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Animals have evolved many season-specific behavioural and physiological adaptations that allow
them to both cope with and exploit the cyclic annual environment. Two classes of endogenous annual
timekeeping mechanisms enable animals to track, anticipate and prepare for the seasons: a timer that
measures an interval of several months and a clock that oscillates with a period of approximately a
year. Here, we discuss the basic properties and biological substrates of these timekeeping
mechanisms, as well as their reliance on, and encoding of environmental cues to accurately time
seasonal events. While the separate classification of interval timers and circannual clocks has
elucidated important differences in their underlying properties, comparative physiological
investigations, especially those regarding seasonal prolactin secretions, hint at the possibility of
common substrates.
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While the Earth remaineth, seedtime and harvest, and

cold and heat, and summer and winter, and day and

night shall not cease.

Genesis 8: 22, King James Version (1611)
As the Earth makes its yearly orbit around the Sun,
the planet’s 23.58 axial tilt leads to the cyclical
environmental changes that we call the seasons.
Recurrent challenges to the survival of organisms and
their offspring arise with the dawning of each new
season, and animals have evolved seasonally induced
changes in phenotype that adapt them to these
predictable events. For example, in many temperate
environments, winter is generally characterized by
severe decreases in ambient temperature and food
availability, leading to increased energetic demands at a
time when resources are diminished. Because energy
requirements of female mammals typically increase
markedly during lactation (Bronson 1989) and newly
weaned offspring are particularly vulnerable to environ-
mental perturbations (Hill 1992), raising offspring
during this time of year is often futile. Thus, many
temperate species have evolved winter-specific
behaviours and physiology to conserve energy (e.g.
hibernation, a more insulative pelage, huddling) or
provide for escape (e.g. migration). Many species also
increase the chances of offspring survival by timing
their mating behaviours so that parturition occurs
during energetically favourable times of year.

In this review, we highlight the mechanisms animals
use to achieve seasonally appropriate adjustments.
Although reference is mostly made to studies of
reproduction and to particular species, the conclusions
tribution of 14 to a Theme Issue ‘Adaptation to the annual
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derived probably apply to a broad spectrum of animals
and to non-reproductive traits. Not covered here are
remarkable recent developments in identifying some of
the genes responsible for seasonal flowering in plants
(Yanovsky & Kay 2003).

The simplest solution for seasonal adaptations
would be a mechanism by which environmental cues
directly trigger the required changes (sometimes
referred to as a type 3 mechanism or rhythm; Zucker
et al. 1991). In the absence of the external stimulus, the
adaptive response would be lost. As an example, cloud
forest mice, Peromyscus nudipes, do not give birth during
the dry season in Costa Rica, although they breed year-
round. Restricted food and water availability during the
dry months are the stimuli that appear to prevent
implantation or lead to reabsorption of the embryo
(Heideman & Bronson 1992). Type 3 annual rhythms
in human births have also been reported, attributable
to social taboos on copulation during the yam growing
season in a village in Papua New Guinea (Scaglion
1978) and to end of the year tax breaks in the United
States (Dickert-Conlin & Chandra 1999).

Of course, there are limitations to a type 3
mechanism. Many seasonal changes require several
weeks to complete (e.g. moult to a thicker pelage,
deposition of large amounts of white adipose tissue,
completion of spermatogenesis) and would occur too
late if they were a direct response to an ultimate
environmental factor. For example, if ground squirrels
waited until the onset of winter conditions to initiate
weight gain or food storage, they would have insuffi-
cient energy reserves upon entry into hibernation to
survive the winter. Species often use predictive cues to
forecast the coming season—primarily changing day
lengths in non-equatorial regions—but even this
strategy might not be sufficiently reliable under all
conditions. Migrating birds experience complex,
This journal is q 2007 The Royal Society
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Figure 1. Annual timekeeping mechanisms. (a) Interval timer of the Siberian hamster. (1) Decreasing day lengths trigger the
interval timer/induce the winter phenotype. (2) The timer runs to completion. (3) Refractoriness/spontaneous reversion to the
spring phenotype. (4) Prolonged exposure to long day lengths breaks refractoriness/resets the interval timer. (b) Circannual
clock of the golden-mantled ground squirrel. Successive oscillations between the summer and winter phenotypes are driven by
an endogenous clock rather than exogenous factors.
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dynamic environments and photoperiods, and animals
that overwinter in burrows do not have access to most
seasonal cues for much of the year.

An internal seasonal timekeeping mechanism, either
one that measures the duration of time from an
antecedent cue (like an hourglass) or one that oscillates
endogenously with an annual period (like a clock),
would enable animals to track, anticipate and prepare
for the seasons even when predictive cues are noisy or
not immediately present. Such timing mechanisms
(sometimes referred to as type 1 and type 2
mechanisms or rhythms, respectively; Zucker et al.
1991) are widespread among seasonal species, even
those with continuous access to relatively noise-free
predictors (e.g. sheep, deer). Currently there is no
satisfactory explanation for their prevalence in these
latter species (for discussion see Gwinner 1981a,b).
1. ANNUAL TIMEKEEPING MECHANISMS
Both Siberian hamsters (Phodopus sungorus) and golden-
mantled ground squirrels (Spermophilus lateralis) undergo
seasonal cycles for several traits, including reproduction,
body mass and heterothermy (Figala et al. 1973;
Heldmaier & Steinlechner 1981; Zucker 2001). Labora-
tory experiments have revealed that seasonal adaptations
in these two species are governed by different timing
mechanisms (figure 1). Here, we illustrate this concept
with reference to annual cycles of gonadal size and
function, which are in breeding condition for both
squirrels and hamsters during the spring and for hamsters
in the summer as well (McKeever 1964; Figala et al.
1973). A similar argument can be made, however, using
other seasonal traits of these species (figure 2; Pengelley&
Fisher 1957; Pengelley & Asmundson 1974; Prendergast
et al. 2002b).

(a) Interval timers

Siberian hamsters housed under long photoperiods
(more than 13 h light per day, 13L; Hoffmann 1982a)
Phil. Trans. R. Soc. B (2008)
display the spring/summer phenotype of large, functional
gonads indefinitely. Upon transfer to short photoperiods
(less than 13L; Hoffmann 1982a), the gonads undergo
regression, reproductive hormone concentrations
decrease and gametogenesis gradually ceases over the
following 6–10 weeks (Bergmann 1987). If maintained in
a short photoperiod for more than 20 weeks, hamsters
spontaneously revert to the reproductively competent
phenotype (Hoffmann 1979). The loss of responsiveness
to short day lengths (photorefractoriness) is governed by
a process with hourglass properties designated an interval
timer (Goldman 2001). This timer lacks calendar proper-
ties but adequately measures the lapse of time since the
advent of short days.

Growth of the testes in Siberian hamsters is not
affected by the increase in day length between the
winter solstice and the vernal equinox (Gorman &
Zucker 1995). The regrowth process is initiated
endogenously by the interval timer, all other environ-
mental factors being held constant. Field studies of
meadow voles (Microtus pennsylvanicus) and white-
footed mice (Peromyscus leucopus) suggest that the
interval timer governs testicular growth in the wild:
spermatogenesis recommences in most males in early
December in Pennsylvania (Christian 1980), when day
lengths are still decreasing and short in absolute terms.
Initiation of gonadal development long before the
advent of stimulatory long day lengths allows animals
to take advantage of favourable breeding conditions in
early spring. The duration of the interval timer differs
both interspecifically (e.g. Siberian and Syrian hamsters,
Mesocricetus auratus) and between different populations
of the same species (Gram et al. 1982); it is presumably
shaped by the selection pressures of the local habitat to
favour appropriately timed reproduction.

Photorefractory Siberian hamsters housed in short
days do not undergo a second gonadal regression
unless they are first exposed for six or more weeks
to a long photoperiod (Kauffman et al. 2003;
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Figure 2. (a) Body mass records of two Siberian hamsters,
one maintained continuously in a long day length (LD; 14 h
light per day) and the other transferred to a short day length
(SD; 10 h light per day) as indicated by arrow. SDs initially
induce a marked decrease in body mass, but after 24 weeks
body mass spontaneously reverts to LD values, even though
there has been no change in environmental conditions. At this
point, the hamster is unresponsive to SDs and is considered
photorefractory. In contrast, maintenance in a LD results in
uninterrupted body mass increases (M. J. Paul 2006,
unpublished data). (b) Circannual body mass rhythm of an
individual golden-mantled ground squirrel housed in a fixed
photoperiod of 14 h light per day, then 12 h light per day, then
constant light for the last 11 months. At year 3, the ambient
temperature was changed from 23 to 6.58C. The rhythm in
body mass persists under all housing conditions (modified
from Ruby et al. 1998).

