantic categories to
semantic structures. The resulting semantic representation
captures information on status, location, and certainty of
each mention of each concept. Hripcsak et al.4 processed
these semantic representations through Medical Logic Mod-
ules that could determine whether each mention of a disease
was indicated as present or absent. They studied mentions
of six diseases and found that the performance in determin-
ing presence of these diseases was not significantly different
from that of physicians, but was significantly better than that
of a keyword-based system that used negation phrases to
identify absence.4

For determining positive and negative assertions, Chap-
man’s NegEx5 studies candidate diseases and findings iden-
tified by the Unified Medical Language System (UMLS), and
employs dictionaries of pre- and post-UMLS phrases that
are indicative of negation. NegEx uses heuristics to limit the
scope of indicative phrases, and identifies negative asser-
tions with 78% recall (sensitivity) and 84% precision (posi-
tive predictive value) on 1,235 findings and diseases found
in 1,000 sentences taken from discharge summaries.5 Infor-
mal evaluations of NegEx report 78% recall and 86% preci-
sion on uncertain assertions.6 Application of NegEx to
identify the experiencer of a medical problem by ConText
achieves 50% recall and 100% precision on a corpus contain-
ing 8 instances (out of 1,620) of alter-association assertions.7

Mutalik et al.’s Negfinder8 employs techniques and tools
used for creating programming language compilers, makes
use of a lexical scanner that is based on regular expressions,
and runs a parser based on a restricted context-free gram-
mar. The NegFinder finds negated concepts in discharge
summaries and surgical notes with 95.7% recall and 91.8%
specificity when evaluated on 1,869 concepts found in 10
medical documents from a variety of specialties.

Aronow et al.’s NegExpander9 finds negation phrases
through rules applied to part-of-speech tagged radiology
reports, studies conjunctions that split negations, and ex-
pands negation phrases across conjunctions to make explicit
the negation of individual concepts. The NegExpander gives
93% precision on radiology reports.

Elkin et al.10 employ a rule base to mark positive, negative,
and uncertain assertions on text which is preprocessed into
its tokens and parsed. They achieve 97.2% recall and 91.2%
precision on the assignment of negations.

The above-mentioned systems employ contextual features of
various complexity with algorithms and tools of various
complexity. We extend their studies on negation and uncer-
tainty extraction to recognition of alter-association. We ex-
pect that the context immediately surrounding a medical
problem holds valuable information regarding the assertion
made on that medical problem. Although language allows
extensive variation in the expression of assertions, we hy-
pothesize that a significant portion of assertions are marked
with clear contextual characteristics. While testing this hy-
pothesis, we explore the significance of one form of syntactic
information in assertion classification.

In general, rule-based approaches to assertion classification can
be applied out-of-the-box to new corpora. On the other hand,
supervised learning approaches are usually retrained for use

on new corpora. This can make rule-based approaches more
desirable over supervised learning approaches, even if the
choice of a rule-based over a supervised learning approach
trades off some performance for convenience. Ideally, the
choice of an assertion classifier for a task would not trade off
performance for convenience; the assertion classifier used
would be convenient to apply and would outperform the
alternatives. We hypothesize that supervised learning ap-
proaches hold some potential for achieving these two goals
simultaneously. We check the feasibility of building a sta-
tistical assertion classifier that can be used out-of-the-box
and that can maintain a performance advantage over its
rule-based counterparts.

Our end product is a statistical assertion classifier, StAC,
that can automatically capture the contextual clues for
negative, uncertain, and alter-association assertions. The
StAC approach makes use of lexical and syntactic context in
conjunction with Support Vector Machines11 (SVMs). We
evaluate StAC on discharge summaries and on radiology
reports. We compare StAC with Extended NegEx (ENegEx),
our implementation of the NegEx algorithm extended to
capture alter-association in addition to positive, negative,
and uncertain assertions. We employ ENegEx as a represen-
tative rule-based assertion classifier. We show that ENegEx
can give good results on our corpora. We also show that
StAC need only use the words that appear in � 4 word
window of the target problem (i.e., the problem to be
classified with an assertion type) to recognize most of the
assertions in the same corpora. The models captured by
StAC are most useful when they are specific to each corpus.
However, the models built on one corpus can also identify
assertions on a new corpus. As a result, StAC can be applied
to new corpora out-of-the-box, in the same manner as
ENegEx, and demonstrates potential for performance gain
over this rule-based counterpart.

