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Neutral genetic markers are useful for identifying species hybrids in natural populations, especially
when used in conjunction with statistical methods like the one implemented in the software
NEWHYBRIDS. Here, a short description of the extension of NEWHYBRIDS to dominant markers is
given. Subsequently, an extensive series of simulations of amplified fragment length polymorphism
(AFLP) data is performed to evaluate the prospects for hybrid identification with (possibly non-
diagnostic) dominant markers. Distinguishing between F1’s and F2’s is shown to be difficult, possibly
requiring upwards of 100 AFLP markers to be done accurately. Discriminating between pure-bred
and non-pure (hybrid) individuals, however, is shown to be much easier, requiring perhaps as few as
10 dominant markers, even from relatively weakly diverged species.
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1. INTRODUCTION
In the last decade, advances in biotechnology have
brought a dramatic increase in the number of genetic
markers available for the study of animal populations.
This abundance of genetic information has allowed
population geneticists and molecular ecologists to
move beyond genetic inference at the population level
(e.g. estimating the divergence between populations)
and instead use genetic data to learn about particular
individuals (Pearse & Crandall 2004) within animal
assemblages (for example, identifying individuals in a
population that appear to be migrants from another
population or those which carry admixed ancestry).
Statistical methods for such individual-based, multi-
locus genetic analysis have been available from early
applications in Drosophila (Makela & Richardson 1977)
and later for the estimation of mixture proportions in
mixed stock fisheries (Fournier et al. 1984); however,
since the late 1990s, there has been a proliferation of
related methods. The new methods typically employ
minor elaborations upon the standard mixed fishery
model to allow the model to address a new charac-
teristic feature of the data; for example, admixed
individuals (Pritchard et al. 2000), species hybrids
(Anderson & Thompson 2002), variable migration
rates between demes (Wilson & Rannala 2003), etc.

By far the most commonly used method of these is
the one implemented in the program STRUCTURE

(Pritchard et al. 2000; Falush et al. 2003). The model
underlying STRUCTURE was one of the first individual-
based methods to allow individuals to have admixed
ancestry, with various proportions of each sampled
individual’s genome originating from a different
tribution of 16 to a Theme Issue ‘Hybridization in animals:
rocesses and evolutionary impact’.
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subpopulation. STRUCTURE accomplishes this by using
a flexible model in which the origin of each gene copy
within an individual is independently chosen from a
vector of probabilities Q , which itself is drawn from
a Dirichlet distribution. This model can be applied to a
wide variety of circumstances, and it is particularly
appropriate for identifying individuals with ancestry
from two or more subpopulations or species, especially
if the admixture has been ongoing for a long time.
However, the fact that the origin of gene copies within
an individual is conditionally independent given Q

makes it impossible to distinguish between some
classes of recent species hybrids. For example, because
both F1 and F2 hybrids between two species, A and B,
will have, on average, 50% of their genomes origin-
ating from each species, they are in the eyes of
STRUCTURE essentially indistinguishable. For this
reason, Anderson & Thompson (2002) introduced a
model, implemented in the software NEWHYBRIDS, that
computes the posterior probability that members in the
sample belong to user-specified categories such as F1,
F2 and backcross. NEWHYBRIDS takes explicit account
of the fact that in some categories, the origin of the
two gene copies at a locus is not independent. (For
example, if the first gene copy at a locus in an F1

category is from species A, then the second gene copy
must be from species B.)

Anderson & Thompson (2002) described the use of
NEWHYBRIDS for inference from codominant genetic
markers. Shortly after the article was published, how-
ever, the program was modified to allow the analysis with
dominant markers such as amplified fragment length
polymorphisms—AFLPs (Mueller & Wolfenbarger
1999)—as well. The user manual (Anderson 2003)
describes how to format a dataset that includes dominant
markers, but does not offer a clear explanation of how,
mathematically, NEWHYBRIDS accommodates dominant
data. The original article mentioned that the statistical
This journal is q 2008 The Royal Society
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framework would allow straightforward extension to
dominant data, but did not provide many details. Now,
having been available for some 5 years, NEWHYBRIDS

has been applied to several AFLP datasets, including
those from conifer species (Emelianov et al. 2004),
Atlantic eels (Albert et al. 2006), cultivated and wild
chicory (Kiær et al. 2007) and Swainson’s thrush
(Ruegg 2008). The purpose of this short paper is first
to provide a formal, yet succinct, explanation of the
extension of the NEWHYBRIDS model to dominant
markers and second to summarize simulations that
offer guidelines regarding the power available from
AFLPs for identifying hybrids.
Figure 1. Directed graphs describing the NEWHYBRIDS model.
Black-shaded nodes represent observed data, grey-shaded
nodes represent parameters of prior distributions and
unshaded nodes represent unobserved variables. The boxes
are ‘plates’ which denote multiple, conditionally independent
replicates (indexed by the subscript [ over loci and i over
individuals in the sample) of the enclosed nodes. (a) The
model for codominant data. Note that the observed data are
the allelic types Yi,[,1 and Yi,[,2 of the two gene copies at each
locus in each individual (hence those nodes are shaded black).
(b) The model for dominant data: each dominant locus is
modelled as a diallelic locus with a recessive allele and a
dominant one. These allele types are no longer observed, so
they are latent variables. At each dominant locus, the
observed datum is the presence or absence of a band, Ydom