The internal calendars of vertebrates M. J. Paul et al. 343
Watson-Whitmyre & Stetson 1988). The interpolation
of long days breaks refractoriness and resets the
interval timer. Under simulated natural photoperiods,
the decrease in day lengths in late summer initiates,
and the long spring/summer day lengths reset, the
interval timer resulting in successive annual cycles
(Gorman & Zucker 1995).

(b) Circannual clocks
By contrast, golden-mantled ground squirrels housed
under constant conditions (including static photo-
periods) undergo several successive annual cycles of
reproductive competence/incompetence with a period of
approximately 10.5 months (Pengelley & Asmundson
1974). The largest variation in period for a given squirrel
in this study was 29 days over four cycles, and in one
squirrel there was only a 4-day variation in period. The
generation of the ground squirrel’s annual rhythm, in
contrast to that of the Siberian hamster, does not require
environmental input but rather is a manifestation of an
endogenous circannual (approx. annual) clock. Under
unchanging environmental conditions, this rhythm is
said to free-run, with its period reflecting that of
Phil. Trans. R. Soc. B (2008)
the underlying oscillator. Because the free-running
rhythm does not match the 12-month annual cycle, it
must be adjusted via environmental cues to prevent
‘out-of-season’ behaviours.

How a circannual clock can run with such a long
period is not understood. It does not require timed
feedback from its physiological outputs (see Gwinner
1981b) and can track seasonal time even when its
physiological expression is suppressed. Manipulations
that either prevent the usual increase or accelerate the
decrease in body mass have little or no effect on
the onset or termination of the hibernation season, the
period length between successive hibernation seasons
or the onset of circannual weight gain in golden-
mantled ground squirrels (Pengelley 1968; Heller &
Poulson 1970; Pengelley & Asmundson 1974). Similar
results have also been obtained in 13-lined ground
squirrels (Spermophilus tridecemlineatus), whose ener-
getic demands are increased by induced arousal from
hibernation bouts without available food; with the
return of food, the squirrels regain the proper body
mass for that time of year (Mrosovsky & Fisher 1970).
In this volume, Wikelski and colleagues revisit a
possible role of energy turnover in circannual time-
keeping mechanisms in an avian model.

(c) Timers versus clocks

It has been proposed that annual timekeeping
mechanisms have multiple evolutionary origins
(Farner 1985), so it is not surprising that different
species have evolved distinct mechanisms for tracking
seasonal time, an hourglass interval timer that needs to
be reset or a self-sustaining circannual clock. Natural
selection apparently has acted on different underlying
substrates to solve the problem of seasonal timing. That
circannual clocks are favoured by a number of long-
lived species, however, argues for a functional expla-
nation for the evolution of these two distinct classes of
timekeeping mechanisms. Species that rarely live
longer than a year in the wild would have no need for
a mechanism that repeatedly generates annual cycles.
An interval timer might also provide a selective
advantage over a circannual clock in short-lived
species, which tend to breed opportunistically
(Bronson 1989). Anecdotally, it has been reported
that out-of-season breeding is more common among
interval timing than circannual species, suggesting that
the timer is more easily overridden than the clock
(Prendergast et al. 2001). A flexible annual time-
keeping mechanism that can be ignored is probably a
better option for species that stand to benefit from a
risky breeding strategy.

Species without reliable access to noise-free environ-
mental cues might require a circannual clock (e.g.
species that migrate or overwinter in burrows). If
isolation from noise-free environmental cues is suf-
ficiently long enough, these animals would probably
opt for an annual timekeeping mechanism that is less
reliant on the environment. Tropical species might also
lack sufficient environmental cues for interval timing.
At and around the equator, changes in photoperiod are
minimal at best, and other environmental cues may not
occur at the correct time with respect to ultimate
factors. For example, rainfall may occur too close to the
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onset of available food (i.e. insects and vegetation), so
this signal would not provide sufficient time for
reproductive development. A circannual clock may
prevent erratic environmental fluctuations from altering
the seasonal rhythms in species or traits that cannot
exploit small variations in seasonal onsets. For example,
because gestation in sheep lasts several months, an extra
month of unseasonable warmth at the end of summer
would not provide an opportunity for births of additional
progeny. Circannual species tend to produce but one
litter a year, more or less on the same calendar date,
whereas those that deploy an interval timer typically have
a more extended breeding season, multiple litters and
more variable times of reproduction.
2. ON THE ROLE OF ENVIRONMENTAL CUES
(a) Photoperiod
Without some kind of external input, interval timers
would not cycle and circannual clocks would drift out
of phase with the environment; both timekeeping
mechanisms require environmental cues to accurately
time seasonal events. Day length, the most accurate
natural predictor of annual phase, is the predominant
cue for timers and clocks (Gorman et al. 2001; Zucker
2001; Gwinner 2003). However, the functional role of
photoperiod differs for the two mechanisms.

An interval timer relies on photoperiod to both
trigger and reset the hourglass mechanism. In several
small rodents, the interval timer is triggered by short
day lengths and reset by long day lengths (Gorman
et al. 2001). In the majority of birds, however, long day
lengths first trigger the interval timer, after which
prolonged exposure results in refractoriness to long
days and a reversion to the winter phenotype (Dawson
et al. 2001). Subsequent exposure to short day lengths
is then required to break refractoriness. It has been
proposed that a critical day length exists that defines all
shorter photoperiods as winter and all longer photo-
periods as summer (reviewed in Gorman et al. 2001).
Relatively sharp inflection day lengths have been
reported for several species (Gaston & Menaker
1967; Elliott 1976; Hoffmann 1982a; Rhodes 1989).
Although a simple critical day length model is sufficient
to account for seasonal cycles of laboratory animals
held in and moved between static photoperiods, it is
not sufficient to explain seasonal changes of animals in
the wild. Each day length, except for those at the
solstices, occurs twice each year. Thus, intermediate
day lengths around the equinoxes could signal either
the coming winter or the coming summer depending
on whether they are preceded by decreasing or
increasing day lengths. The response to these ‘ambig-
uous’ day lengths must vary according to the season,
whether late summer or early spring. To solve this
problem, photoperiodic animals store information
about preceding photoperiods that they compare to
the current day length (Prendergast et al. 2000).
Siberian hamsters transferred from 16L or 8L to the
identical 14L photoperiod undergo gonadal involution
or recrudescence, respectively (Hoffmann et al. 1986).
Such experiments suggest that an animal’s photoperiodic
history allows it to track the natural changes in day
length, enabling it to unambiguously predict the
Phil. Trans. R. Soc. B (2008)
upcoming season and initiate/reset the interval timer
at the appropriate time of year (Gorman et al. 2001).
Studies of Siberian hamsters in simulated natural
photoperiods have revealed that both absolute day
length and incremental changes in natural day lengths
contribute to the timing of seasonal behaviour and
physiology (Gorman & Zucker 1995; Butler et al. 2007).

