
Abdominal Aortic Calcification, BMD, and Bone Microstructure:
A Population-Based Study

John T Chow,1 Sundeep Khosla,1 L Joseph Melton III,2 Elizabeth J Atkinson,2 Jon J Camp,3 and Ann E Kearns1

ABSTRACT: To better define the relationship between vascular calcification and bone mass/structure, we
assessed abdominal aortic calcification (AAC), BMD, and bone microstructure in an age-stratified, random
sample of 693 Rochester, MN, residents. Participants underwent QCT of the spine and hip and high-resolution
pQCT (HRpQCT) of the radius to define volumetric BMD (vBMD) and microstructural parameters. AAC
was quantified with the Agatston scoring method. In men, AAC correlated with lower vertebral trabecular
and femoral neck vBMD (p < 0.001), but not after age or multivariable (age, body mass index, smoking status)
adjustment. Separation into <50 and �50 yr showed this pattern only in the older men. BV/TV and Tb.Th
inversely correlated with AAC in all men (p < 0.001), and Tb.Th remained significantly correlated after age
adjustment (p < 0.05). Tb.N positively correlated with AAC in younger men (p < 0.001) but negatively
correlated in older men (p < 0.001). The opposite was true with Tb.Sp (p � 0.01 and p < 0.001, respectively).
Lower Tb.N and higher Tb.Sp correlated with AAC in older men even after multivariable adjustment. Among
all women and postmenopausal women, AAC correlated with lower vertebral and femoral neck vBMD (p <
0.001) but not after adjustment. Lower BV/TV and Tb.Th correlated with AAC (p � 0.03 and p � 0.04,
respectively) in women, but not after adjustment. Our findings support an age-dependent association between
AAC and vBMD. We also found that AAC correlates with specific bone microstructural parameters in older
men, suggesting a possible common pathogenesis for vascular calcification and deterioration in bone structure.
However, sex-specific differences exist.
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INTRODUCTION

AN ASSOCIATION BETWEEN atherosclerosis and osteopo-
rosis, two complex and progressive disorders with sig-

nificant morbidity and mortality, has long been docu-
mented.(1–4) Whereas the existence of this relationship has
been well established, its significance has been controver-
sial. Some have contended that the association represents
confounding by age, insofar as both conditions are more
common in the elderly.(3,5–8) Alternatively, it has been sug-
gested that age-related bone loss results in excess calcium in
the blood, which is deposited in the vasculature (dystrophic
calcification).(2,9,10) Finally, there is growing interest in the
possibility that vascular calcification and bone loss have a
similar underlying pathogenesis.(11–26) Most previous stud-
ies have been cross-sectional analyses of postmenopausal
women.(5–7,11,18,20,26–33) A few have been longitudinal, but
examined women selected for the presence of one of these
disorders or referred for clinical testing, based presumably
on suggestive symptoms or risk factors.(28,34,35) Only a few
studies have been performed on unselected populations of

women.(23,24,36) Studies involving men have been even less
frequent.(9,24,29,30,32,33,37–40)

Abdominal aortic calcification (AAC) is a marker of sub-
clinical atherosclerosis and a predictor of subsequent vas-
cular-associated morbidity and mortality.(41–43) Our group
has previously reported that, in an age-stratified random
sample of 200 women �50 yr of age, the positive association
of AAC with fracture and the negative association of AAC
with bone mass can be primarily accounted by age.(36) That
study, like most others, did not use a quantitative means
to measure AAC, and only areal BMD (aBMD) was as-
sessed. Recently, QCT has been used to quantitatively ex-
amine calcified plaques in the aorta in a preselected group
of postmenopausal women who also had previous QCT
BMD determinations.(28) AAC was found to be inversely
related to BMD but directly related to vertebral and hip
fractures identified from QCT scout radiographs. Further
analysis of a small subset followed longitudinally also
showed a graded correlation between progression of AAC
and bone loss.

Among its many limitations, aBMD, as provided by DXA,
cannot distinguish the cortical and trabecular bone compart-
ments. Whereas QCT is able to provide a volumetric assess-
ment of BMD, it is also limited by resolution to fully assessThe authors state that they have no conflicts of interest.
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bone microstructure. This is significant because the corti-
cal and trabecular bone compartments seem to respond
differently to hormonal influences and thus are associated
with different levels of metabolic activity. Trabecular mi-
crostructure has been shown to contribute to the mechani-
cal properties of bone, separate from absolute bone
mass.(44,45) The recent introduction and validation of high-
resolution pQCT (HRpQCT) has overcome the limitation
of these other imaging modalities,(46) allowing a more com-
plete assessment of bone structure. Our group has previ-
ously found specific sex and age effects on bone microstruc-
ture in a population-based study(47) and thus hypothesize
that AAC can be correlated with bone microstructural pa-
rameters in an age-independent manner. Using the ad-
vanced imaging techniques of QCT and HRpQCT, we have
now conducted a cross-sectional analysis of men and
women spanning a wide age range to better define the link
between AAC and BMD, with an emphasis on bone mi-
crostructure and bone compartments. To our knowledge,
this study represents the first application of noninvasive,
high-resolution in vivo imaging to assess the relationship
between bone microstructure and vascular calcifications.