Data
We studied assertion classification on two corpora of dis-
charge summaries and one corpus of radiology reports. The
studies of these corpora were approved by the relevant
Institutional Review Boards.

Beth Israel Deaconess Medical Center (BIDMC)
Corpus
The BIDMC corpus consisted of 48 deidentified discharge
summaries, consisting of a total of 5,166 sentences and
including 2,125 medical problem mentions, from various
departments in the BIDMC.

Challenge Corpus
The Challenge corpus consisted of 142 deidentified dis-
charge summaries, consisting of 15,042 sentences and in-
cluding 8,279 medical problem mentions, from various de-
partments of hospitals in Partners Health Care.

Computational Medicine Center (CMC) Corpus
The CMC corpus consisted of 1,954 deidentified radiology
reports, consisting of 6,406 sentences and including 6,325
medical problem mentions, for the 2007 CMC challenge12 of
the University of Cincinnati.

We used the BIDMC corpus for development; we used the

Challenge and CMC corpora for evaluation.
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Annotations
Assertion classification, as tackled in this paper, assumes
that mentions of medical problems in clinical records have
already been identified, and aims to determine whether each
mentioned medical problem is present, absent, or uncertain
in the patient, or associated with someone other than the
patient. Therefore, before studying assertions, we annotated
our corpora in two ways: we identified the medical prob-
lems in them (the summary numbers that resulted from this
annotation are in the descriptions of the corpora above) and
we determined the assertion class of each identified medical
problem.

Identifying Medical Problems
For our purposes, medical problems refer to the diseases
and symptoms of the patient. Diseases include the UMLS
semantic types pathological function, disease or syndrome,
mental or behavioral dysfunction, cell or molecular dysfunc-
tion, virus, neoplastic process, anatomic abnormality, injury
or poisoning, congenital abnormality, and acquired abnor-
mality.13 Symptoms correspond to UMLS’s signs or symp-
toms. Using this mapping, two undergraduate computer
science students independently marked the medical prob-
lems in the BIDMC corpus.13,14 Two other undergraduate
computer science students independently marked the med-
ical problems in the challenge corpus. This required two
months of full time effort from each annotator. Given time
and resource constraints, the medical problems in the CMC
corpus were tagged using MetaMap.15 Given the possible
errors of MetaMap on this task,13 the output of MetaMap
was manually corrected and finalized by a nurse librarian
and by a graduate student. The use of MetaMap for marking
medical problems cut the annotation time per annotator by
approximately 75%.

Determining Assertion Classes
Given the patient medical problems, we defined four classes
of assertions:

• Positive assertions state that the problem, marked in
square brackets, is/was present in the patient. e.g., “She
had [airway stenosis].”

• Negative assertions state that the problem is absent in the
patient. e.g., “Patient denies [headache].”

• Uncertain assertions state that the patient may have the
problem. e.g., “. . . was thought possibly to be a [neo-
plasm].”

• Alter-association assertions state that the problem is not
associated with the patient. e.g., “Sick contact positive for

Table 1 y Instances and Percentages of Medical
Problems in Each Assertion Class

Assertion Class
Number in

BIDMC
Number in
Challenge

Number in
CMC

Positive 1,537 (72%) 6,702 (81%) 4,761 (75%)
Negative 398 (19%) 1,249 (15%) 811 (13%)
Uncertain 169 (8%) 259 (3%) 742 (12%)
Alter-Association 21 (1%) 69 (1%) 11 (0%)
Total 2,125 (100%) 8,279 (100%) 6,325 (100%)

BIDMC � Beth Israel Deaconess Medical Center; CMC � Compu-
tational Medicine Center.
family member with [cough].” We do not differentiate
between present, absent, or uncertain alter-association
assertions.

While positive, negative, and uncertain assertions are often
studied in negation and uncertainty extraction, alter-associ-
ation assertions are usually not studied as a part of this task.
We believe that alter-association assertions make sense in
the context of more general assertion classification as they
indicate whether the medical problem directly or indirectly
affects the patient. We therefore include this assertion class
in our studies.