On the other hand, a circannual clock requires
photoperiod to synchronize its endogenous free-running
period to the sidereal year, analogous to the photic
entrainment of a circadian clock to the 24 h day by the
light/dark cycle. Thus, circannual researchers have
adopted the circadian terminologies of entrainment and
zeitgeber (an environmental factor that shifts the phase of
the endogenous oscillator; German for ‘time giver’).
Central to entrainment theory is the observation that the
oscillator is differentially sensitive to the phase of
zeitgeber presentation. This can be assessed by con-
structing a ‘phase response curve’, i.e. by plotting the
phase shifts that occur in a measured rhythm when
zeitgeber pulses are applied at different phase points
across the free-running circadian or circannual cycle.
Owing to the long time scales involved (a typical
experiment lasts a minimum of 2 years), reports of
complete circannual phase response curves are uncom-
mon. The circannual body mass rhythm of golden-
mantledground squirrels exposed toa three-month block
of short days (8L) in late summer is phase advanced for
2 years, whereas the identical day length manipulation
has no effect when given in the spring (Zucker 2001).
A pseudophase response curve has been generated for
rainbow trout (Oncorhynchusmykiss) exposed to blocks of
constant light at different phases of the circannual rhythm
(Randall et al. 1998), but the fishes were returned to
natural day lengths rather than free-running conditions
after zeitgeber presentation. Only recently in the varied
carpet beetle (Anthrenus verbasci ) has a complete phase
response curve to photoperiod been generated for the
circannual pupation rhythm (Miyazaki et al. 2005).
Additional data supporting the concept of a photoperiod-
entrainable circannual clock include the gradual resyn-
chronization of annual rhythmicity after artificially
reversing the photoperiod (woodchucks, Marmota
monax: Concannon et al. 1993; sika deer, Cervus nippon:
Goss 1969a, 1980); and entrainment, within limits, to
photoperiodic cycles that differ from 12 months (e.g. 3, 6
or 24 months; sika deer: Goss 1969a; European starlings,
Sturnus vulgaris: Gwinner 1977; golden-mantled ground
squirrels: Lee & Zucker 1991).

(b) Other environmental factors

In the winter breeding California vole (Microtus
californicus) short photoperiods suppress and long
photoperiods promote testicular growth and sperma-
togenesis (Nelson et al. 1983). Evidently some non-
photoperiodic seasonal factor(s) must override the
normal photoperiodic input in the wild. Food, water,
ambient temperature and social cues have all been
shown to alter seasonal traits (Whitsett & Lawton
1982; Desjardins & Lopez 1983; Eskes 1983; Nelson
et al. 1983; Pearce & Oldham 1988; Schneider & Wade
1989; Wayne et al. 1989; Honrado & Fleming 1996;
Hegstrom & Breedlove 1999; Kriegsfeld et al. 2000a,b;
Larkin et al. 2001, 2002; Reynolds et al. 2003;
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Schoech et al. 2004; Genin et al. 2005), including a
single plant compound identified in newly grown
vegetation that stimulates reproduction in wild
montane voles (Microtus montanus) during the winter
months (Berger et al. 1981).

Reliance on non-photoperiodic cues for seasonal
timing appears to be highly species specific. Wingfield
and colleagues (1992) have proposed a method for
predicting the relative contributions of non-photo-
periodic factors in seasonal timing for a given species.
Their quantitative analysis is beyond the scope of this
review, but in general, they argue that species with short
but highly predictable seasonal events (e.g. breeding
seasons) rely mostly on photoperiod because this cue
should be sufficient; in fact, it might be beneficial for such
species to ignore inhibitory environmental factors
because the narrow seasonal window confers limited
opportunities. On the other hand, non-photoperiodic
cues probably provide useful information to species that
inhabit seasonal environments with more year-to-year
variability and a longer seasonal window. Thus, as the
certainty of the seasonal event decreases, the importance
of photoperiod, timers and clocks decreases, whereas that
of non-photoperiodic, supplementary cues increases.
These predictions have been tested in three subspecies
of white-crowned sparrows (Zonotrichia leucophrys).
Z. l. gambelli breed in Alaska with a short but
highly predictable breeding season; Z. l. oriantha and
Z. l. pugetensisbreed in the temperate latitudeswith longer
breeding seasons of more variable onset and offset.
Supporting Wingfield et al.’s (1992) view, ambient
temperature modifies photoperiodic responses of
prolactin and gonadal development in Z. l. oriantha and
Z. l. pugetensis but not in Z. l. gambelli (Wingfield et al.
1996, 1997, 2003; Maney et al. 1999).

Tropical species also might be expected to rely more
heavily on non-photoperiodic cues given the minimal
changes in day length in their natural habitat. Two
populations of equatorial rufous-collared sparrows
(Zonotrichia capensis) living 25 km apart at the same
latitude breed seasonally and out of phase with each
other even though the amplitude of the annual day
length cycle is only approximately 3 min (Moore et al.
2005). Few studies have investigated the non-photo-
periodic cues that might regulate seasonality in the
tropics, but food intake and other food-related cues are
probably important (Hau et al. 2000; Scheuerlein &
Gwinner 2002). Surprisingly, some tropical birds can
respond to small changes in photoperiod in the
laboratory (African stonechats, Saxicola torquata
axillaries: Gwinner 2003; spotted antbird, Hylophylax
n. naevioides: Hau et al. 1998); a 17 min increase in
photoperiod is sufficient to stimulate some gonadal
growth in the spotted antbird (Hau et al. 1998).
Whether or not these species attend to day length in the
wild is unknown (Gwinner 2003). Recently, it has been
suggested that equatorial birds time seasonal events by
tracking seasonal changes in daytime light intensity
during the dry and rainy seasons; African stonechats
maintained in a constant 12.5L photoperiod synchro-
nize their reproductive and moult rhythms to 10-month
cycles of light intensity (Gwinner 2003). Notably, both
light intensity (Bentley et al. 1998b) and small changes
in photoperiod (Dawson 2007) can affect the day
Phil. Trans. R. Soc. B (2008)
length perception of European starlings, a temperate
avian species, indicating that these phenomena are not
restricted to equatorial species.

Some individuals of photoperiodic rodent species do
not express the typical winter phenotype upon transfer
to short day lengths (Prendergast et al. 2001), but such
photo-non-responders may undergo gonadal involu-
tion if short days are combined with low temperatures
and/or food restriction (Desjardins & Lopez 1983;
Prendergast et al. 2001). Thus, the reliance on non-
photoperiodic cues can vary intraspecifically. In this
case, it is interesting to note that these cues are
necessary for the response itself rather than the timing
of the response.

Most studies do not explicitly assess whether non-
photoperiodic cues act by directly driving or suppres-
sing expression of the trait (‘masking’) or instead by
altering an underlying timekeeping mechanism; in
general, the results are more in line with the former
possibility. This issue has been addressed in a recent
field study of African stonechats in which provision of
supplemental food advanced the initial breeding season
without changing the onsets of the post-nuptial moult
or of the following breeding season (Scheuerlein &
Gwinner 2002). This result suggests that the food-
induced advance did not perturb the circannual clock,
although it is possible that other uncontrolled zeitge-
bers (i.e. photoperiod) might have compensated for the
advance prior to the onset of later seasonal changes.
Although most non-photoperiodic cues probably act by
masking, at least one (extended intervals of exposure to
low ambient temperatures) appears to phase shift the
circannual body mass and reproductive rhythms of
golden-mantled ground squirrels (Mrosovsky 1980).

Jacobs & Wingfield (2000) have proposed a ‘finite
state machine’ model to predict the impact of
environmental signals and their dependence on the
state of the organism, determined by a finite number of
inputs and outputs. The model emphasizes that
individual cues such as day length may be sufficient in
some circumstances, but in others they combine with
temperature and food availability signals to affect
seasonally appropriate responses. Laboratory-based
scientists would do well to take seriously their caution
that ‘isolating a single cue and presenting it to the
organism may result in responses not normally
expressed in the field’ (p. 45).

Wild animals almost certainly attend to multiple
environmental cues. At sites with considerable year-
to-year variability in the onset of seasonally favourable
conditions, cues such as food availability and soil
temperature can fine-tune annual rhythms. Perhaps
photoperiod acts to grossly time seasonal changes by
triggering, resetting and entraining interval timers
and circannual clocks, while other environmental
cues adjust precise rhythm onsets each year by a
masking mechanism.
3. PHOTOPERIODIC TIME MEASUREMENT
(a) Models

In 1936, Erwin Bünning suggested that plants use the
circadian timekeeping system to measure day length
(for review see Saunders 2005). He proposed the
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existence of a circadian-controlled photo-inducible
phase; a sufficiently long day length would illuminate
this phase and trigger a long-day response. In this
scheme, light both entrains and illuminates the photo-
inducible phase for photoperiodic time measurement
(PTM). Colin Pittendrigh later extended this ‘external
coincidence’ PTM model and proposed an alternative
‘internal coincidence’ or dual oscillator model. The
latter postulates two circadian oscillators: one acceler-
ated by light and synchronized to dawn (morning
oscillator, M), and the other decelerated by light
and synchronized to dusk (evening oscillator, E). As
day length changes, the changing phase relation
between the two oscillators encodes seasonal time.
Several variations of these models have been developed
more recently to account for findings in insects (see
Vaz Nunes & Saunders 1999).