i;[ .
2. NEWHYBRIDS MODEL
An extensive description of the model and Markov
chain Monte Carlo (MCMC) methodology used in
NEWHYBRIDS appears in Anderson & Thompson
(2002). Here, a brief overview is given, enough to
explain the variables in the model and their relation-
ships to one another. NEWHYBRIDS is applicable to the
situation where there are only two diploid species that
seem to be hybridizing, and a sample of M individuals,
possibly representing pure individuals as well as hybrid
individuals, is taken and genotyped at L loci. The allelic
types of the two gene copies at the [th locus in the ith
member of the sample are denoted by Yi;[ ;1 and Yi;[ ;2.
We use Y to denote the data at all L loci from all M
individuals. The loci are assumed to be independently
segregating and to exhibit no Hardy–Weinberg dis-
equilibrium or linkage disequilibrium when considered
as part of a separate species A or species B ‘gene pool’.
At the [th locus, we find K[ alleles in our sample and
denote the (usually unknown) frequencies of these
alleles in the pure species gene pools of A and B by
qA;[ Z ðqA;[ ;1;.; qA;[ ;K[

Þ and qB;[ Z ðqB;[ ;1;.; qB;[ ;K[
Þ.

The goal of inference is typically to use the genotypes of
the individuals to determine which are pure represent-
atives of the species and which have hybrid ancestry.
Sometimes, pure representatives of each species may
have been sampled separately from the mixture
containing hybrids and can yield prior information
about qA,[ and qB,[ ; however, this is not absolutely
necessary—with enough data, NEWHYBRIDS is able to
infer the presence of two species and their hybrids, even
in the absence of training data taken from the two
species in isolation.

Under the NEWHYBRIDS model, individuals belong
to one of n different ‘hybrid categories’ that are
characterized by the proportion of loci within an
individual that are expected to carry 0, 1 or 2 gene
copies derived from species A. For example, an F1

individual is expected to have 100% of its loci
containing exactly one gene copy from species A,
while the product of a mating between an F1 and a B
individual—a first-generation backcrossed individual
that we will refer to as BCB

1 —is expected to have 50%
of its loci containing zero gene copies from A and
50% of its loci containing one copy from species A and,
of course, no loci with both gene copies originating
from species A. The default configuration of NEW-

HYBRIDS considers the nZ6 categories that represent all
the possible products of two generations of random
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mating between two species, i.e. A, B, F1, F2, BCA
1 and

BCB
1 . The sample of individuals is assumed to be drawn

from a population that contains a mixture of individ-
uals from the n categories in unknown proportions
pZ ðp1;.;pnÞ. To write down the probability model
that relates the allele frequencies, q, and the mixing
proportions, p, to the observed genotypes in the
sample, it is helpful to introduce some latent variables.
These are pieces of information that we would like to
know, but cannot observe directly. By including them
in the model, we can make inference about them given

the data that we actually can observe. First, Zi for every
individual, iZ1, ., M, in the sample tells us which
hybrid category individual i belongs to and second,
Wi;[ ;1 and Wi;[ ;2 for every individual iZ1, ., M and
every locus [Z1, ., L gives the species of origin of the
first and second gene copies, respectively, at the [ th
locus in the ith individual.

All of these variables are related together in the
NEWHYBRIDS model as shown in the directed graph of
figure 1a. This graph is a simple diagram in which
variables in the model appear as nodes (circles) and the
relationship between variables is depicted by arrows
connecting the nodes. The directed graph expresses

how the joint probability of all the variables in the
model may be written as the product of simpler
conditional densities, and it provides a visual represent-
ation that will help make it clear how the NEWHYBRIDS

model is extended to accommodate dominant markers.
See Jordan (2004) for a lucid introduction to graphical
models in statistics. For the simplest interpretation of
such a graph, you may regard it as a sort of flow chart
that helps to keep track of the model that NEWHYBRIDS