Using the above assertion class definitions, for each occur-
rence of each problem in each corpus, one nurse-librarian
and one information studies graduate student marked its
assertion class. Initial agreement between the annotators as
measured by kappa (K)16 was 0.93 on the BIDMC corpus, 0.8
on the challenge corpus, and 0.92 on the CMC corpus. In
general, K � 0.8 is considered “almost perfect agreement”.16

The annotators discussed and resolved their disagreements,
providing us with the gold standard (see Table 1).

Methods
Given the medical problems mentioned in a clinical record,
both ENegEx and StAC classify the assertion made on each
medical problem by processing the records one sentence at a
time and one medical problem at a time. They treat each
occurrence of each medical problem independently of all
others.

Extended NegEx (ENegEx)
In the absence of direct access to NegEx in time for this
study, we implemented our own version of this program
using the algorithm and the pre- and post-UMLS indicative
phrases of NegEx6. We extended NegEx to alter-association
assertions by studying the BIDMC corpus. We added to
NegEx dictionaries consisting of:

1. Preceding alter-association phrases: that precede a prob-
lem and imply that it is associated with someone other
than the patient, e.g., cousin, sister, and brother.

2. Succeeding alter-association phrases: that succeed a prob-
lem and imply that it is associated with someone other
than the patient.

The resulting number of alter-association indicative phrases
was 14. These indicative phrases were a superset of Con-
Text’s7 dictionaries. We applied the NegEx algorithm6 with
the extended set of indicative phrases to our data, and called
this system ENegEx.

We ran ENegEx on the BIDMC corpus (see Table 2), manu-
ally checked its output, and reestablished that its algorithm
complied with the specifications of NegEx. We double-
checked that the low recall on uncertain assertions was due

Table 2 y ENegEx on BIDMC Corpus

Assertion Class

EnegEx

Precision Recall F-Measure

Positive 0.88 0.99 0.93
Negative 0.97 0.84 0.90
Uncertain 1.00 0.08 0.15
Alter-Association 1.00 1.00 1.00
BIDMC � Beth Israel Deaconess Medical Center.
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to a weakness in NegEx’s dictionaries, which for uncertain
assertions consisted solely of morphological and syntactic
variants of the phrase “rule out.”6 We verified that our
newly introduced alter-association indicative phrases were
complete in their coverage of the alter-association assertions
in the BIDMC corpus.

Statistical Assertion Classifier (StAC)
To test the hypothesis that contextual features capture the
information necessary for assertion classification, and to
explore the contribution of one form of syntactic information
to this task, we built StAC. The StAC applies SVMs to a
binary feature vector. We define a feature as a characteristic
that can have a multitude of values, e.g., for a person, “eye
color” is a feature with several possible values, e.g., green.
For each feature of StAC, the binary feature vector lists all
possible values of that feature in the corpus as its columns,
and for each target medical problem to be classified (row), it
sets the columns observed to 1, leaving the rest at zero.14 If
the target has no value for a feature, then all columns
representing this feature will be set to zero.

We armed StAC with a variety of contextual features, which
included some simple lexical information and some more
complex syntactic information. For each target, StAC uses
features extracted from the sentence containing the target.
Upon request, the code for extracting these features will be
made available for research purposes.

Lexical context features of StAC include:

• � 4 word window, i.e., words that appear within a � 4
word window of the target. Given the target at the nth

position in the sentence, the � 4 word window captures
the words found in the (n-1)th, (n-2)th, (n-3)th, (n-4)th,
(n�1)th, (n�2)th, (n�3)th, and (n�4)th positions in the
sentence. Our knowledge representation treats each of
the above positions as an individual feature, lists all
possible values for each feature, and identifies the value
of the feature in the context of each target by setting only
that value to one. For some targets, one or more of the

F i g u r e 1. Context window size (� n) vs. F-measure on
each assertion class on BIDMC corpus.
features can have no values specified, e.g., the third word
of the sentence will have all possible values of the (n-4)th

position set to zero.

The � 4 word window subsumes � 1, � 2, and � 3 word
windows so that any strings captured by these smaller
windows are also captured by the larger window of � 4. The
focus on a � 4 word window was determined by cross-
validation on the BIDMC corpus. Figure 1 shows the F-
measures of StAC when run only with various � n word
window features and indicates that windows greater than �
4 can hurt performance on three of the assertion classes.

• Section headings, i.e., whether the target appears in a
section whose heading contains the word “Family”, e.g.,
family history. This feature is represented by a single
column which is set to one only if the target appears in a
section whose title contains the word “Family”.