Several unnatural photoperiod treatments have been
used to test the circadian basis for PTM. Animals
housed in a short photoperiod but given a brief light
pulse during the dark portion of the light/dark cycle
(scotophase) respond as though they were housed in a
long photoperiod, even though the total duration of light
provided falls far below the critical day length (Follett &
Sharp 1969; Hoffmann 1982b; Underwood & Hyde
1990). In Syrian hamsters, two 1 s light pulses
administered daily 14 h apart maintain the reproductive
system in its long day mode (Earnest & Turek 1983),
whereas 11 h of continuous light exposure sustains the
short-day reproductive phenotype (Elliott 1976). Thus,
PTM in these cases is not a simple quantitative measure
of the hours of light, hours of darkness or the ratio of
light to darkness.

While the skeleton photoperiods described above
suggest that the circadian system is used for PTM, they
do not rule out the use of other non-circadian timing
mechanisms. Nanda–Hamner, Bunsow and bi-stability
experiments provide the best evidence for circadian
involvement in PTM (Vaz Nunes & Saunders 1999).
The Nanda–Hamner protocol, also referred to as
resonance photocycles, has been used extensively (see
also Elliott 1976). In such studies, groups of animals
are exposed to photocycles with the same duration
photophase (e.g. 6L) followed by varying durations of
darkness (e.g. 18, 30, 42 and 54 h). Animals display a
short-day response if the period of the total photocycle
(TZ light plus darkness) is a multiple of 24 h, whereas
those in non-24 h T cycles display a long-day response.
These results are compatible with a circadian
mechanism in which light in the non-24 h photocycles
falls during the postulated photo-inductive phase every
few cycles or alters the phase relation between morning
and evening circadian oscillators. Circadian involve-
ment in PTM has been implicated in insects (Vaz
Nunes & Saunders 1999), fishes (Baggerman 1972;
Bromage et al. 1990), reptiles (Underwood & Hyde
1990), birds (Hamner 1963, 1964; Follett & Sharp
1969) and mammals (Elliott et al. 1972; Almeida &
Lincoln 1982; Nelson et al. 1982) and is believed to be
ubiquitous among birds and mammals. In insects,
reliance on the circadian system for PTM is more
variable, with some species using an hourglass
mechanism (Vaz Nunes & Saunders 1999). Evidence
in other insects is conflicting and depends on the type
Phil. Trans. R. Soc. B (2008)
of test given or even the ambient temperature during
the test. Nonetheless, with notable exceptions, the
circadian system is implicated in PTM in the majority
of insects tested.

Recent experiments in European starlings have
questioned the validity of the external coincidence
model. Starlings maintained in 18L photophases of
different light intensities do not exhibit the same
photoperiodic response; lower light intensities are
interpreted as a less stimulatory photoperiod (less
than 18L, but greater than the critical day length) as
determined by the rate of photostimulation of testicular
development and onset of photorefractoriness (Bentley
et al. 1998b). This appears to contradict the external
coincidence model of PTM; if detectable light illumi-
nates the same proportion of the photo-inductive
phase, then the same long-day response should ensue.
Yet as the authors point out, differing light intensities
differentially affect the underlying circadian oscillator,
which could alter timing of the photo-inducible phase.
Thus, even though all birds were maintained in 18L,
the lower light intensities may have resulted in a later
photo-inductive phase and thus less overlap with light.
Similarly, differing light intensities could affect the
phase relation between morning and evening oscillators
of an internal coincidence model via differing entrain-
ment strengths.

(b) Melatonin

Only in mammals has the physiological basis for PTM
been elucidated. An intact pineal gland is necessary for
seasonal responses to photoperiod; pinealectomy
prevents seasonal responses in most interval-timing
species and in the majority of cases results in a
persistent expression of the long-day phenotype
(Goldman 2001). The indolamine, melatonin, is
produced in the pineal during the night by the rhythmic
activity of the rate-limiting enzyme N-acetyltransferase
(NAT); this rhythm is controlled by a light-entrainable
circadian pacemaker in the hypothalamus, the supra-
chiasmatic nucleus (SCN; Schwartz et al. 2001). A
multi-synaptic pathway from the SCN communicates
lighting information to the pineal gland (Moore 1996;
Perreau-Lenz et al. 2003); the paraventricular nucleus
(PVN) of the hypothalamus receives extensive SCN
projections, and PVN efferents, including some to pre-
ganglionic neurons of the sympathetic nervous system,
relay to post-ganglionic neurons that ultimately innerv-
ate the pinealocytes. The SCN exhibits endogenous
circadian rhythms that are photoperiod dependent in
pinealectomized animals (Sumová & Illnerová 1996;
Jacob et al. 1997). In the Syrian hamster and rat SCN,
rhythms of photosensitivity (Sumová et al. 1995;
Vuillez et al. 1996), electrical activity (Mrugala et al.
2000; Schaap et al. 2003) and gene expression (see
Schwartz et al. 2001 and de la Iglesia et al. 2004 for
references) display intervals of high activity that expand
and contract in concert with changes in the ambient
photophase and scotophase. Light, by both entraining
the circadian pacemaker in the SCN and suppressing
NATactivity in the pineal, restricts melatonin secretion
to the scotophase. The contraction of the melatonin
signal during short summer nights and its expansion in
long winter nights provides an accurate endocrine
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representation of night length. Indeed, exogenous

administration of short and long duration melatonin
infusions to pinealectomized mammals induces the

summer and winter phenotypes, respectively (Bittman

et al. 1983; Carter & Goldman 1983a,b). The circadian
basis for PTM is thus realized by its role in the

generation of a hormonal signal proportional to night
length. The induction of the summer/winter phenotype

by exotic lighting schedules (resonance and night-
interruption protocols) can now be referred to their

effects on melatonin secretion (Illnerová 1991).

Although the duration of nightly melatonin is
sufficient to mimic photoperiodic responses, gonadal

development can be attenuated in pinealectomized
Siberian hamsters infused with melatonin for only 1 h

per day, provided the hormone is administered just

before or at the onset of the scotophase (Gunduz &
Stetson 2001a,b). This raises the possibility that long

duration melatonin infusions induce short-day
responses because they overlap with a phase of target

tissue sensitivity to melatonin. This view is compatible
with the contention that the phase of melatonin

sensitivity is entrained by the pattern of endogenous

melatonin secretion (Stetson & Watson-Whitmyre
1986; Pitrosky & Pévet 1997). However, these studies

infused supraphysiological doses of melatonin and the
effects on the reproductive axis were less robust than

those obtained with long duration melatonin infusions

within the physiological range. Importantly, the
putative phase of melatonin sensitivity in pinealecto-

mized hamsters (around the onset of the scotophase)
would correspond to a time of low endogenous

melatonin secretion (Shaw & Goldman 1995;
Goldman et al. 1984). At present, the evidence is

insufficient to invalidate the current melatonin duration

hypothesis for PTM.
Because light pulses independently phase shift the

evening onset and morning offset of pineal NAT
activity, the search for the dual M and E oscillators of

the ‘internal coincidence’ model has focused on the

SCN. There is some evidence to suggest that the SCN
is composed of two oscillating components differen-

tially affected by changes in the antecedent photoperiod
(Sumová & Illnerová 1998; Jagota et al. 2000;

Hazlerigg et al. 2005) and independently shifted by
zeitgebers in a phase-dependent manner (Jagota et al.
2000). Several authors have proposed that M and E

might be represented by the differently phased
transcription of SCN ‘clock’ genes, the cyclic

expression of which are thought to underlie the
autoregulatory feedback loops that constitute the core

of the circadian oscillatory machinery (Daan et al.
2001; see also Hastings & Herzog 2004 for a current
review of circadian clock genes). Data on Period 1 (Per1)

and Per2 expression patterns of mutant mice in
different photoperiods suggest that the two genes

might be anchored to morning and evening, respect-

ively (Steinlechner et al. 2002). It is not known if
photoperiodic effects are a property of individual SCN

cells, with their activities compressed and decom-
pressed, or instead emerge from intercellular

interactions, with the cells assuming variable phase
relations as a function of day length. Recent analyses
Phil. Trans. R. Soc. B (2008)
hint that the latter may be the case (Schaap et al. 2003;
Rohling et al. 2006).