assumes for the data, as follows: first p gives the
fraction of individuals in each hybrid category in the
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mixture from which the sample was taken. The value
of p is unknown and not observed directly, so the node
associated with p in the graph is unshaded. Moving
down the graph, we see there is an arrow from p to Zi ,
which tells us that each Zi is a random draw from the
mixing proportions p. This makes sense—the hybrid
category of individuals in the sample depends on the
frequency of that category in the population. Note that
Zi is located upon a box (called a ‘plate’ in graphical
model parlance) having ‘iZ1, ., M’ given in the
corner. This signifies that there are M such Zi variables,
one for each of the M members of the sample, and they
are conditionally independent given p. Continuing
down in the graph, we see that arrows point from Zi to
Wi,[,1 and Wi,[,2, and there is an arrow extending from
Wi,[,1 to Wi,[,2. These relationships capture the fact that
the origin of the two gene copies in individual i at locus
[ are random variables that depend on the hybrid
category to which individual i belongs. The arrow from
Wi,[,1 to Wi,[,2 occurs because in NEWHYBRIDS (unlike
in STRUCTURE), the origin of the two gene copies at a
locus are not independent. For example, if individual i
is an F1 (i.e. ZiZF1) and gene copy 1 at locus [ is from
species A (Wi,[,1ZA), then we know that gene copy 2
must be from species B. Note that these nodes reside
both in the plate with ‘iZ1, ., M’ given in the corner
as well as within the plate with ‘[Z1, ., L’ in the
corner. This signifies that for each individual i, the [
pairs of variables, (Wi,[,1,Wi,[,2), one for each locus, are
conditionally independent (across loci) given the value
of Zi. Finally we arrive at the two nodes for Yi,[,1 and
Yi,[,2. These variables, the allelic types at locus [ in
individual i, are observed data when we have
codominant genetic markers. Accordingly the nodes
are shaded black. The arrangement of the nodes in
this central portion of the graph indicates that the
allelic types at a locus are random variables that
depend immediately upon which gene pool the gene
copy came from (the W ’s) and the frequencies of
different alleles in that gene pool (the q’s). These
relationships capture the assumption of the NEW-

HYBRIDS model that, given that a gene copy is from
species A, say, the allelic type is drawn from the
vector of allele frequencies in the species A gene pool,
independently for each gene copy.

The foregoing described all the variables in the
NEWHYBRIDS likelihood model. Conducting Bayesian
inference also requires that prior distributions be
placed upon p and the qA,[’s and qB,[’s. These priors
are represented by z and the l[’s, which are
parameters of Dirichlet distributions. The values
chosen for these prior-distribution parameters are
assumptions of the model, thus their nodes in the
graph are shaded grey. The goals of inference with
NEWHYBRIDS can also be seen graphically in
figure 1a—inference can be made for any unshaded
node in the graph by computing the conditional
distribution of that variable given the observed data.
This conditional distribution, called the posterior
distribution, cannot be computed exactly, in general,
but it is not difficult to sample from it, and then use
those samples to approximate the distribution. Thus,
inferring the hybrid class of individual i can be done
by summarizing the posterior distribution of Zi ,
Phil. Trans. R. Soc. B (2008)
estimating the allele frequencies at locus [ can be
done by summarizing the posterior distributions of
qA,[ and qB,[ , and estimating the mixing proportions
of different hybrid classes in the sampled population
can be done by summarizing the posterior distri-
bution of p. Details of the MCMC used to sample
from the posterior distribution may be found in
Anderson & Thompson (2002).
3. EXTENSION TO DOMINANT MARKERS
A dominant marker such as an AFLP is resolved by the
presence or absence of a band of a certain length on a
gel. A standard model for such presence/absence
phenotypes assumes that each band is uniquely
associated with a locus that has two alleles: the recessive
r allele and the dominant d allele (Weir 1996). If an
individual carries at least one copy of the d allele, then it
will produce a band, and otherwise it will not. Hence
the rr homozygote does not produce a band while
heterozygous individuals and the dd homozygotes do
produce a band. The model described above is adopted
to allow NEWHYBRIDS to do inference from dominant
markers. It makes certain assumptions that may not be
met at all times. Most importantly, bands of a certain
length may be homoplasic; that is, different sections of
the genome might comigrate. In this case, there may be
two or more loci responsible for what appears to be a
single band. To reduce homoplasy, it seems prudent to
avoid scoring the shortest bands from an AFLP gel
(Vekemans et al. 2002)

Because an individual that is heterozygous or
homozygous for the d allele at a locus will produce
the same phenotype, it is not possible to directly
observe the underlying genotype, so the allelic types
carried by the individual must be treated as latent
variables. This is captured in figure 1b that shows the
graphical model for NEWHYBRIDS with dominant data.
The observed variable at locus [ in individual i is now
Ydom

i;[ , which has two possible states—1 for ‘band
present’ and 0 for ‘band absent’—that depend on Yi,[,1

and Yi,[,1 in a deterministic fashion following the
standard model for dominant markers:

Y dom
i;[ Z

0 if Yi;[ ;1 Z r and Yi;[ ;2 Z r;

1 if Yi;[ ;1 Z d and Yi;[ ;2 Z r;

orYi;[ ;1 Z r and Yi;[ ;2 Z d;

or Yi;[ ;1Z d and Yi;[ ;2 Z d

8>>>><
>>>>:

Since there are only two alleles, r and d, at each locus,
we can designate the allele frequencies in the species A
gene pool as qA;[ Z ðqA;[ ;r ; qA;[ ;dÞ, and analogously for
species B. Using this, we can easily compute the
conditional probability of Yi,[,1 and Yi,[,2 given Ydom

i;[ ,
Wi,[,1, Wi,[,2, qA,[ and qB,[. For instance, the probability
that Yi,[,1Zr and Yi,[,2Zr is 1 if Ydom

i;[ Z0, and 0 if
Ydom

i;[ Z1. Additionally, if Ydom
i;[ Z1, then the prob-

ability that the underlying genotype is homozygous (dd )
or is one of the heterozygotes (rd or dr) is simply
proportional to the expected frequencies of a dd
homozygote or the heterozygotes given the species of
origin of each gene copy and the frequency of the r and d
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alleles in those species. Thus we have

PðYi;[ ;1 Z j;Yi;[ ;2 Z kjYdom
i;[ Z 0;Wi;[ ;1 Z u;

Wi;[ ;2 Z v; qA;[ ; qB;[ ÞZ
1 if j Z r and kZ r

0 otherwise

(

for all u; v2 fA;Bg, when Ydom
i;[ Z0. And when

Ydom
i;[ Z1:

PðYi;[ ;1 Z j;Yi;[ ;2 Z kjYdom
i;[ Z 1;Wi;[ ;1 Z u;

Wi;[ ;2 Z v; qA;[ ; qB;[ Þfqu;[ ; jqv;[ ;k:

for all u; v2 fA;Bg and for j; k2 fr; dg such that j and k
are not both equal to r. Of course, PðYi;[ ;1Z r;
Yi;[ ;2Z rjYdom

i;[ Z1;Wi;[ ;1Zu;Wi;[ ;2Zv; qA;[ ; qB;[ ÞZ0,
always.

These relationships allow us to use MCMC to
sample over the latent states of Yi,[,1 and Yi,[,2 with
ease. Analogous to the way that updates for Zi

with codominant loci are done by integrating out all
possible states of Wi,[,1 and Wi,[,2, updates for Zi with
dominant markers involve integrating out all possible
states of Wi,[,1, Wi,[,2 and Yi,[,1, Yi,[,2. Since there
are only two possible alleles assumed to be underlying
every dominant marker, this involves a small tractable
sum, i.e.

PðZi Z zjYdom
i;1 Z ydom

i;1 ;.;

Ydom
i;L Z ydom

i;L ; qA;1;.; qA;L; qB;1;.; qB;LpÞ

f
YL
[Z1

X
j;k2fr;dg
u;v2fA;Bg

PðYi;[ ;1 Z j;
�2

4
Yi;[ ;2 Z kjYdom

i;[ Z ydom
i;[ ;Wi;[ ;1 Z u;

Wi;[ ;2 Z v; qA;[ ; qB;[ Þ! PðWi;[ ;1 Z u;

Wi;[ ;2 Z vjZi Z zÞPðZi Z zjpÞ
�35: ð3:1Þ

After the quantities in (3.1) are normalized to sum to 1
over all the hybrid categories, z, a new value of Zi can
easily be drawn from the distribution. Once that is
done, new values of Wi,[,1 and Wi,[,2, and then of Yi,[,1

and Yi,[,2 may be sampled from their full conditional
distributions using probabilities that were computed
and stored during the execution of the sums in (3.1).
MCMC updates for the allele frequencies and for p

proceed as described in Anderson & Thompson
(2002). Inference for any latent variable in the model,
including the allelic types, proceeds as before by
summarizing its posterior distribution.
4. SIMULATION METHODS
To test NEWHYBRIDS’ inference with dominant mar-
kers, we prepared and analysed a large number of
simulated datasets under different conditions. Two
species (which we will call A and B) were simulated
from an allopatric population divergence model with
no migration, using the coalescent framework
implemented in MAKESAMPLES (Hudson 2002). The
Phil. Trans. R. Soc. B (2008)
species were assumed to exist in populations of effective
size N, and samples of 450 individuals from each
species were simulated. Two different scenarios were
investigated: a low-divergence (LD) scenario in which
the species split 0.6N generations in the past and a
high-divergence (HD) scenario with the species split
occurring at 1.2N generations in the past. For each
simulation, either HZ100 or 1000 separate coalescent
trees were simulated, each one corresponding to an
independently segregating, non-recombining genomic
region, and 100 mutations at unique nucleotide
positions were simulated in the region. Exactly one of
these mutations from each genomic segment was
chosen to be a mutation underlying a dominant marker
using the following scheme: first, each mutation was
independently decided to have produced either a
dominant band-producing allele (with probability
1/2) or a recessive allele (with probability 1/2), with
the wild-type being the opposite allele; then, eight
individuals from each species (16 individuals in total)
were randomly selected and the mutations within them
investigated in order along the genomic sequence until
the first one was encountered at which at least 3 of the
16 individuals produced bands and at least 3 produced
no bands. The first mutation fitting this criterion was
declared the locus underlying a dominant marker
associated with a band of unique length, and the
other mutations in the genomic region were discarded.
This emulates the use of a small ascertainment panel of
individuals to discover polymorphic bands. Note that
this method assumes no homoplasy between bands and
also assumes that the markers are independently
segregating and are not in linkage disequilibrium.