Syntactic context features include:

• Verbs preceding and succeeding the target, e.g., verb
showed preceding a problem suggests that the problem is
present, verb cured after a problem suggests that the
problem is absent. We treat the verb preceding and the
verb succeeding the target as two separate features, each
with numerous possible values.

• � 2 link window, i.e., syntactic links within a � 2 link
window of the target (and of the verbs preceding and
succeeding the target) and the words they link to the
target (and to the verbs preceding and succeeding the
target). We extract the links and the words they link to
from the output of the Link Grammar Parser17 (LGP). We
use a version of LGP whose lexicon has been extended to
improve coverage on medical corpora.18 Even in the
absence of a fully-correct parse for each sentence, this
parser provides useful parses for phrases.13,14

The choice of � 2 link window over windows of any other
size was based on cross-validation on the BIDMC corpus.
Given a target (or a verb) at the nth position in the sentence,
its � 2 link window is represented by the (n-1)th, (n-2)th,
(n�1)th, and (n�2)th links and the words to which they link.
e.g., for asthma in for asthma“His sister, last summer, was
diagnosed with asthma”, the �2 link window is given by the
set {(Jp, with),(MVp, diagnosed)} where MVp links verbs to
their prepositional phrases and Jp connects prepositions to
their objects (see Fig. 2). Our knowledge representation
treats each of (n-1)th, (n-2)th, (n�1)th, and (n�2)th links and
each of their words as an individual feature with its own set
of possible values. For some targets, one or more of the link
and word positions can have no values assigned, i.e., all
possible values of that feature are set to zero. When absent
among words within short range lexical window, the � 2
link window features clarify the modifier–noun relation-
ships and help eliminate false positives of lexical context
that would result from mere lexical proximity. When
present within long range lexical window, the � 2 link

F i g u r e 2. Sample link grammar parse.
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window features can capture the long distance dependen-
cies and help eliminate false negatives that would be missed
by our lexical context. For example, the connection between
sister and asthma would be missed by the lexical context but
is captured by the {(Pv, was),(Ss, sister)} links of the verb
diagnosed (see Sibanda14).

The StAC employs SVMs with a linear kernel. The choice of
SVMs over other classifiers is motivated by their ability to
robustly handle large feature sets and by their ability to
often find globally optimum solutions.19 In our case, the
number of features in the set is on the order of thousands.
We use the multiclass SVM implementation of LIBSVM.20

We evaluate StAC using single train–test cycles and using
cross-validation. For both train–test cycles and cross-valida-
tion, we create the binary feature vector from only the
development data used for each round. As a result, the
feature values of the targets that appear only in the valida-
tion and test sets of that round do not appear in the feature
vector, i.e., the feature vector is not overfit to the validation
and test sets. The performance of StAC on the BIDMC
corpus is given in Table 3.

Evaluation Methods
We evaluate system performances in terms of precision (P),
recall (R), and F-measure (F). Precision (positive predictive
value) measures the proportion of predictions in a class that
were correct. Recall (sensitivity) measures the proportion of
true class instances that were correctly identified. F-measure
is the harmonic mean of precision and recall. We test signifi-
cance of the differences in performances of the two systems
using the Z test on two proportions. This test considers the size
of the sample in a class to make a judgment of significance on
the difference of performances (proportions) in that class.21,22

We present precision, recall, and F-measure values for all of
our experiments; however, we base our observations on the
F-measure which provides a single convenient number for
comparing systems.

Table 4 y ENegEx on the Challenge and
CMC Corpora

Challenge CMC

Class p R F p R F

Positive 0.92 0.99 0.95 0.83 0.99 0.90
Negative 0.93 0.74 0.83 0.93 0.74 0.82
Uncertain 0.96 0.08 0.16 1.00 0.00 0.01
Alter-Association 0.71 0.81 0.76 0.50 0.07 0.13

Table 3 y StAC Cross-Validated on the
BIDMC Corpus

Assertion Class

StAC

Precision Recall F-Measure

Positive 0.93 0.97 0.95
Negative 0.95 0.93 0.94
Uncertain 0.70 0.56 0.63
Alter-Association 1.00 0.81 0.89