The duration of nocturnal melatonin secretion also
entrains circannual clocks. In both golden-mantled
ground squirrels and Suffolk sheep (Ovies aries),
pinealectomy prevents entrainment to annual photo-
periodic regimens (Woodfill et al. 1991; Hiebert et al.
2000), and melatonin administration phase shifts and
entrains circannual reproductive rhythms in pine-
alectomized ground squirrels (Zucker 2001) and
sheep (Woodfill et al. 1991), respectively. In sheep,
long duration infusions during the summer result in the
most reliable entrainment compared to melatonin
profiles mimicking other seasons, and winter infusions
are ineffective (Woodfill et al. 1994; Barrell et al. 2000).
The winter melatonin profile, although neither necess-
ary nor sufficient for entrainment of circannual
rhythms of reproduction in ewes, is probably the
short-day physiological signal that regulates the
duration of the breeding season (Malpaux et al. 1988;
Malpaux & Karsch 1990).

(c) Physiological basis of PTM in non-mammalian

vertebrates

Much of the research into PTM in non-mammalian
vertebrates has focused on whether the roles of the pineal
gland and melatonin elaborated for mammals are also
characteristic of other vertebrates, but the results
obtained often differ depending upon the species tested
(see Mayer et al. 1997). The pineal gland of many non-
mammalian vertebrates contains both photoreceptors
and a circadian pacemaker (Underwood & Goldman
1987); it thereby has direct access to day length and
circadian information, placing it in an ideal position for
PTM. As in mammals, the daily pineal and/or plasma
melatonin profile of reptiles and birds is entrained by the
light/dark cycle with peak values occurring during the
scotophase, and in some species, changes in day length
have been shown to alter the waveform (duration,
amplitude or phase; Underwood & Goldman 1987;
Mayer et al. 1997 and references therein). Cultured
pineal glands from house sparrows (Passer domesticus)
housed in either long or short day lengths maintain their
differing durations of melatonin secretion for several
cycles under constant darkness (Brandstätter et al.2000),
indicating that the house sparrow pineal itself is capable
of storing a photoperiodic ‘memory’, at least for a
few cycles.

The pineal gland and melatonin play a significant role
in regulating the reproductive axis of at least some snakes
and lizards. In the chequered water snake (Natrix
piscator), pinealectomy is antigonadal during the autumn
testicular recrudescence phase, but progonadal during
the winter and spring regression and inactive phases,
respectively (Haldar & Pandey 1989). Constant release
melatonin implants, as well as both morning and evening
melatonin injections, administered to pineal-intact water
snakes decrease testicular size at all phases of the annual
reproductive cycle except when testes are already fully
regressed (Haldar & Pandey 1988). In the iguanid lizard
(Anolis carolinensis), pinealectomy stimulates gonadal
growth at certain times of year, and subcutaneous
melatonin implants block these progonadal effects
(Underwood 1985a).
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It is not known if these effects of melatonin involve
the transduction of photoperiodic cues. Although
melatonin secretion in non-mammalian vertebrates is
restricted to the night, there is some question whether
melatonin duration conveys day length information. In
Anolis, the phase, rather than the duration or
amplitude, of the melatonin signal correlates with
seasonal responses in various nightbreak, T cycle and
resonance photocycles (Hyde & Underwood 1993).
Whether phase differences mediate seasonal changes
have not been tested. In the ruin lizard (Podarcis sicula),
the amplitude of the melatonin signal differs in long
and short days, but again, a causal relation between the
amplitude of melatonin secretion and seasonal charac-
teristics has not been established (Bertolucci et al.
2002; Bertolucci et al. 2003).

In some ectothermic species, temperature alters the
amplitude of the daily melatonin rhythm (iguanid
lizard: Menaker & Wisner 1983; diamondback water
snake, Nerodia rhombifera: Tilden & Hutchinson 1993;
box turtle, Terrapene carolina triunguis: Vivien-Roels
et al. 1988) suggesting that the daily rhythm in
circulating melatonin may also integrate seasonal
temperature cues (Vivien-Roels 1985). In the iguanid
lizard, temperature cycles (approx. 9 h at 208C, approx.
15 h at 328C in constant dim light) entrain the daily
pineal melatonin rhythm, with peak concentrations
occurring during the cold phase (Underwood 1985b).
In fact, when these lizards are exposed to ‘cold days’
and ‘warm nights’ (208C during photophase, 328C
during scotophase), the melatonin profile entrains to
the temperature cycle with peak values occurring in the
light. Post-hibernation courtship behaviours of male
red-sided garter snakes (Thamnophis sirtalis parietalis)
are thought to be regulated by the characteristic
environmental temperature changes of winter and
spring (Hawley & Aleksiuk 1975; Crews 1990).
Pinealectomy in the autumn, but not spring, eliminates
courtship behaviours in the majority of males
(Mendonca et al. 1996a,b). Pinealectomized males
that do not court females exhibit a disrupted daily
melatonin profile, whereas those that continue to court
have normal daily melatonin rhythms (Mendonca et al.
1996a,b). These correlative data suggest that a normal
daily rhythm of melatonin in the autumn is necessary to
trigger springtime courtship behaviours; in some
individuals, however, extra-pineal sources of melatonin
may be sufficient to maintain this daily rhythm.

In birds, the effects of pinealectomy and melatonin
administration are more varied, in part because tissues
other than the pineal, mainly the eyes, contribute to
melatonin concentrations in the general circulation
(Underwood & Goldman 1987). Results in a few species,
however, have led to the view that neither the pineal gland
nor circulating melatonin plays a role in photoperiodic
regulation of the reproductive axis. Blinded and pine-
alectomized American tree sparrows (Spizella arborea)
continue to display seasonal gonadal cycles in response to
changes in photoperiod (Wilson 1991). In the Japanese
quail (Coturnix coturnix japonica), melatonin injections
that extend the nocturnal melatonin profile do not mimic
short-day suppressive effects on gonadal growth (Juss
et al.1993). A recent investigation, however, has revived a
possible role for melatonin in photoperiodic regulation of
Phil. Trans. R. Soc. B (2008)
reproduction in Japanese quail via control of gonado-
trophin-inhibitory hormone (GnIH; Ubuka et al. 2005),
a hypothalamic peptide known to suppress pituitary
luteinizing hormone (LH) secretion (Tsutsui et al. 2000;
Osugi et al. 2004) and male gonadal development
(Ubuka et al. 2006) when administered exogenously.
GnIH mRNA and protein content in the diencephalon of
Japanese quail increase after three weeks of short-day
exposure (Ubuka et al. 2005). Pinealectomy combined
with bilateral ocular enucleation, which markedly
decreases plasma and neural melatonin, decreases
GnIH mRNA and protein content, whereas melatonin
implants restore these levels in a dose-dependent fashion.
The results of Juss et al. (1993), however, suggest that
altered melatonin secretion alone is insufficient to drive
seasonal alterationsof gonadal function in Japanesequail.
It also remains possible that the effects of melatonin on
GnIH represent pharmacological actions with a role for
endogenous melatonin yet to be demonstrated.

In addition to being species specific, a photoperiodic
role for the avian melatonin rhythm may be trait
specific. Pinealectomy prevents the long day-induced
increase in nesting behaviour of male ring doves
(Streptopelia risoria; McDonald 1982). In castrated
European starlings, constant release melatonin
implants prevent photorefractory-induced changes in
the immune system (Bentley et al. 1998a) and long day-
induced increases in the high vocal centre (HVc), a
brain nucleus important for birdsong (Bentley et al.
1999). Again, these effects may be of pharmacological
rather than physiological significance. To our knowl-
edge, long-term melatonin infusions that mimic the
endogenous secretory profile have not yet been
conducted in either birds or reptiles.