Simulations were performed with two different
values of H, the number of ascertained, polymorphic,
dominant markers. The ‘many-markers’ condition
included HZ1000 polymorphic markers, correspond-
ing to a survey of AFLP variation using many different
adapter pairs (see Mueller & Wolfenbarger 1999). The
‘few-markers’ scenario included HZ100 polymorphic
markers. The 450 individuals from each species were
used to create samples for analysis with NEWHYBRIDS.
First, 125 individuals from A and 125 individuals from
B were included in the sample as known representatives
of their species that were sampled separately from the
remaining mixture of individuals, using NEWHYBRIDS’
individual-specific z and s options. Then, included in
the mixture were 40 A’s, 30 B’s, 15 F1’s, 10 BCA

1 ’s,
3 BCB

1 ’s and 2 F2’s. F1’s were created by randomly
mating 15 A–B pairs, each one creating a single
offspring. F2’s were created by randomly mating F1’s,
etc. Parents of hybrids in the dataset were unique—i.e.
no two hybrids in the dataset shared parents or
grandparents, and none of their parents or grand-
parents were also included as pure individuals in the
dataset. The individuals in the sample were all of the
same cohort, no individuals were parents or offspring of
any others.

Each dataset simulated as above was analysed using
the L ‘most informative’ loci with L2 f10;25;
50;75;100g, (LZ400 was also used in the HZ1000
condition). This feature of the simulations was
intended to mimic the ‘high grading’ of bands showing
large differences between species. This approach might
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Figure 2. Posterior mean estimates ( y-axis) versus true values
(x -axis) of the frequency of the recessive r allele from either
species gene pool (A or B) across all simulated datasets (both
LD and HD conditions) with HZ100 and LZ100.There are
20 000 points in total, each one corresponding to an allele
frequency at a single locus in species A or B.
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be taken if very many polymorphic bands were
discovered, and it was not feasible or reasonable to
score all of those bands on all the individuals in the
dataset. Such an approach was used in Ruegg (2008).

Loci were ranked by informativeness using the
Kullback–Leibler divergence applied to the frequency
of band presence and absence among the 125 known
representatives of each species. That is, if RA is the
relative frequency of the recessive phenotype and DA

the relative frequency of the band-producing pheno-
type among the 125 known representatives of species
A, and RB and DB are the same for species B, then the
Kullback–Leibler divergence of the distribution of
phenotypes in species A relative to species B is

KðA;BÞZRA log
RA

RB

CDA log
DA

DB

:

Loci were ranked according to the larger, at each locus,
of KðA;BÞ and KðB;AÞ.

NEWHYBRIDS was run using Jeffrey’s priors on the
mixing proportions and the allele frequencies. During
exploratory NEWHYBRIDS runs, visual inspection of the
MCMC showed that convergence to a region of high
posterior probability was almost immediate and the
chain was mixing well, so 200 sweeps of burn-in were
used, along with 800 sweeps of data collection. This is a
much smaller number of sweeps than would typically
be used for a single real dataset, but doing such short
runs allows many replicate datasets to be analysed. For
each set of conditions, 50 replicate datasets were
simulated and analysed. The conditions included all
factorial combinations of the two divergence scenarios,
the two values of H and the five (for HZ100) or six (for
HZ1000) values of L. Accordingly, 1100 datasets, in
total, were simulated and analysed.
5. SIMULATION RESULTS
For our first check of the simulation results, we verify
that the estimated frequency of the r allele at each locus
is close to the true frequency of the r allele among the
450 simulated individuals in each population. Figure 2
shows that NEWHYBRIDS is capable of estimating the
allele frequencies at dominant loci well. As one would
expect, the frequency of allele r is estimated best when
Phil. Trans. R. Soc. B (2008)
it is close to 1.0, because at those loci, most of the
individuals are homozygous for the r allele and the
allelic state of such individuals, at both gene copies,
may be inferred without ambiguity. When a higher
fraction of the sample is composed of band-producing
individuals, there is more uncertainty in the estimation
of qA,[,r and qB,[ , but NEWHYBRIDS still performs quite
well. Note that since the points in figure 2 are smoothly
dispersed around the yZx line with no obvious outlying
clusters, it suggests that 200 sweeps of burn-in were
sufficient for the MCMC to have converged to the
correct part of the parameter space.