MATERIALS AND METHODS

Study subjects

In 1999–2001, an age-stratified, random sample of Roch-
ester, MN, residents was recruited using the medical rec-
ords linkage system of the Rochester Epidemiology Project
(REP).(48) This population, which our group has previously
studied,(47,49–52) is highly characteristic of the white popu-
lation in the United States, although it is under-represented
with respect to persons of African, Hispanic, and Asian
descent. In all, 375 women and 325 men were enrolled into
the cohort. The sample spanned the ages of 21–97 yr, with
a mean age of 57.4 ± 18.2 (SD) yr. Of the women, 127 were
premenopausal (mean age, 38.4 ± 9.0 yr; range, 21–55 yr),
whereas 248 were postmenopausal (mean age, 67.5 ± 12.0
yr; range, 39–97 yr). The men ranged in age from 22 to 93
yr, with a mean of 57.1 ± 18.7 (SD) yr. Baseline body mass
index (BMI) calculations identified 32% of the men and
29% of the women as obese, using the World Health Or-
ganization (WHO) definition.(53)

Informed consent was obtained from all study subjects
with the use of a consent form approved by the Institutional
Review Board at the Mayo Foundation.

As in previous studies with this cohort, subjects were
divided into two groups: one younger (127 premenopausal
women and 125 men age <50 yr) and one older (248 post-
menopausal women and 200 men age 50+ yr). Menopause
was defined as the absence of menses for >6 mo. Seven
subjects were not included in analyses because of artifacts
noted during AAC quantification (i.e., readings that were
unreliable either because of imperfections in scanner func-
tion or the presence of metallic material within the body).
Those treated with bisphosphonates were excluded begin-
ning 6 mo into the study. The reason for this was the ob-
servation of an increase use of these medications on chart
review, thus causing concern that this would give distort
age-related bone changes. However, three women and two

men were recruited before this but were subsequently ex-
cluded from our analyses (see below). There were a total of
693 subjects (127 premenopausal women, 245 postmeno-
pausal women, 125 men age <50 yr, and 196 men age 50+
yr) remaining in the data set.

For analyses using hormonal variables or bone turnover
markers, certain other subjects were excluded. Of the 372
women, we excluded 84 on hormone therapy, 3 on bisphos-
phonates, 8 on selective estrogen receptor modulators
(SERMs), 1 woman on all three therapies, 41 on oral con-
traceptives, and 2 who had primary hyperparathyroidism.
Of the 321 men, we excluded 2 subjects on testosterone, 1
on hormone therapy, 2 on bisphosphonates, 1 on a SERM,
4 with serum creatinine >2 mg/dl, 1 with an unexplained
bioavailable (bio) estradiol (E2) level >60 pg/ml, and 1 sub-
ject who died soon after imaging and had multiple labora-
tory abnormalities before death.

Central QCT

As described elsewhere,(49,54) single-energy CT scans
were made at the lumbar spine and proximal femur with a
multidetector Light Speed QX-I scanner (GE Medical Sys-
tems, Wakesha, WI, USA). For all scanning sites, the slice
width was 2.5 mm, and the in-plane voxel size was 0.74 mm.
Calibration standards scanned with the patient were used to
convert CT numbers directly to equivalent volumetric
BMD (vBMD; mg/cm3).(55) To study age- and sex-specific
changes in bone distribution and structure, we developed
software for the analysis of bone structure, geometry, and
volumetric density from the CT images, specific details of
which have been previously described.(54) To validate our
image-processing algorithm, we made 10 scans of the Eu-
ropean Spine Phantom, which is composed of hydroxyapa-
tite.(56) The correlation between BMD results determined
by our algorithm and that of the spine phantom was r �
0.998; using scans of L2 from the phantom over 10 days,
vBMD was estimated to have a CV of 0.7%.

pQCT

As also previously described,(47) the nondominant wrist
(or in the case of a prior wrist fracture, the nonfractured
wrist) was scanned using a HRpQCT device (a prototype of
the Xtreme CT; Scanco Medical AG, Bassersdorf, Switzer-
land). The slice width was 89 �m, and the inplane voxel size
was 89 �m. The processing and analysis of the images have
been extensively described and validated(57–60) and are
summarized briefly here. The first step involved the deter-
mination of trabecular vBMD as the average mineral den-
sity within the trabecular region. From this, the trabecular
bone volume/tissue volume (BV/TV) was derived, assum-
ing a mineral density of fully mineralized bone of 1.2 g
hydroxyapatite/cm3. Recognizing that individual trabeculae
would not be resolved at their correct thickness because of
partial volume effects, a thickness-independent structure
extraction was used to assess trabecular microarchitecture.
To this end, the 3D ridges (the center points of the trabec-
ulae) were detected in the gray-level images, as described
before.(58) Trabecular number (Tb.N, 1/mm) was taken as
the inverse of the mean spacing of the ridges. Combining
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Tb.N and BV/TV, trabecular thickness (Tb.Th, mm) was
then derived as (BV/TV)/Tb.N, and trabecular separation
(Tb.Sp, mm) was derived as (1 − BV/TV)/Tb.N, as done
in standard histomorphometry.(61) The validity of this ap-
proach has been rigorously tested in comparison with 28-
�m resolution �CT.(60) In this comparison, the correlation
coefficients between the HRpQCT values for BV/TV,
Tb.N, Tb.Th, and Tb.Sp and the respective measures using
�CT (n � 15 specimens) were 0.99, 0.96, 0.97, and 0.98,
respectively (all p < 0.0001). Note that the older pQCT
device used in that analysis had a voxel size of 165 �m
compared with the newer scanner used in this study, which
had a voxel size of 89 �m, so those results are conservative.
In addition to the trabecular parameters, cortical measures,
including cortical vBMD (mg/cm3) and cortical thickness
(C.Th, mm), were also obtained, as well as bone area (BA,
mm2) and endocortical area (En.A, mm2). To assess the
short-term precision of the measurements, 20 volunteers
(age, 19–40 yr) were scanned twice on the same day after
repositioning, and the following CVs were observed: corti-
cal vBMD, 1.3%; C.Th, 5.1%; BV/TV, 1.2%; Tb.N, 2.2%;
Tb.Th, 1.8%; and Tb.Sp, 3.4%.