A pineal- and melatonin-independent mechanism of
PTM and its subsequent transduction has been
proposed for Japanese quail, via local regulation of
thyroid hormone in the medial basal hypothalamus
(MBH; Yasuo et al. 2006). The MBH has long been
proposed to regulate photoperiodic responses of the
reproductive system. Immediate early gene expression is
induced within this area after exposure to a single long
day (Meddle & Follett 1995, 1997). Lesions within the
MBH block photoperiodic responses of Japanese quail
(Sharp & Follett 1969), and electrical stimulation
induces LH secretion (Konishi et al. 1987) and testicular
growth (Ohta et al. 1984). Photoperiodic cues may act
directly on the MBH via deep brain photoreceptors
within the infundibular nucleus (Oliver & Bayle 1982;
Silver et al. 1988). Selective daily illumination of the
MBH for 16 h per day stimulates gonadal growth in quail
housed under 10L conditions (Ohta et al. 1984). Type 2
iodothyronine deiodinase gene expression in the MBH is
elevated under long compared to short day lengths
(Yoshimura et al. 2003). This enzyme, which converts
thyroxine (T4) to 3,5,30-triiodothyronine (T3), impli-
cates local changes in thyroid hormone concentrations in
the photoperiodic stimulation of the testes. Lending
support to this idea, intracerebroventricular (ICV)
infusions of T3 induce gonadal growth in quail housed
in a short day length, whereas infusions of iopanoic
acid, a type 2 iodothyronine deiodinase inhibitor,
attenuate gonadal growth in long day lengths
(Yoshimura et al. 2003). Interestingly, MBH mRNA
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levels of type 3 iodothyronine deiodinase, an enzyme that
degrades both T3 and T4, are decreased under long
compared with short day lengths, a photoperiodic
pattern opposite to that of type 2 iodothyronine
deiodinase (Yasuo et al. 2005).

Thyroid hormones (Vriend 1985; Dawson 1998;
Wilson & Reinert 2000; Watanabe et al. 2004; Revel
et al. 2006b; Freeman et al. 2007) and the MBH/
premammillary bodies (Maywood & Hastings 1995;
Malpaux et al. 1998; Lewis et al. 2002) have also been
implicated in the transduction of day length infor-
mation in several other birds and mammals, and
melatonin has been shown to regulate MBH type 2
iodothyronine deiodinase expression in several rodents
(Watanabe et al. 2004; Revel et al. 2006b; Yasuo et al.
2007). Thus, a role for thyroid hormones within the
MBH may be an evolutionarily conserved photo-
periodic mechanism in birds and mammals, directly
regulated by light impinging on deep brain and possibly
retinal photoreceptors in the former and indirectly by
light affecting the duration of nocturnal melatonin
secretion in the latter.

It is important to note that the precise role for thyroid
hormones in seasonality remains uncertain. In some
species, the hormones appear to act downstream of
photoperiodic transduction. Thyroidectomy prevents
the development of refractoriness to unchanging photo-
periods in sheep (Moenter et al. 1991; Parkinson &
Follett 1994) and the transition from the breeding to the
non-breeding condition in red deer (Cervus elaphus)
maintained innatural day lengths (Shi & Barrell 1992). In
sheep, the effect of thyroid hormones on refractoriness
also appears to be mediated in the MBH/premammillary
region (Anderson et al. 2003). In European starlings,
different experimental procedures have shown that
thyroidectomy can prevent both the photoperiodic
responses (Dawson 1993) and the development of
refractoriness (Goldsmith & Nicholls 1984). The full
suite of seasonal responses (photoinduction and photo-
refractoriness) can be restored in thyroidectomized
American tree sparrows by icv infusions of thyroid
hormones (Wilson & Reinert 2000). At least in starlings,
thyroid hormones appear to act permissively (Bentley
et al. 1997a), involving changes in hypothalamic GnRH
synthesis and/or secretion (Dawson et al. 2001, 2002),
possibly mediated by nerve growth factor (Bentley et al.
1997b). The direction of thyroid hormone action on
photorefractoriness, however, may not be consistent
across all species; thyroidectomy hastens the onset of
gonadal recrudescence in short day-housed Siberian
hamsters (Prendergast et al. 2002a; see also Dawson &
Thapliyal 2001).

(d) Other factors implicated in photoperiodic

transduction

Thyroid hormones are not the only hypothalamically
controlled factors involved in phenotypic changes to
photoperiod. In Japanese quail, transforming growth
factor a has been implicated in photoperiodic stimu-
lation of the reproductive axis and appears to act
through a separate signalling mechanism from that of
type 2 iodothyronine deiodinase (Takagi et al. 2007).
The search for additional neural substrates involved in
the transduction of day length information is underway
Phil. Trans. R. Soc. B (2008)
and recent investigations have uncovered novel hypo-
thalamic candidates.

The recently discovered hypothalamic peptide,
kisspeptin, which stimulates gonadotrophin secretion,
is regulated by photoperiod in the arcuate and
anteroventral periventricular nuclei of Siberian ham-
sters and in the arcuate nucleus of Syrian hamsters
(Revel et al. 2006a; Greives et al. 2007). In sheep, the
levels of kisspeptin expression in the arcuate nucleus
are altered according to season (Smith et al. 2007).
Photoperiodic differences in hypothalamic kisspeptin
expression in male Syrian hamsters persist in short-day
hamsters given testosterone implants, but are blocked
by pinealectomy, indicating that these effects are not
the result of changes in gonadal hormone secretion but
more likely reflect changes in the duration of nocturnal
melatonin secretion (Revel et al. 2006a). Exogenous
administration of kisspeptin stimulates LH secretion in
short-day-housed Siberian hamsters and testosterone
secretion and testis growth in short-day-housed Syrian
hamsters (Revel et al. 2006a; Greives et al. 2007),
probably by direct actions on GnRH neurons (for
reviews see Navarro et al. 2007; Smith & Clarke 2007).
Kisspeptin also appears to convey feeding-related
information to the reproductive axis (Castellano et al.
2005), suggesting that this peptide integrates repro-
ductive inputs from various environmental stimuli.

Other studies point to the dorsal medial posterior
arcuate nucleus and the ependymal layer as candidate
sites involved in photoperiodic regulation of body mass
and/or reproduction in Siberian hamsters. Transcrip-
tion of several genes within the dorsal medial posterior
arcuate nucleus (VGF, histamine H3 receptor and
several retinoic acid related genes) and the ependymal
layer (cellular retinoic acid-binding protein 1,
G-protein-coupled orphan receptor 50, nestin, type 2
iodothyronine deiodinase and type 3 iodothyronine
deiodinase) is regulated by photoperiod (Barrett et al.
2005, 2006; Watanabe et al. 2004, 2007; Ross et al.
2005). Changes in the expression of VGF, histamine
H3 receptor and cellular retinoic acid-binding protein
2 within the dorsal medial posterior arcuate nucleus
occur before any detectable changes in body mass or
gonadal size, raising the possibility that these genes play
a role in the induction of photoperiodic changes in
behaviour and physiology (Ross et al. 2005).
4. ON THE LOCATION OF INTERVAL TIMERS AND
CIRCANNUAL CLOCKS
The neural circuitry that mediates different seasonal
traits remains largely unspecified. The search for
biological substrates of annual timekeeping mechanisms
has been largely restricted to mammals and focused on
neural structures that might logically function as targets
of melatonin action. In fact, the distribution of tissues
that exhibit melatonin binding and receptor expression
is highly species specific; the pars tuberalis (PT) of the
pituitary gland is thought to be the only melatonin
target tissue common to all mammals (Bittman 1993;
Morgan et al. 1994). Melatonin implants directed at
various targets (including the anterior hypothalamus,
SCN, nucleus reuniens, paraventricular nucleus of the
thalamus or MBH) in sheep, Siberian hamsters or
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white-footed mice induce seasonal changes in various
traits (Glass & Lynch 1982; Dowell & Lynch 1987;
Badura & Goldman 1992; Lincoln & Maeda 1992;
Malpaux et al. 1998; Freeman & Zucker 2001).
Although these studies provide evidence that melatonin
can act at multiple structures to effect seasonal changes,
they do not specify the precise role of the hormone at
each site.