We next summarize how well the hybrid category of
different individuals may be inferred. We do this in
several ways. First, for each simulation condition
(combination of divergence, H and L), we computed
the average across the individuals in each hybrid
category, and across all 50 simulated datasets, of the
mean posterior probability of belonging to the correct
hybrid category. In other words, over all individuals in
the simulations from hybrid class HC, the average value
of PðZiZHCjYÞ was recorded. If enough data were
available so that individuals could be assigned to their
correct hybrid category with no uncertainty, then each
one would have a posterior probability of 1.0 of
belonging to their true hybrid category, and the average
value of the posterior probability over all members of
that hybrid category would be 1.0 as well. Values less
than 1.0 indicate uncertainty. Figure 3 shows that with
the most informative LZ400 loci from HZ1000
ascertained markers, there is almost no uncertainty
about hybrid category assignments reflected in the
posterior probabilities for the six hybrid categories
investigated. However, with fewer markers, there is
some uncertainty. As expected, performance is better
with higher divergence and also with a larger number,
H, of ascertained polymorphic markers. Particularly
striking are the posterior probabilities for individuals in
the F2 category in the LD scenario with HZ100. Even
with 100 markers, the average posterior probability
with which an F2 individual belongs in the F2 category
is less than 0.25. Interestingly, the influence of
divergence (LD and HD) and number of markers
ascertained (H ) varies for different hybrid categories.
For all categories, the least accurate scenario is LD with
HZ100 and the most accurate scenario is HD
with HZ1000. However, the accuracy of the two
remaining scenarios is reversed between F1’s and F2’s.
F2’s are better discriminated in the LD scenario with
HZ1000 than in the HD scenario with HZ100, while
F1’s are better discriminated in the HD scenario with
HZ100 than in the LD scenario with HZ1000.

While mean posterior probabilities provide one
summary of the data, it should be recognized that
posterior probabilities of 1.0 are not necessarily
required to accurately discriminate between hybrid
categories—there may still be a clear separation of
the distribution of posterior probability values for
individuals in different categories. Since we know
the true hybrid categories of the individuals from the
simulations, we can investigate this by quantifying
allocation rates between the different hybrid categories.
To allocate individuals to hybrid categories, we used a
maximum a posteriori rule: each individual was
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allocated to the hybrid category for which it had the

highest posterior probability.

The resulting allocation rates are summarized for

LZ50 and 100 across all simulation conditions in

table 1. The results show that distinguishing between

the hybrid categories F1, F2, BCA
1 and BCB

1 can require

a large number of very divergent markers. For example,

even with LZ100 loci used from HZ100 markers

ascertained, under the LD scenario, 59% of the F2’s get

allocated to the F1 category. In fact, accurate

discrimination between F1’s and F2’s occurs only

under the HD scenario with HZ1000 markers.

These findings are concordant with Anderson &

Thompson’s (2002) original conclusion with codomin-

ant markers that it is difficult to distinguish the different

truly hybrid categories.

Finally, we use the simulation output to quantify

how well pure individuals (categories A and B) can be

distinguished from non-pure ones (F1, F2, BCA
1 and

BCB
1 ). The power available for doing this can be

summarized graphically using the receiver operating

characteristic (ROC) curves (Metz 1978) of figure 4.

ROC curves measure the power of a statistical

classification rule to correctly allocate an observation

into one of the two different categories. Our classi-

fication rule is based upon the posterior probability that

an individual belongs to a pure species category,

PðPureÞZPðZiZAjYÞCPðZiZBjYÞ. If this quantity

is below a certain threshold C, we allocate the

individual to the non-pure class, and if it is above

C then we allocate it to the pure class. The value

of C determines the false positive rate (fraction of

individuals assigned to the wrong class) and the true

positive rate (fraction of individuals assigned to the

correct class). The ROC curve plots the pairs of false
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positive rate and false negative rate as the threshold C
varies between 0 and 1. In figure 4, the ROC curves
make it clear that distinguishing pure from non-pure is
a much easier problem than distinguishing between
different non-pure hybrid categories. For example,
even with only LZ10 dominant markers, chosen from
HZ100 in the LD scenario, it is possible to classify
individuals on the basis of P(Pure) so that 90% of the
F1’s, 81% of the F2’s, 62% of the BCA

1 ’s and 59% of the
BCB

1 ’s are correctly classified as non-pure, while fewer
than 1% of the pure individuals would be incorrectly
classified as non-pure. In our example, the BCA

1 and
BCB

1 categories are the most difficult to distinguish
from the pure species. Later-generation backcrosses
(i.e. BC2