BIDMC � Beth Israel Deaconess Medical Center.
CMC � Computational Medicine Center.
Evaluation, Results, and Discussion
For evaluation, we ran ENegEx on the challenge and CMC
corpora. Table 4 shows that ENegEx is strongest in recog-
nizing positive and negative assertions, weakest in recog-
nizing uncertain and alter-association assertions. Although
the performance of ENegEx can be improved by tuning it to
the corpora on which it is to be run, even in the absence of
such tuning, ENegEx maintains itself as a simple algorithm
that can recognize positive from negative assertions. Most of
ENegEx’s mistakes come from scope and from incomplete
dictionaries. For example, in “She is an obese white female
in no acute distress with a hoarse voice,” ENegEx finds both
acute distress and hoarse voice are within the scope of the
indicative phrase no. In “. . . frozen section analysis revealed
this to be adenocarcinoma, metastatic disease from the colon
most likely,” ENegEx misses the subtle uncertainty ex-
pressed by most likely.

We evaluate StAC in two different ways:

• Cross-validation experiments: We developed the asser-
tion classification approach of StAC, with its specific
methods and features, on the BIDMC corpus. Would the
methods and features of StAC be as useful on other
corpora? To answer this question, we cross-validated
StAC on the challenge and CMC corpora. Cross-valida-
tion developed and validated models on each corpus
separately.

• Generality experiments: ENegEx can be applied to new
data sets as is and would give reasonable results. Could
StAC be similarly applicable to new corpora? To answer
this question, we trained StAC on the BIDMC corpus and
we ran it, without retraining or cross-validating, on the
challenge and CMC corpora. While cross-validating StAC
on a corpus tests the generality of StAC’s approach on that
corpus, running StAC on a corpus as trained on another
corpus checks whether the model obtained from one corpus
helps assertion classification in the other corpus.

Table 5 y Cross-Validation of StAc on the Challenge
and CMC Corpora

Challenge CMC

Class p R F p R F

Positive 0.96* 0.97* 0.97* 0.97* 0.98* 0.98*
Negative 0.91 0.88* 0.90* 0.95 0.95* 0.95*
Uncertain 0.65* 0.53* 0.58* 0.90* 0.88* 0.89*
Alter-Association 0.93* 0.81 0.87 1.00* 0.21 0.35

CMC � Computational Medicine Center.

Table 6 y StAC Trained on BIDMC and Run on
Challenge and CMC Corpora

Challenge CMC

Class p R F p R F

Positive 0.96* 0.93* 0.94* 0.89* 0.98* 0.93*
Negative 0.82* 0.89* 0.85 0.90* 0.82* 0.86*
Uncertain 0.31* 0.50* 0.38* 0.87* 0.45* 0.60*
Alter-Association 0.90* 0.75 0.82 0* 0 0

BIDMC � Beth Israel Deaconess Medical Center; CMC � Compu-

tational Medicine Center.
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In both of the above experiments, we use ENegEx (Table 4)
as a benchmark. We use * to mark the performances of StAC
that are significantly different from the corresponding per-
formance of ENegEx at � � 0.05. Bold marks performances
of StAC that are equal to or greater than the corresponding
performance of ENegEx.

Cross-validation Experiments
Table 5 shows that StAC’s approach to extracting key
contextual clues for recognizing assertion classes generalize
to all of our corpora. The StAC approach applies the
methods and features identified on the BIDMC corpus to the
challenge and CMC corpora. It extracts specific contextual
clues from each corpus within the limits of these methods
and features, and gives good results.

Generality Experiments
In general, rule-based approaches like ENegEx can be ap-
plied out-of-the-box to new corpora. To test whether StAC,
based on supervised learning, can be used out-of-the-box in
a manner analogous to ENegEx, we trained StAC on the
BIDMC corpus and tested the resulting model as is on the
challenge and CMC corpora. We found that with the models
trained on the BIDMC corpus, StAC could outperform
ENegEx, when both systems are run (compare Table 4 and
Table 6) on the challenge and CMC corpora. The perfor-
mance gain of StAC is more pronounced on the F-measures
from the CMC corpus.

Naturally, StAC gives its best results when it is cross-
validated because cross-validation allows it to tune its
context to each corpus (compare Table 5 and Table 6).
However, even in the absence of cross-validation, the infor-

Table 7 y F-Measures of StAC When Run on BIDMC Co

Corpus Feature

BIDMC Lexical Context �4 Word Window
Section headings
�4 word window � section

headings
Syntactic

Context
�2 link window

Verbs
�2 link window � verbs

BIDMC � Beth Israel Deaconess Medical Center.