(a) Multiple sites for timers and clocks

Long duration daily melatonin infusions via micro-
dialysis to the SCN, paraventricular nucleus of the
thalamus or the nucleus reuniens prevents gonadal
development of juvenile hamsters housed in constant
light (Badura & Goldman 1992). Melatonin implants
directed at these same structures of adult pine-
alectomized Siberian hamsters each first induced
gonadal regression, followed some weeks later by
gonadal recrudescence indicative of refractoriness to
melatonin (Freeman & Zucker 2001). Even though
each of these individual tissues was rendered
refractory to melatonin, subsequent subcutaneous
long duration melatonin infusions induced a second
testicular regression. This result establishes that the
induction of refractoriness in a single tissue is not
associated with refractoriness in all other melatonin
targets. The interval timing mechanism that culmi-
nates in refractoriness to melatonin may be a feature
common to multiple melatonin target tissues. These
results and those of Badura & Goldman (1992) point
to a highly redundant system for seasonal control of
gonadal function. Alternatively, these brain nuclei
may regulate different aspects of the melatonin-based
photoperiodic reproductive response (Teubner &
Freeman 2007). Melatonin signalling to the nucleus
reuniens in Siberian hamsters appears to be critical
for photostimulation by long day lengths and
development of a photoperiodic history. Interrupting
the melatonin signal in the SCN, however, only
affects the photoperiodic history response, whereas
the same treatment in the paraventricular nucleus of
the thalamus has no effect on photostimulation or
photoperiodic history.

Whether seasonal rhythms in several different
seasonal traits (e.g. food intake, sex behaviour,
aggressive encounters, body mass) are selectively
regulated by one or more melatonin targets are
presently unknown. Separation of function and
multiple seasonal mechanisms is inferred from a
study of garden warblers (Sylvia borin), in which at
least two circannual clocks control the annual rhythms
of gonadal function and moulting; under constant
conditions, free-running circannual rhythms of testis
size and moult dissociate and oscillate with different
periods (Gwinner & Dorka 1976). Analogously, T3
injections delay the onset of gonadal, but not somatic,
recrudescence in Siberian hamsters (Freeman et al.
2007). In hamsters and sheep, melatonin differentially
controls seasonal variations in prolactin and gonado-
trophin secretion through its actions on the PT and
MBH, respectively. In the Syrian hamster, MBH
lesions that block photoperiodic responses in gonadal
function do not compromise short day-induced
decreases in prolactin secretion (Maywood & Hastings
Phil. Trans. R. Soc. B (2008)
1995; Maywood et al. 1996; Lewis et al. 2002).

Hypothalamo–pituitary surgical disconnection in
Soay rams disrupts photoperiodic changes in food

intake, body weight and metabolic hormones,
but seasonal changes in prolactin secretion persist

(Lincoln & Clarke 1994; Lincoln et al. 2001). Thus, an
annual timekeeping mechanism that suffices to control

prolactin is critically dependent on the pituitary,
whereas other seasonal traits are mediated by neural

tissues, probably within the hypothalamus and
thalamus (Lincoln & Clarke 1997).

The PT, situated on the pituitary stalk between the
median eminence of the hypothalamus and the pars

distalis of the pituitary gland, is currently the best

understood annual timekeeping tissue and probably
contains an interval timer (in hamsters) and a circannual

clock (in sheep) that regulates seasonal prolactin
secretion. Soay rams whose pituitary is surgically

isolated from direct hypothalamic inputs continue to
show long-term seasonal changes (i.e. refractoriness)

and circannual cycles of prolactin secretion under
constant photoperiod exposure (Lincoln & Clarke

1997, 2000; Lincoln et al. 2003a, 2006). This tissue
provides a powerful model system for elucidating the

melatonin decoding and annual timekeeping
mechanisms that contribute to the seasonal regulation

of prolactin secretion.
Melatonin is believed to act directly on PT cells to

regulate photoperiodic changes in prolactin secretion
(Lincoln & Clarke 1994); high melatonin receptor

binding is seen in the PT of several species, whereas
little to no binding is found in the pars distalis of adult

sheep, Siberian hamsters, Syrian hamsters, rats and
mice (Bittman & Weaver 1990; Morgan et al. 1994).

Current evidence suggests that melatonin-sensitive

cells in the PT secrete a prolactin releasing factor
(‘tuberalin’) that acts in a paracrine fashion to stimulate

lactotrophs in the pars distalis (reviewed in Johnston
2004). Melatonin binds to melatonin 1a (MT1)

receptors coupled to the Gi class of G proteins in PT
cells, inhibiting adenylyl cyclase activity and cyclic

AMP production and somehow altering the synthesis
and/or release of tuberalin. The chemical identity of

tuberalin remains unknown.
Prolactin mRNA and protein content of the pars

distalis decrease in short-day-housed hamsters but
rebound to approximate long-day levels in short-day

refractory animals, indicating neuroendocrine refrac-
tory state of these cells (Bockers et al. 1997; Johnston

et al. 2003). The endocrine cells of the PT of Soay
sheep and Siberian hamsters also become refractory as

assessed by the a-glycoprotein hormone subunit
(Bockers et al. 1997; Lincoln et al. 2005). In PT cells

from refractory Siberian hamsters, melatonin receptor

kinetics and the cAMP response to melatonin continue
to reflect the photosensitive phenotype (Weaver et al.
1991), indicating that the substrate of the refractory
state must lie downstream from melatonin signal

transduction. On the other hand, PT cell cultures
from refractory Syrian hamsters can induce long-day

release of prolactin from pars distalis co-cultures, so the
refractory state in PT must lie upstream of tuberalin

secretion (Johnston et al. 2003).
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(b) Circadian substrates beyond PTM

Several investigations have questioned whether the
circadian system might be a part of the annual time-
keeping mechanism, in addition to and downstream from
its well-known role in PTM. At least in the golden-
mantled ground squirrel, the data indicate that the
circadian pacemaker in the SCN is not the location of the
circannual clock. SCN lesions that induce circadian
arrhythmicity of wheel-running behaviour do not disrupt
circannual rhythms in body mass, hibernation and
reproduction in the majority of squirrels (Zucker et al.
1983; Ruby et al. 1998). Circannual rhythms were
disrupted in a subset of squirrels, but this effect did not
correlate with lesion size or location (Zucker et al. 1983;
Dark et al. 1985; Ruby et al. 1998). Interestingly, when
lesioned animals were housed in the cold, a significant
number hibernated indefinitely, displaying torpor bouts
throughout the 2.5 year experiment, in contrast to the
normal hibernation season in this species, which is
approximately five to six months (Ruby et al. 1996).
Thus the SCN, which remains functional at low ambient
temperatures (Kilduff et al. 1990; Ruby & Heller 1996),
may play a role in regulating the duration of the
hibernation season, but it is not the site of an
indispensable circannual clock.

Additional data argue against a role for the circadian
system in setting the duration of the interval timer or
the oscillation of the circannual clock. Circannual
timing is not achieved by ‘counting’ circadian cycles,
the so-called frequency-demultiplication model
(Gwinner 1973). According to this hypothesis, animals
entrained to light dark cycles of various circadian
periods (T cycles) should have different circannual
periods with respect to real time; animals housed in
short T cycles (e.g. 23 h) will experience a greater
number of circadian cycles in a given interval and
should have shorter circannual cycles than those
housed in longer T cycles. Yet the circannual periods
of golden-mantled ground squirrels and European
starlings entrained to different T cycles (squirrels
TZ23, 24 or 25 h; starlings TZ22 or 24 h) are
indistinguishable (Gwinner 1981b; Carmichael &
Zucker 1986). The frequency demultiplication
hypothesis also failed to gain support in Syrian
hamsters, an interval-timing species. In the free-
running tau mutant Syrian hamster, the shortened
circadian period (20 h in homozygotes) does not alter
the duration of the seasonal interval timer relative to
that of free-running wild-type hamsters with approxi-
mately a 24 h circadian period (Lucas et al. 2000).