AAC quantification

Analysis of AAC was performed with Analyze (version
7.0; AnalyzeDirect, Lenexa, KS, USA) in collaboration
with the Mayo Biomedical Imaging Resource. Quantifica-
tion was performed using the Agatston scoring system, a
widely used standard in assessing calcified coronary athero-
sclerotic plaques.(62) Under this system, a score is generated
on the basis of calcified plaque area (Fig. 1), multiplied by
a scaling co-factor, which is estimated using the peak attenu-
ation of a calcified lesion. The entire viewing area (middle of
the lowest thoracic vertebra through the top of the fourth
lumbar vertebra) was studied, while excluding the spine and
any potential confounding areas of calcification not related
to the aorta. A region of interest was placed around all
visible lesions found in the transverse CT slices, and auto-
mated measurements of these lesions were made. A thresh-
old attenuation of 130 Hounsfields units (HUs) was used, as
in traditional coronary calcification studies.(63) A calcifica-
tion score was determined by the product of the lesion area
(at least two contiguous pixels with a CT density at least 130
HU) and a co-factor dependent on the peak CT density (1,
130–200 HU; 2, 201–300 HU; 3, 301–400 HU; 4, >400 HU)
of the lesion. The total Agatston score was determined by

the sum of the individual scores from each slice. Agatston
scores were normalized per 2.5 mm CT slice to account for
slight variability in the number of CT slices obtained in each
individual (mean, 56.3 ± 5.0 slices). Excellent intra- and
interobserver agreement for calcium quantification has
been previously described,(64) and a single trained reader
(JTC) performed the analysis on the study population.

Laboratory analyses

Fasting serum samples were obtained on all subjects at
the time of QCT measurements. Total E2 was measured
using a double-antibody RIA (Diagnostic Products, Los
Angeles, CA, USA) with an interassay CV of <8% and
lower limit of detection of 18 pM (5 pg/ml). Cross-reactivity
of this assay was 12% with estrone and 6% or less for other
estrogen metabolites. Total testosterone was measured by a
modified competitive immunoassay using direct, chemilu-
minescent technology (ACS 180; Bayer, Tarrytown, NY,
USA) with an interassay CV of <15%. The sensitivity of
this assay was increased to 0.17 nM (5 ng/dl) using an in-
house assay protocol where the volume of standards, con-
trols, and samples was increased to release bound T from
endogenous binding proteins. Cross-reactivity of this assay
was 5.4% with dihydroxytestosterone and <1% for all other
metabolites. The non–sex hormone binding globulin
(SHBG)-bound (bioavailable) fractions of E2 and T were
measured using a modification of the techniques of
O’Conner et al.(65) and Tremblay and Dube,(66) as previ-
ously described in our work with this cohort.(67) The inter-
assay CVs for bio E2 and bio T were each <12%.

Serum PTH was measured using an immunochemilumi-
nometric assay for intact PTH (Nichols Institute Diagnos-
tics, San Clemente, CA, USA) with an interassay CV of
<13%. Serum 25-hydroxyvitamin D and 1,25-dihydroxy
vitamin D were measured by a radioimmunoassay (DiaSo-
rin, Stillwater, MN, USA) with interassay CVs of <15%.
Serum IGF-1 and IGF binding protein-3 (IGFBP-3) were
measured by immunoradiometric assays (Diagnostic Sys-
tems Laboratories, Webster, TX, USA) with interassay
CVs of 6% and <14%, respectively. Serum bone-specific
alkaline phosphatase (BSALP) was measured by ELISA
(Quidel, San Diego, CA, USA) with an interassay CV of
<11%, and serum osteocalcin was measured using a two-
site immunoradiometric assay (CIS-US, Bedford, MA,
USA) with an interassay CV of <6%. Serum amino-
terminal propeptide of type I collagen (PINP) was mea-

FIG. 1. Abdominal CT (left) with analysis
of vascular calcification (right) in the ab-
dominal aorta. An Agatston score is deter-
mined by the product of the calcified lesion
area (at least two contiguous pixels with a CT
density at least 130 HU) and a co-factor de-
pendent on the peak CT density (1, 130–200
HU; 2, 201–300 HU; 3, 301–400 HU; 4, >400
HU) of the lesion.
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sured by RIA (DiaSorin, Stillwater, MN, USA) with an
interassay CV of <9%. Serum C-telopeptide of type I col-
lagen (CTX) was measured by one-step ELISA (Osteom-
eter BioTech, Herlev, Denmark) with an interassay CV of
2.7–3.7% at 0.36–0.52 ng/ml. Urine cross-linked N-
telopeptide of type I collagen (NTX) was measured by an
automated immunoassay (Ortho-Clinical Diagnostics,
Rochester, NY, USA) with an interassay CV of <13% in
24-h urine collections, and the results were expressed per
liter of glomerular filtrate (GF; estimate based on serum
and urine creatinine).

Statistical analysis

Some analyses were stratified by age (<50 versus 50+ yr)
in the men and by menopausal status in the women. Con-
tinuous variables were summarized using medians and in-
terquartile ranges, whereas categorical variables were sum-
marized as frequencies and percentages. Respectively, the
Wilcoxon rank sum and the �2 tests were used to perform
group comparisons.

Spearman correlations were used to examine relation-
ships between the Agatston Score per CT slice with vBMD,

bone structural and microstructural parameters, hormonal
variables, and bone turnover markers. Correlations are re-
ported as unadjusted and age adjusted, as well as adjusted
for age, BMI, and smoking status (defined as “ever” or
“never” smoker).