Table 8 y F-Measure of StAC When Run on Challenge a

Corpus Feature

Challenge Lexical Context �4 word window
Section headings
�4 word window � section

Syntactic Context �2 link window
Verbs
�2 link window � verbs

CMC Lexical Context �4 word window
Section headings
�4 word window � section

Syntactic Context �2 link window
Verbs
�2 link window � verbs
CMC � Computational Medicine Center.
mation pertinent to classifying assertions on one corpus aids
classification of assertions in another corpus.

Feature Evaluation
To understand the source of the strength of StAC, we
cross-validated it with each of its features separately. Table
7 and Table 8, where italics mark the best F-measures, show
that the words in the � 4 word window are the most
informative features of StAC on all of our corpora, indicat-
ing that the nature of the assertions made about a problem is
mostly captured by the lexical context of the problem. Only
for determining the alter-association assertions on the dis-
charge summaries does lexical context drastically benefit
from Section Headings. The � 2 link window is the second
most informative feature for StAC. The � 2 link window
features contribute to lexical features by correcting false
positives that occur when a negation indicator such as no
appears within the � 4 word window but does not in fact
modify a disease, e.g., “no intervention due to cardiovascu-
lar disease” where the � 2 link window clarifies that no
modifies intervention and not cardiovascular disease. Their
value in our experiments is only limited by the number of
such examples in our corpora.

Limitations
Despite correctly classifying most of the assertions, StAC
makes several recurring mistakes. For example, it misin-
terprets the scope of some phrases: in “No JVP, 2�
swelling, no pain”, JVP and pain appear to be absent,
while swelling is present. However, the lack of a consistent

with Subsets of Features Best F-Measures in Italics

Positive Negative Uncertain
Alter-
Ass’n.

0.95 0.92 0.64 0.17
0.84 0 0 0.92
0.96 0.93 0.64 0.92

0.90 0.76 0.59 0.08

0.85 0.37 0.17 0
0.91 0.79 0.51 0.08

MC Corpora with Subsets of Features Best in Italics

Positive Negative Uncertain
Alter-
Ass’n.

0.97 0.90 0.58 0.49
0.90 0 0 0.82

gs 0.97 0.90 0.58 0.86
0.94 0.70 0.49 0.47
0.90 0.21 0.05 0.38
0.94 0.72 0.48 0.52
0.98 0.95 0.89 0.42
0.85 0 0 0

gs 0.98 0.95 0.89 0.42
0.92 0.61 0.73 0.13
0.88 0.21 0.53 0
0.92 0.62 0.75 0.25
rpus
nd C

headin

headin
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indicative context prevents StAC from recognizing this
information.

The results in Table 6 show that StAC can obtain much of the
contextual information necessary for assertion classification
on all of our corpora just from the BIDMC corpus. Our
choice of the BIDMC corpus for development was guided by
its decent size and by its genre, which had previously been
used for assertion classification.5 If trained on a corpus that
was weaker in its representation of information pertinent to
assertion classes, both in terms of the number of examples of
each assertion class and in terms of capturing the variety of
contexts indicating the various assertion classes, the results
presented for StAC and its generalizability could change (as
would the results and generality of ENegEx if developed
under the same conditions). The results on the alter-associ-
ation class support this claim: this class could benefit from
further studies on corpora that may be richer in their
examples for it.

Conclusions
We presented StAC and used it in exploring the contribution
of various contextual features to assertion classification.
Using ENegEx as a benchmark, we showed that StAC can
capture assertion classes on discharge summaries and radi-
ology reports by making use of the information contained in
the immediate context of target problems. The information
contained in the words found in the � 4 word window of
target goes a long way towards this goal. More importantly,
information obtained from one corpus can help assertion
classification on other corpora.

References y

1. Fiszman M, Chapman WW, Aronsky D, Evans RS, Haug P.
Automatic detection of acute bacterial pneumonia from chest
x-ray reports. J Am Med Inform Assoc 2000;7(6):593–604.

2. Fiszman M, Chapman WW, Evans SR, Haug P. Automatic
identification of pneumonia related concepts on chest x-ray
reports. AMIA Annu Symp Proc 1999;67–71.

3. Friedman C, Alderson PO, Austin JHM, Cimino JJ, Johnson SB.
A general natural-language text processor for clinical radiology.
J Am Med Inform Assoc 1994;1:161–74.