Whereas the circadian system does not appear to
underlie the annual timekeeping mechanism of timers
and clocks, the data regarding its role in decoding
melatonin duration are conflicting. On one hand are
studies in pinealectomized Syrian hamsters that do
not support this possibility; melatonin infusions in
such animals are effective at all phases of the
circadian cycle (Maywood et al. 1990) and at
frequencies outside the limits of entrainment of the
circadian locomotor activity rhythm (once every 20 h;
Grosse et al. 1993). Infusions provided once every 16
or 28 h do not result in the winter phenotype,
demonstrating the limits to non-circadian intervals
that are effective (Grosse et al. 1993). Lesions of the
Phil. Trans. R. Soc. B (2008)
SCN have been reported to prevent photoperiodic
responses to melatonin infusions in Siberian hamsters
(Bartness et al. 1991), but similar findings have not
been obtained in SCN-ablated mink (Mustela vision),
spotted skunks (Spilogale putorius latifrons) or Syrian
hamsters (Bittman et al. 1979; Berria et al. 1988;
Bonnefond et al. 1990; Maywood et al. 1990).
Curiously, the SCN may play some role in decoding
a series of melatonin signals in Syrian hamsters; SCN-
intact, but not SCN-ablated, pinealectomized Syrian
hamsters are capable of responding to long duration
melatonin infusions presented in a random fashion
(Grosse & Hastings 1996). The relevance of such
random infusions for understanding normal function
is not clear.

On the other hand, a few studies of tau mutant
Syrian hamsters hint at a possible circadian involve-
ment in decoding melatonin signal duration. Mela-
tonin infusions presented to this mutant at 16 h (but
not at 24 h) intervals induce the short day phenotype
(Stirland et al. 1996). This 4 h shift in the range of
effective melatonin frequencies from that of wild-type
hamsters correlates well with the shortened circadian
period of the tau mutant. Tau mutant hamsters also
have shorter critical day lengths and more robust
short-day responses to an intermediate duration
melatonin infusion (6.67 h) than do wild-type
hamsters; this circadian mutation does affect the
threshold duration of day length and melatonin
required for short-day responses (Stirland et al.
1995; Shimomura et al. 1997). Perhaps decoding
the melatonin signal, while not using a circadian
mechanism, must resonate temporally with under-
lying daily physiological processes that are regulated
by the circadian system. Alternatively, reading the
melatonin signal may involve extra-SCN circadian
oscillators within the target tissues.

(c) Circadian ‘clock’ genes and the seasons

Whereas prior investigations had suggested that
extra-SCN circadian oscillators might exist, only
recently have a variety of cultured brain regions
(Abe et al. 2002), peripheral tissues (including the
pituitary gland: Yamazaki et al. 2000; Abe et al. 2002)
and even immortalized fibroblasts (Balsalobre et al.
1998) been shown to exhibit circadian oscillations in
the expression of circadian clock genes. These in vitro
oscillations are sustained (Granados-Fuentes et al.
2004; Yoo et al. 2004), although overall amplitude
may dampen as the rhythms of individual cells
desynchronize (Nagoshi et al. 2004; Welsh et al.
2004). The physiological significance of the cycling of
such genes in extra-SCN tissues is not known, but
they may be autonomous ‘slave’ oscillators whose
phase is set by the ‘master’ oscillator within the SCN.
Conceivably, such a multi-site circadian network
could allow for the independent adjustment of
multiple rhythm phases to each other and to the
ambient photoperiod; hypothetically, extra-SCN
tissues might co-opt the expression of circadian
clock genes for a ‘calendar’ mechanism that decodes
melatonin signal duration (Lincoln et al. 2003b).

Such genes are rhythmically expressed in the PT
(Lincoln et al. 2002) and at least the Per1 rhythm is
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melatonin dependent. The rhythm is absent in
pinealectomized Syrian hamsters (Messager et al.
2001), as well as in inbred strains of mice that do not
synthesize melatonin (Sun et al. 1997) or lack
functional melatonin 1a receptors (von Gall et al.
2002). Peaks of Per1 and Per2 mRNA in the early
photophase appear phase-locked to the suppression
of melatonin secretion by light onset at dawn. Acute
melatonin administration inhibits Per1 mRNA
expression while chronic treatments appear to
sensitize it to some other stimulatory factor in the
PT (Morgan et al. 1998; Messager et al. 1999, 2000;
von Gall et al. 2002). In contrast, melatonin
stimulates Cryptochrome 1 (Cry1) mRNA expression
(Dardente et al. 2003; Johnston et al. 2006), and
peaks of Cry1 and Cry2 mRNA in the early
scotophase appear phase locked to the activation of
melatonin synthesis by light offset at dusk. Thus, a
differential phase relation between Per and Cry levels
in the PT could act to transduce day length and
melatonin duration into seasonal changes in prolactin
secretion (see Lincoln et al. 2003b). However,
immunoreactive PER and CRY protein levels have
yet to be measured and a causal link between clock
gene expression and tuberalin activity has not been
demonstrated.

Researchers have also questioned whether clock
gene expression contributes to the annual timekeeping
mechanism itself, specifically whether their phase
relations in refractory animals would no longer reflect
the ambient photoperiod. Yet mRNA rhythms of such
genes continue to faithfully represent the ambient
photoperiod and melatonin profile in short-day refrac-
tory Syrian hamsters and long-day refractory sheep
(Johnston et al. 2003; Lincoln et al. 2005).
5. A POSSIBLE SYNTHESIS: ARE CIRCANNUAL
CLOCKS CONSTRUCTED FROM INTERVAL
TIMERS?
Seasonal regulation of prolactin secretion appears to be
an ancient system (Lincoln 2000) highly conserved
between species using either an interval timer (hamsters)
or circannual clock (sheep; Lincoln et al. 2003a).
Goldman et al. (2004) proposed that the circannual
clock is an interval timer whose refractoriness is
spontaneously broken, i.e. the stimulus for resetting the
interval timer in a circannual species is endogenous and
no longer relies on the environment. Interval timing
species such as the Siberian hamster only display
successive cycles when exposed to alternating short and
long photoperiods because they require short days to
trigger the timer and long days to reset it. Circannual
species may have evolved a completely endogenous
mechanism for triggering and resetting the interval timer.

This concept may help account for species that
express endogenous annual cycles but only under a
specific set of photoperiodic conditions (‘permissive
photoperiods’). European starlings (and possibly
European hamsters, Cricetus cricetus; see Canguilhem
et al. 1988a,b; Canguilhem 1989) display circannual
cycles when housed in 12L, but not in other
photoperiods (Schwab 1976; Dawson 2007). In sika
deer, 12L is the only photoperiod in which the
Phil. Trans. R. Soc. B (2008)
circannual rhythm in antler growth is not expressed
(Goss 1969b; Goss 1984). Rams exhibit a robust
circannual rhythm of prolactin secretion under long
photoperiods, but rhythmicity is weak or absent in
short photoperiods (Howles et al. 1982; Langford et al.
1987; Lincoln & Clarke 2000). In contrast, obligate
circannual species such as the golden-mantled ground
squirrel display circannual cycles under all photo-
periodic conditions tested, including constant light and
constant darkness (Pengelley & Asmundson 1970;
Zucker & Boshes 1982; Zucker et al. 1983). Permissive
photoperiods may reveal the sequential activation of
interval timers that is otherwise suppressed. Circannual
cycles in European starlings and European hamsters
might result from sequential interpretation of 12L first
as a long day and then as a short day (Gwinner 2003),
thereby triggering and resetting the interval timer.
Turkish hamsters (Mesocricetus brandti ) could provide
an interesting opportunity to demonstrate circannual
cycles in a species traditionally considered to use an
interval timer. Because a 20L photoperiod can both
initiate seasonal gonadal regression and break refrac-
toriness to short day lengths in Turkish hamsters
(Hong et al. 1986; Hong & Stetson 1988), circannual
rhythmicity might be predicted in 20L if the interval
timer is both triggered and reset by this day length.

In theory, there are many ways in which seasonally
appropriate adjustments can be assured, but the limited
data available have been interpreted as evidence for just
two conceptual mechanisms, despite the probable
independent evolution of seasonality several times
(Farner 1985) and the assertion that natural selection
selects for outcomes, not mechanisms (Mayr 1982). The
rigid classification of timing mechanisms as either timers
or clocks may be physiologically misleading despite its
heuristic value. It seems probable that the timekeeping
mechanism of the ‘circannual’ golden-mantled ground
squirrel is more similar to that of the ‘interval-timing’
Syrian hamster than to that of ‘circannual’ birds or even
ungulates. In addition to the existence of true timers and
clocks in some animals, other species may rely on
mechanisms that lie on a continuum between timer-like
and clock-like classifications.
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Tima & P. Pévet), pp. 187–209. Amsterdam, The

Netherlands: Elsevier.
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