All analyses were performed using SAS (SAS Institute,
Cary, NC, USA).

RESULTS

Baseline characteristics

The baseline characteristics of the younger (<50 yr old)
and older (�50 yr old) men are shown in Table 1. Younger
men were taller, heavier, had more calcium intake, and
were more physically active than older men. No significant
differences were seen in BMI despite the weight difference.
Although more older subjects smoked at some time in their
lifetime, more younger subjects were active smokers. The
prevalence of hypertension, hypercholesterolemia, coro-
nary artery disease, peripheral vascular disease, type 2 dia-
betes mellitus, and history of osteoporotic fractures (prior
hip, vertebral, or distal forearm fracture caused by moder-

TABLE 1. CLINICAL PARAMETERS OF ROCHESTER, MN, MEN STRATIFIED BY AGE

<50 yr 50+ yr p

n 125 196
Clinical parameters

Age (yr) 37 (30.8–43.6) 69.8 (60.1–79.6) —
Height (cm) 179.8 (175.7–183.6) 175 (170–179.5) <0.001
Weight (kg) 90.5 (79.2–102) 85 (77–95.1) 0.010
Body mass index (kg/m2) 27.7 (25–31.3) 28 (25.8–30.7) 0.874
Calcium intake (mg/d) 1144 (799–1494) 959.7 (732–1308) 0.023
Physically active, n (%) 125 (100) 187 (95) 0.015
Ever smoker, n (%) 40 (32) 108 (55) <0.001
Current smoking, n (%) 18 (15) 14 (7) 0.032
Former smoking, n (%) 22 (18) 94 (48) <0.001

Medical history
Hypertension, n (%) 12 (10) 93 (47) <0.001
Hypercholesterolemia, n (%) 27 (22) 100 (51) <0.001
Coronary artery disease, n (%) 1 (1) 62 (32) <0.001
Peripheral vascular disease, n (%) 1 (1) 24 (12) <0.001
Diabetes mellitus (type 2), n (%) 0 (0) 21 (11) <0.001
Osteoporotic fracture, n (%) 10 (8) 58 (30) <0.001

vBMD parameters
Vertebral trabecular (mg/cm3) 179.9 (160.2–200.0) 136.6 (109.2–163.9) <0.001
Femoral neck

Total (mg/cm3) 337.9 (297.6–363.0) 272.3 (235.1–316.7) <0.001
Trabecular (mg/cm3) 232.6 (208.0–258.5) 175.7 (149.3–214.1) <0.001
Cortical (mg/cm3) 569.7 (526.7–619.0) 541.6 (490.1–579.7) <0.001

Microstructural parameters
Waist <0.001
BV/TV 0.18 (0.15–0.19) 0.15 (0.13–0.17)
TbN (1/mm) 2.70 (2.48–2.91) 2.79 (2.59–2.94) 0.032
TbTh (mm) 0.06 (0.06–0.07) 0.06 (0.05–0.06) <0.001
TbSp (mm) 0.31 (0.28–0.33) 0.30 (0.29–0.33) 0.988
Aortic calcification

(Agatston score per CT slice)
0.26 (0.04–1.17) 38.13 (5.11–119.24) <0.001

Agatston score > 0, n (%) 95 (76) 190 (97) <0.001

Continuous variables are summarized with median (IQR) and a rank sum p value. Categorical variables are summarized with counts (%) and a �2 p value.
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ate trauma after age 35 yr) was higher in the men �50 yr of
age. Also, older men showed lower vBMD at the vertebrae
and femoral neck (p < 0.001), lower BV/TV (p < 0.001),
higher Tb.N (p � 0.03), and lower Tb.Th (p < 0.001). Tb.N
correlated with BMI in younger and older men and re-
mained significant with age adjustment (p � 0.003, p < 0.001)
in the two groups.

The baseline characteristics of the two groups of women,
divided by menopausal status, are shown in Table 2. BMI
was statistically different between menopausal status (p �
0.001), although weight and smoking status (ever/never)
were not. In addition to lower vBMD at the vertebrae and
femoral neck (p < 0.001), postmenopausal women also had
lower BV/TV (p < 0.001), Tb.N (p � 0.003), and Tb.Th
(p < 0.001), as well as higher Tb.Sp (p � 0.001). Tb.N
correlated with BMI in premenopausal and postmeno-
pausal women and remained significant with age adjust-
ment (p < 0.001, p < 0.001) in the two groups.

Aortic calcification

Of the 693 subjects analyzed, 143 (21%) had no evidence
of AAC. This group included 36 of 321 males (11%) with a
median age of 37 yr (range, 22–66 yr) and 107 of 372 fe-
males (29%) with a median age of 39 yr (range, 21–76 yr).
The remaining 550 subjects had some degree of AAC. The
median AAC score was 246 (range, 0–35,436), and the me-
dian AAC score per 2.5-mm CT slice was 4.3 (range,
0–622). As expected, the severity of AAC, as determined by
QCT analysis, increased with age (Fig. 2), as did the pro-
portion of individuals with any AAC. Men had more AAC
at every age (p < 0.001), and the increase with age was
greater in men than women. AAC was present in 95 of 125
of the younger men (76%) and 190 of 196 of the older men
(97%). In women, AAC was present in 48 of 127 of pre-
menopausal women (38%) and 217 of 245 of postmeno-
pausal women (89%).