A or BC3
B) would be even more difficult to

distinguish from pure individuals. Boecklen & Howard
(1997) provided calculations for determining how
many diagnostic dominant markers would be required
for discriminating such backcross categories. It should
be kept in mind that it would require far more non-
diagnostic markers.
6. DISCUSSION
This paper provides the first formal description of the
model implemented in NEWHYBRIDS for dominant-
marker data. The extension of the original model is
shown in the graphical model of figure 1 to be quite
simple, structurally. The model underlying the pheno-
type expression is the standard one, which is also
adopted in the recent extension of STRUCTURE to
dominant data (Falush et al. 2007). However, the
STRUCTURE model can also be applied to loci with
multiple alleles, only one of them being recessive. This
allows it to model null alleles in, for example,
microsatellite markers. The NEWHYBRIDS model
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includes only two alleles (r and d ), and is thus
specialized for strictly dominant markers, which carries
certain computational advantages, like allowing
blocked Gibbs updates for the Zi’s. There is no
restriction in NEWHYBRIDS, however, on mixing
different marker types in a dataset. It is perfectly
acceptable, for example, to type individuals at both
microsatellites and AFLP markers and include all the
markers in the dataset. The NEWHYBRIDS model allows
both data types to be analysed simultaneously.

In the course of analysing various real and simulated
AFLP datasets, I have seen that NEWHYBRIDS performs
best with dominant data when some known represen-
tatives of the pure species A and B are included (with
NEWHYBRIDS’ z option) in the dataset. Without these
learning samples, the MCMC sampler may require
long burn-in times. This can often be observed in
NEWHYBRIDS runs initialized with random starting
values: the chain may remain for many sweeps in a
configuration in which all individuals are inferred to be
F1’s or F2’s and the estimated allele frequencies bear no
relation to the true allele frequencies in the species. For
example, in the simulations performed in this paper,
having large learning samples meant that the MCMC
sampler converged to the proper part of the parameter
space within the first several sweeps. By contrast, when
I repeated the simulations without notifying NEW-

HYBRIDS that 125 A individuals and 125 B individuals
were known representatives of their species, it took
much longer for the Markov chain to converge to the
correct region. In general, it took longer for datasets
with more loci to converge. For example, at the high
divergence level with HZ100, NEWHYBRIDS had
converged within 1000 sweeps on all 50 replicate
datasets with LZ10. With LZ50, NEWHYBRIDS had
failed to converge within 1000 sweeps in 8 of 50
datasets; for LZ100, 22 of 50 had not yet converged.
Results were similar for the LD scenario. This indicates
that care should be taken when analysing datasets with
Phil. Trans. R. Soc. B (2008)
dominant markers (especially with many dominant
markers). Every effort should be made to obtain
learning samples. If they are not available, then
multiple NEWHYBRIDS runs should be performed with
very long burn-in periods (of the order of 75 000
sweeps), and the individual runs should be compared
to each other to ensure concordance.

As noted by Anderson & Thompson (2002),
distinguishing between the non-pure hybrid categories

with genetic data is difficult and requires many markers.

The same is true with dominant markers. The

simulations performed here show that, depending on

the degree of divergence of the species, even 100 AFLPs

may not allow clear separation of F1’s and F2’s. On the

other hand, distinguishing between pure and non-pure

individuals can be done with far fewer markers. Even

under a ‘LD’ scenario, simulations showed that as few

as the 10 most informative markers from 100 ascer-

tained polymorphic bands provide ample power to

discriminate F1’s and F2’s from pure individuals.
In the simulations, we mimicked the process of

ascertainment of AFLPs using a small set of pure
individuals from both the species. We further investi-
gated the effect of high grading a small number of the
most informative markers. Under the divergence in
allopatry model used in the simulations, this is an
acceptable course of action, as borne out by the
simulations: figure 3 shows that some power is lost,
but, if a large number of bands (such as 1000) are
available, the 50–100 most informative bands may
capture most of the resolution in the data. If the species
diverged recently in sympatry, then there is some
possibility that the markers that are most divergent in
the two species may be involved in their reproductive
isolation. This would violate the NEWHYBRIDS assump-
tion of neutrality of the markers.

In the present paper, we have characterized the
statistical power to discriminate between different
categories using the ROC curve (figure 4). In our
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simulations, since we know the true category that each
individual belongs to, it is possible to compute the
ROC curve for a range of thresholds, C. This will not
typically be the case in a real-life situation with a real
dataset. In fact, this is a ubiquitous problem when
analysing data from closely related species or sub-
populations with Bayesian clustering methods—the
methods yield posterior probabilities that may be
difficult to interpret. For example, NEWHYBRIDS

might tell you that individual i has posterior probability
of 85% of belonging to the F2 category. This quantity is
not, however, an estimate of the actual probability that
you would be correct if you were to declare the
individual an F2. This latter probability cannot be
directly obtained from the typical output of a program
such as STRUCTURE or NEWHYBRIDS, so various ad hoc
approaches involving comparison to simulated data
have been used for assessing the accuracy of allocation
based on the posterior probability, or for testing
hypotheses such as the hypothesis of hybridization
versus non-introgressive mixing of pure individuals
(Nielsen et al. 2003).
7. FUTURE PROSPECTS FOR THEMODEL-BASED
ANALYSIS OF SPECIES HYBRIDS
I would like to conclude with some perspectives on the
current limitations of NEWHYBRIDS and the interesting
opportunities and challenges available to those inter-
ested in extending the capabilities of programs such as
NEWHYBRIDS and STRUCTURE for the analysis of animal
hybridization.