4. Hripcsak G, Friedman C, Alderson PO, et al. Unlocking clinical
data from narrative reports: A study of natural language pro-
cessing. Ann Intern Med 1995;122(9):681–8.

5. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan

BG. A simple algorithm for identifying negated findings and
diseases in discharge summaries. J Biomed Inform
2001;34(5):301–10.

6. NegEx version 2: A simple algorithm for identifying pertinent
negatives in textual medical records. Available from: http://
www.dbmi.pitt.edu/chapman/NegEx.html; accessed Jul 28,
2008.

7. Chapman WW, Chu D, Dowling JN. ConText: An algorithm for
identifying contextual features from clinical text. BioNLP 2007:
Biological, translational, and clinical language processing. Pra-
gue 2007;81–8.

8. Mutalik PG, Deshpande A, Nadkarni PM. Use of general-
purpose negation detection to augment concept indexing of
medical documents: A quantitative study using the UMLS. J Am
Med Inform Assoc 2001;8(6):598–609.

9. Aronow D, Feng F, Croft WB. Ad hoc classification of radiology
reports. J Am Med Inform Assoc 1999;6(5):393–411.

10. Elkin PL, Brown SH, Bauer BA, et al. A controlled trial of
automated classification of negation from clinical notes. BMC
Med inform Decis Mak 2005 May 5;5:13.

11. Cortes C, Vapnik V. Support-vector networks. Machine Learn
1995;20(3):273–97.

12. Pestian JP, Brew C, Matykiewicz P, et al. A shared task involv-
ing multi-label classification of clinical free text. BioNLP 2007:
Biological, translational, and clinical language processing. Pra-
gue 2007;97–104.

13. Sibanda T, He T, Szolovits P, Uzuner Ö. Syntactically-informed
semantic category recognizer for discharge summaries. AMIA
Annu Symp Proc 2006;714–8.

14. Sibanda T. Was the patient cured? Understanding semantic
categories and their relationships in patient records. Master’s
Thesis, MIT. June 2006.

15. Aronson A. Effective mapping of biomedical text to the UMLS
metathesaurus: The Metamap program. AMIA Annu Symp
Proc 2001;17–21.

16. What is kappa? Available from: http://www.musc.edu/dc/
icrebm/kappa.html; accessed: Jul 28, 2008.

17. Sleator D, Temperley D. Parsing English with a Link Grammar.
Technical Report CMU-CS-91-196, Carnegie Mellon University,
1991.

18. Szolovits P. Adding a medical lexicon to an English parser.
AMIA Annu Symp Proc 2003;639–43.

19. Burges CJC. A tutorial on support vector machines for pattern
recognition. Data Min Knowl Discov 1998;2(2):121–67.

20. Chang C, Lin C. LIBSVM: A Library for Support Vector Ma-
chines. Department of Computer Science and Information En-
gineering, Taipei, Taiwan: National Taiwan University, 2001.

21. Osborn CE. Statistical Applications for Health Information
Management, 2nd edn, Boston: Jones & Bartlett Publishing, 2005.

22. Z test for two proportions. Available from: http://
www.dimensionresearch.com/resources/calculators/ztest.html;

accessed Jun 19, 2008.

http://www.dbmi.pitt.edu/chapman/NegEx.html
http://www.dbmi.pitt.edu/chapman/NegEx.html
http://www.musc.edu/dc/icrebm/kappa.html
http://www.musc.edu/dc/icrebm/kappa.html
http://www.dimensionresearch.com/resources/calculators/ztest.html
http://www.dimensionresearch.com/resources/calculators/ztest.html
http://www.dimensionresearch.com/resources/calculators/ztest.html

	Machine Learning and Rule-based Approaches to Assertion Classification
	Introduction
	Related Work
	Data
	Beth Israel Deaconess Medical Center (BIDMC) Corpus
	Challenge Corpus
	Computational Medicine Center (CMC) Corpus

	Annotations
	Identifying Medical Problems
	Determining Assertion Classes

	Methods
	Extended NegEx (ENegEx)
	Statistical Assertion Classifier (StAC)

	Evaluation Methods
	Evaluation, Results, and Discussion
	Cross-validation Experiments
	Generality Experiments
	Feature Evaluation

	Limitations
	Conclusions
	References