TABLE 2. CLINICAL PARAMETERS OF ROCHESTER, MN, WOMEN STRATIFIED BY MENOPAUSAL STATUS

Premenopausal Postmenopausal p

n 127 245
Clinical parameters

Age (yr) 38.5 (31.6–45.2) 66.9 (58.4–76) —
Height (cm) 164.8 (160.8–169.2) 161.7 (157–165.5) <0.001
Weight (kg) 67 (59.2–83.4) 72.9 (63.1–81.3) 0.231
Body mass index (kg/m2) 25 (22.1–29.8) 27.8 (24.4–31.1) 0.001
Calcium intake (mg/d) 1136 (716.5–1500) 1244.8 (812.1–1660) 0.045
Physically active, n (%) 125 (98) 226 (93 0.019
Ever smoker, n (%) 54 (43) 105 (43) 0.925
Current smoking, n (%) 19 (15) 20 (8) 0.044
Former smoking, n (%) 35 (28) 85 (35) 0.155

Current therapy, n (%)
BCP use 41 (32) 0 (0)
ET use 3 (2) 81 (33)
SERM use 0 (0) 8 (3)
BSP use 0 (0) 3 (1)
ET+SERM+BSP use 0 (0) 1 (0.4)

Medical history
Hypertension, n (%) 11 (9) 113 (46) <0.001
Hypercholesterolemia, n (%) 26 (20) 126 (51) <0.001
Coronary artery disease, n (%) 1 (1) 44 (18) <0.001
Peripheral vascular disease, n (%) 2 (2) 27 (11) 0.001
Diabetes mellitus (type 2), n (%) 1 (1) 27 (11) <0.001
Osteoporotic fracture, n (%) 3 (2) 68 (28) <0.001

vBMD parameters
Vertebral trabecular (mg/cm3) 189.7 (174.9–210.5) 132.5 (103.2–167.3) <0.001
Femoral neck

Total (mg/cm3) 389.0 (354.5–439.1) 304.7 (261.4–342.3) <0.001
Trabecular (mg/cm3) 263.0 (227.0–297.8) 189.5 (149.6–221.9) <0.001
Cortical (mg/cm3) 633.8 (584.8–679.8) 558.6 (497.5–600.2) <0.001

Microstructural parameters
Waist
BV/TV 0.14 (0.12–0.16) 0.12 (0.10–0.14) <0.001
TbN (1/mm) 2.58 (2.44–2.73) 2.50 (2.30–2.66) 0.003
TbTh (mm) 0.05 (0.05–0.06) 0.05 (0.04–0.06) <0.001
TbSp (mm) 0.34 (0.31–0.36) 0.35 (0.32–0.39) 0.001
Aortic calcification (Agatston score per CT slice) 0 (0–0.28) 18.41 (2.45–69.77) <0.001
Agatston score > 0, n (%) 48 (38) 217 (89) <0.001

Continuous variables are summarized with median (IQR) and a rank sum p value. Categorical variables are summarized with counts (%) and a �2 p value.
BCP, birth control pill; ERT, estrogen therapy; SERM, selective estrogen receptor modulator; BSP, bisphosphonate.
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Aortic calcification, vBMD, and
bone microstructure

The correlations of vBMD and structural parameters
with AAC scores are shown in Tables 3 and 4. Table 3 shows
these correlations in men, unadjusted, adjusted for age, and
adjusted for age, BMI, and cigarette smoking (ever/never).
Higher AAC scores correlated with lower vertebral trabec-
ular and femoral neck total, trabecular, and cortical vBMD
(p < 0.001) when combining all men. The association lost its
significance on age and multivariable adjustment. Analyz-
ing the age groups separately, this pattern persisted for the
older men. A representative scatter plot, with regression
lines, highlighting vertebral vBMD is shown in Fig. 3. There
were no significant trends noted in younger men other than
an isolated association between higher vertebral vBMD
and higher AAC, but only after multivariable adjustment
(p � 0.04). AAC was also correlated with lower BV/TV
(p < 0.001) and Tb.Th (p < 0.001) when combining all men
(Table 3). After adjustment for age, Tb.Th remained nega-
tively correlated with AAC (p � 0.03), although this did
not persist after multivariable adjustment. In younger men,
AAC was correlated with higher Tb.N (p < 0.001), as well
as lower Tb.Th (p � 0.001) and Tb.Sp (p � 0.008). These
relationships remained significant after age adjustment but
not multivariable adjustment. In older men, AAC was as-
sociated with lower BV/TV (p � 0.003) and Tb.N (p <
0.001), as well as higher Tb.Sp (p < 0.001). Lower Tb.N and
higher Tb.Sp remained significantly correlated with AAC
even after multivariable adjustment (p � 0.025 and p �
0.020, respectively).

In women (Table 4), AAC also correlated with lower
vBMD at all sites measured (p < 0.001). The correlations
between total and trabecular BMD in the femoral neck
remained significant after age adjustment (p � 0.04 and
p � 0.009, respectively), but not after multivariable adjust-

ment. Lower vertebral trabecular, total femoral neck, and
femoral neck trabecular vBMD were also correlated with
AAC (p < 0.001) in postmenopausal women before age and
multivariable adjustment, but not after. In premenopausal
subjects, AAC was correlated with higher total (p � 0.03)
and trabecular (p � 0.002) vBMD at the femoral neck, but
only after age adjustment. Although lower BV/TV and
Tb.Th were correlated with AAC (p � 0.03 and p � 0.04,
respectively) in all women before adjustment, these statis-
tically significant differences could not be seen in the post-
menopausal group. In premenopausal women, AAC was
associated with higher BV/TV (p � 0.02) and Tb.N (p �
0.004), as well as lower Tb.Sp (p � 0.006). All three of
these associations remained significant after age but not
multivariable adjustment.