It must be noted that the model underlying NEW-

HYBRIDS relies on the assumption that the genetic
markers in the dataset are independently segregating.
This assumption is likely to be violated when many
markers are used; with 400 AFLP markers, for
example, many loci will occur together on common
linkage groups. If markers are physically linked, then
their segregation is not independent and, because
NEWHYBRIDS treats their segregations as independent,
this will cause NEWHYBRIDS to underestimate the
uncertainty in its estimates of the Zi variables. There
is currently no general method implemented in NEW-

HYBRIDS for dealing with this. One way to mitigate the
problem would be to use a small number of the most
informative loci (i.e. those with the highest degree of
interspecies differentiation); however, this necessarily
discards some information. If there is a physical or
genetic map for the markers, then the linkage between
markers could be modelled. Version 2 of the program
STRUCTURE (Falush et al. 2003) provides a way to
model the dependence between markers using a hidden
Markov chain model. No such method is currently
available with NEWHYBRIDS.

As noted in §6, the interpretation of posterior
probabilities from any model-based genetic clustering
method is not straightforward, especially if the data
include individuals from closely related subpopulations
or species, and if there are various plausible biological
models (e.g. admixture versus mixture) for the data.
Model assessment and model checking via ‘posterior
predictive checking’ are now all but expected as
elements of a complete Bayesian analysis of any
Phil. Trans. R. Soc. B (2008)
statistical problem (see Gelman et al. 2004, ch. 6).
However, none of the Bayesian clustering methods for
multilocus genetic data (such as NEWHYBRIDS or
STRUCTURE) provide such model checking as an option.
Instead of leaving it to the software users to design
simulations to assess and interpret the output
of STRUCTURE and NEWHYBRIDS, there seems to be an
opportunity to expand the programs themselves to
allow for simulation-based model assessment. It may
be possible to use simulated values from the posterior
predictive distribution to provide an estimate of ROC
curves and/or related quantities, though this is a
difficult problem, especially in the absence of training
samples, because a gold standard is not available for
computing the ROC curve (Zhou et al. 2005). This is
currently an area of development in NEWHYBRIDS.

Regions where two species meet and form stable
‘hybrid zones’ have received considerable attention
from zoologists as ‘windows on the evolutionary
process’ (Harrison 1990) and ‘natural laboratories’
(Hewitt 1988) for the study of evolution. One of the
primary means of mathematically analysing such
hybrid zones has been to investigate clines of allele
frequencies along transects through them. A great deal
of theory has been developed regarding the rate at
which alleles from one species decline in frequency
and give way to the alleles of another species as one
travels through a hybrid zone (Barton 1979; Barton &
Gale 1993). Much of this theory, however, has been
developed for alleles that are alternately fixed in the
different species, which complicates the estimation of
clines with non-fixed allelic differences. Hierarchical
Bayesian models, such as those in NEWHYBRIDS and
STRUCTURE, that use variables to denote the species of
origin of a particular gene copy (Wi,[,1 and Wi,[,2 in
figure 1) would be well suited to addressing the
estimation of clines with non-fixed allelic differences:
instead of estimating clines by focusing on particular
allelic states, the clines can be estimated using the
origins (species A or B) of different gene copies. Since
it is possible to sample from the full posterior
distribution of these gene origins (the Wi,[,1’s and
Wi,[,2’s), it would be possible to propagate that
uncertainty into the estimate of the genetic cline
between species.

Finally, both NEWHYBRIDS and STRUCTURE make the
assumption that the sampled genes behave neutrally and
are not influenced by selection. This is an undesirable
assumption when using large datasets with many
markers and coverage throughout the genome. The
non-neutrality of genetic transmission to hybrids was
documented in Drosophila by Dobzhansky (1936) and
recently has been observed in other animal and plant
species (e.g. Jiang et al. 2000; Martinsen et al. 2001;
Teeter et al. 2008). It would be interesting (albeit
challenging) to try to modify a program such as
NEWHYBRIDS or STRUCTURE to allow for the fact that
genes introgress selectively between species. Accounting
for such selective effects should allow more accurate
inference of hybrid category or degree or admixture, and
also would provide for a model-based assessment of the
degree of non-neutrality of introgression among loci,
which could potentially illuminate important evolution-
ary processes.
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