Aortic calcification, sex steroids, and bone turnover

Hormonal parameters, including E2, T, PTH, 25-
hydroxyvitamin D, 1,25-dihydroxyvitamin D, IGF-1, and
IGFBP-3, are reported in 542 subjects who were not on
treatment, with results outlined for the 309 men and 233
women in Tables 5 and 6, respectively. Also listed are mark-
ers of bone formation (BSALP, osteocalcin, and P1NP), as
well as markers of bone resorption (serum CTX and urine
NTX). In men spanning all ages, lower IGF-1 and osteo-
calcin levels were associated with AAC (p < 0.001); these
relationships were noted after age, but not multivariable,
adjustment. In women, lower 25-hydroxyvitamin D and
higher BSALP levels correlated with higher AAC (p �
0.008 and p < 0.001, respectively), and these effects per-
sisted after adjustment.

DISCUSSION

In a population-based, cross-sectional study of men and
women spanning a wide age range, we found an age-
dependent association between vBMD and AAC. We also
identified an age-dependent association between bone mi-
crostructural parameters and AAC in women, although
some relationships remained significant in older men even
after multivariable adjustment.

Our correlations between BMD and AAC are consistent
with previous reports suggesting that the link between ath-
erosclerosis and osteoporosis is age dependent.(3,6,7,36) Oth-
ers have reported an age-independent link,(20,23,24) al-
though methodologic differences may explain some of the
findings. These differences include smaller sample sizes
consisting primarily of postmenopausal women,(20) prese-
lection of study participants from a bone trial or bone
clinic,(20) and the determination of AAC and bone mass
from spine and hand radiographs, respectively.(23,24) This is
in contrast with this study, in which we evaluated a larger
population of men and women from the community, thus
limiting selection bias. Because both osteoporosis and ath-
erosclerosis begin and progress before complications (frac-
tures and cardiovascular events, respectively) become clini-
cally apparent, imaging methods are essential in the early
detection of these disease processes. In our study, we not
only used QCT technology to detect AAC, but we also
quantified the amount of AAC present using the Agatston

FIG. 2. Distribution of aortic calcifications (Agatston score) by
sex and age among Rochester, MN, residents. Bars represent the
25th and 75th percentiles.
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scoring system. Additionally, we assessed central vBMD by
QCT, which has many advantages over DXA, including the
ability to adjust for bone size and isolate the trabecular
bone compartment. vBMD has been assessed in only a few
previous studies, including an analysis of a preselected co-
hort of postmenopausal women,(28) as well as a population-
based study of men and women 68–80 yr of age.(68)

Despite an inverse correlation between vBMD and AAC
within each sex overall, we found that the relationship was
only significant in the older men and the postmenopausal
women. We have previously reported HRpQCT data in this
cohort, indicating that different bone microstructural pro-
cesses occur with aging in men and women.(47) Specifically,
young adult men seem to have thicker trabeculae than
those present in young women; before age 50, these thick
trabeculae seem to be converted to more numerous, thinner
trabeculae in men. In this study, lower Tb.Th seemed to
correlate with AAC in younger men in an age-independent

FIG. 3. Scatter plot showing relationship of aortic calcifications
(Agatston score) and vertebral trabecular vBMD in Rochester,
MN, men.

TABLE 3. UNADJUSTED/UNIVARIATE-ADJUSTED/MULTIVARIABLE-ADJUSTED SPEARMAN CORRELATION COEFFICIENTS BETWEEN

VBMD AND STRUCTURAL PARAMETERS WITH AORTIC CALCIFICATION PER 2.5-MM CT SLICE IN ROCHESTER, MN, MEN COMBINED

AND STRATIFIED BY AGE

All men <50 yr �50 yr

U A A/B/C U A A/B/C U A A/B/C

vBMD
Vertebral trabecular −0.52* 0.01 0.03 −0.02 0.08 0.19† −0.36* −0.01 0.00

Femoral neck
Total −0.41* 0.06 0.06 −0.01 0.09 0.07 −0.26* −0.01 0.01
Trabecular −0.47* 0.09 0.06 −0.04 0.10 0.03 −0.29* 0.02 0.03
Cortical −0.24* −0.02 0.02 −0.00 0.04 0.16 −0.18* −0.10 −0.08

Microstructure
BV/TV −0.37* −0.10 −0.08 −0.15 −0.07 −0.03 −0.22‡ −0.13 −0.12
TbN (1/mm) 0.07 0.03 −0.10 0.34* 0.28‡ 0.13 −0.26* −0.12 −0.17†

TbTh (mm) −0.42* −0.13† −0.05 −0.30‡ −0.20† −0.09 −0.12 −0.08 −0.04
TbSp (mm) 0.07 0.01 0.11 −0.25‡ −0.22† −0.09 0.29* 0.15 0.18†

* p < 0.001.
† p < 0.05.
‡ p < 0.01.
U, unadjusted; A, age adjusted; A/B/C, age, BMI, cigarette smoking status (ever) adjusted.

TABLE 4. UNADJUSTED/UNIVARIATE-ADJUSTED/MULTIVARIABLE-ADJUSTED SPEARMAN CORRELATION COEFFICIENTS BETWEEN

VBMD AND STRUCTURAL PARAMETERS WITH AORTIC CALCIFICATION PER 2.5-MM CT SLICE IN ROCHESTER, MN, WOMEN COMBINED

AND STRATIFIED BY MENOPAUSAL STATUS

All women Premenopausal Postmenopausal

U A A/B/C U A A/B/C U A A/B/C

vBMD
Vertebral trabecular −0.54* 0.08 0.06 0.05 0.17 0.08 −0.35* 0.02 0.04

Femoral neck
Total −0.45* 0.11† 0.08 0.06 0.20† 0.15 −0.23* 0.06 0.07
Trabecular −0.47* 0.14‡ 0.08 0.06 0.28‡ 0.13 −0.28* 0.05 0.05
Cortical −0.35* 0.05 0.08 −0.05 −0.01 0.09 −0.12 0.06 0.09

Microstructure
BV/TV −0.12† 0.10 0.03 0.23† 0.29‡ 0.16 −0.04 0.03 0.02
TbN (1/mm) −0.08 0.17† 0.05 0.27‡ 0.33* 0.03 −0.06 0.10 0.09
TbTh (mm) −0.12† 0.04 0.03 0.18 0.23† 0.21† −0.02 −0.01 −0.01
TbSp (mm) 0.10 −0.16† −0.05 −0.26‡ −0.33* −0.06 0.06 −0.09 −0.07

* p < 0.001.
† p < 0.05.
‡ p < 0.01.
U, unadjusted; A, age adjusted; A/B/C, age, BMI, cigarette smoking status (ever) adjusted.
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manner, although the opposite seemed to be true in pre-
menopausal women. Although counterintuitive, higher
Tb.N and lower Tb.Sp also seemed to correlate with AAC
in younger men and premenopausal women, despite age
adjustment. No significant correlations between bone mi-
crostructure and AAC were present in postmenopausal
women, but lower Tb.N and higher Tb.Sp were associated
with AAC in older men, an effect that survived despite
multivariable adjustment.

It remains unclear why there seems to be such a sharp
contrast between the younger and older age groups, as well
as between the sexes. Indeed, many factors have been im-
plicated in the concurrent development of vascular calcifi-
cation and osteoporosis, including chronic inflammation,
estrogen deficiency, hypovitaminosis D, hypovitaminosis K,
and oxidative stress.(69) For instance, it has been shown that
inflammatory cytokines and lipids seem to promote the dif-
ferentiation of osteoblasts in the vasculature while inhibit-

TABLE 5. UNADJUSTED/UNIVARIATE-ADJUSTED/MULTIVARIABLE-ADJUSTED SPEARMAN CORRELATION COEFFICIENTS BETWEEN

HORMONAL VARIABLES, BONE FORMATION MARKERS, AND BONE RESORPTION MARKERS WITH AORTIC CALCIFICATION PER 2.5-MM

CT SLICE IN ROCHESTER, MN, MEN COMBINED AND STRATIFIED BY AGE

All men <50 yr �50 yr

U A A/B/C U A A/B/C U A A/B/C

Hormonal variables
Bio E2 (pg/ml) −0.41* 0.02 −0.00 −0.11 −0.03 −0.12 −0.32* −0.02 −0.00
Bio T (ng/dl) −0.60* −0.09 −0.01 −0.19† −0.10 −0.02 −0.42* −0.09 −0.06
PTH (pM) 0.19‡ −0.05 −0.08 0.06 −0.03 −0.09 0.01 −0.10 −0.10
25-Hydroxyvitamin D (ng/ml) −0.04 −0.04 0.02 −0.19† −0.19† −0.07 0.02 0.10 0.10
1,25-Dihydroxyvitamin D (pg/ml) −0.18‡ 0.02 0.06 −0.10 −0.11 0.04 −0.08 0.16† 0.15†

IGF-1 (ng/ml) −0.47* −0.11† −0.11 −0.20† −0.13 −0.08 −0.35* −0.11 −0.11
IGFBP-3 (ng/ml) −0.41* −0.05 −0.08 −0.14 −0.08 −0.17 −0.35* −0.09 −0.10

Bone formation markers
Bone alkaline phosphatase (U/liter) −0.06 0.01 −0.01 0.08 0.07 0.01 −0.04 −0.07 −0.09
Osteocalcin (ng/ml) −0.30* −0.13† −0.05 −0.27‡ −0.22† −0.11 −0.08 −0.14 −0.13
PINP (�g/liter) −0.38* −0.07 −0.06 −0.19† −0.13 −0.11 −0.18† −0.14 −0.13

Bone resorption markers
Serum CTX (ng/ml) −0.27* −0.04 0.00 −0.17 −0.12 −0.02 −0.08 −0.07 −0.07
Urine NTX (nM GF) −0.07 −0.11 −0.09 −0.12 −0.10 −0.05 −0.02 −0.20‡ −0.21‡

* p < 0.001.
† p < 0.05.
‡ p < 0.01.
U, unadjusted; A, age adjusted; A/B/C, age, BMI, cigarette smoking status (ever) adjusted.

TABLE 6. UNADJUSTED/UNIVARIATE-ADJUSTED/MULTIVARIABLE-ADJUSTED SPEARMAN CORRELATION COEFFICIENTS BETWEEN

HORMONAL VARIABLES, BONE FORMATION MARKERS, AND BONE RESORPTION MARKERS WITH AORTIC CALCIFICATION PER 2.5-MM

CT SLICE IN ROCHESTER, MINNESOTA, WOMEN COMBINED AND STRATIFIED BY MENOPAUSAL STATUS

All women Premenopausal Postmenopausal

U A A/B/C U A A/B/C U A A/B/C

Hormonal variables
Bio E2 (pg/ml) −0.49* 0.13 0.08 0.23† 0.22† 0.12 −0.17† 0.06 0.09
Bio T (ng/dl) 0.04 0.22* 0.16† 0.32‡ 0.42* 0.21 −0.07 0.10 0.12
PTH (pM) 0.12 −0.00 −0.05 0.14 0.09 −0.06 −0.02 −0.03 −0.02
25-Hydroxyvitamin D (ng/ml) −0.17‡ −0.19‡ −0.16† −0.19 −0.21 −0.17 −0.14 −0.17† −0.18†

1,25-Dihydroxyvitamin D (pg/ml) −0.20‡ −0.09 −0.07 −0.07 −0.11 −0.04 −0.15 −0.11 −0.12
IGF-1 (ng/ml) −0.42* −0.09 −0.07 −0.30‡ −0.16 −0.09 −0.29* −0.13 −0.12
IGFBP-3 (ng/ml) −0.14† 0.07 0.07 −0.05 0.03 0.04 −0.14 0.01 0.03

Bone formation markers
Bone alkaline phosphatase (U/liter) 0.37* 0.21‡ 0.19‡ 0.31‡ 0.35‡ 0.24† 0.11 0.11 0.12
Osteocalcin (ng/ml) 0.07 −0.03 0.02 −0.24† −0.12 −0.08 −0.02 −0.00 0.02
PINP (�g/liter) −0.01 0.01 0.02 −0.09 0.01 0.03 −0.14 0.02 0.01

Bone resorption markers
Serum CTX (ng/ml) 0.13† −0.03 0.00 −0.14 −0.05 −0.04 −0.05 −0.01 −0.01
Urine NTX (nM GF) 0.20‡ 0.02 0.03 0.04 0.09 −0.02 0.01 0.02 0.03

* p < 0.001.
† p < 0.05.
‡ p < 0.01.
U, unadjusted; A, age adjusted; A/B/C, age, BMI, cigarette smoking status (ever) adjusted.
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ing their differentiation in bone.(16) Conversely, in vitro
studies have shown increased activity of osteoclasts through
the action of inflammatory lipids,(70) whereas TNF-� has
been shown to promote calcification while inhibiting osteo-
blast differentiation.(71) The osteoprotegerin/RANKL/
RANK system has also been implicated.(25,72) We mea-
sured several hormones and bone turnover markers, but
found no consistent links to AAC across both sexes. An
interesting finding was the relationship between serum
1,25-dihydroxyvitamin D (calcitriol) levels with AAC in
older men. In vitro studies have shown calcitriol to promote
vascular smooth muscle cell calcification through a PTH-
related protein pathway,(73,74) and in vivo, medial artery
calcification is promoted by calcitriol.(75) Also, we found in
older men that lower urine NTX levels are associated with
higher AAC. Others have observed that low bone turnover
determined from histomorphometry is associated with ar-
terial calcifications in end-stage renal disease.(76) Alto-
gether, these data suggest a need for additional studies to
better evaluate risk/benefits of calcitriol in light of the ef-
fects it may have on bone and vascular disease.

An important point that continues to be further eluci-
dated is the clinical relevance of the relationship between
vascular disease and osteoporosis. Schulz et al.(28) reported
a risk of fragility fractures (vertebral and hip) that was sig-
nificantly greater in postmenopausal women with AAC
than in those without AAC. Such an increased risk of frac-
ture was also shown at the hip by Bagger et al.,(35) but not
by Samelson et al.(77) in the Framingham Study. However,
varying patient selection, technique of AAC determination,
and follow-up methods may explain these differences. Low
BMD has also been shown to predict all-cause and cardio-
vascular mortality(78–80) and stroke.(81,82) However, as this
study shows, there are differences between sexes. For in-
stance, Varosy et al.(34) from the HERS investigators
showed that coronary events decrease in postmenopausal
women with known coronary disease after fracture. Also,
despite a higher incidence of atherosclerosis and lower in-
cidence of osteoporosis in men compared with women, the
risk of death after fracture is actually higher in men.(83)

Another area of uncertainty is the relationship of com-
ponents of the metabolic syndrome to BMD and micro-
structure. Hypertriglyceridemia and waist circumference
have been identified as indicators of the presence and pro-
gression of AAC, as well as cardiovascular mortality in sev-
eral studies,(84,85) and fasting glucose levels have been
found to be related significantly to aortic, but not coronary,
calcium scores in postmenopausal women.(86) The relation-
ship of these additional factors to bone structure and mi-
crostructure was not examined because of the constraints of
our study design. Future studies may explore these meta-
bolic components as potential explanations for the sex- and
age-specific relationships between AAC and trabecular
structure that we report in this study.

In our cohort, we plan to analyze longitudinal data from
QCT and HRpQCT scans at 3 and 6 yr and gather data
regarding cardiovascular and fracture endpoints, which
should alleviate some of the limitations inherent in this
cross-sectional study. Other limitations of this study include
the homogenous white population of the Rochester, MN,

community. The absence of racial groups with traditionally
higher risk for cardiovascular disease will make future stud-
ies necessary to determine whether our findings are consis-
tent across all ethnic backgrounds. Also, although AAC is
a marker of subclinical atherosclerosis, the pathologic ori-
gin and physiologic significance of abdominal AAC may
differ from calcification occurring in other anatomic sites
such as the coronary arteries, as well as other types of vas-
cular calcification. Finally, we did not examine specific
novel markers of cardiovascular risk [homocysteine and li-
poprotein (a)], which could be mechanistically linked to
changes in vBMD and bone microstructure and AAC.
These are areas for future study.

In conclusion, we provided further proof of an age-
dependent relationship between vascular calcification and
BMD. The finding of a link between abdominal AAC and
bone microstructure in older men even after multivariable
adjustment is novel and should be further studied to eluci-
date a possible common pathogenic mechanism between
vascular calcification and bone structure.
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