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OBJECTIVE—The Gullah-speaking African American popula-
tion from the Sea Islands of South Carolina is characterized by a
low degree of European admixture and high rates of type 2
diabetes and diabetic complications. Affected relative pairs with
type 2 diabetes were recruited through the Sea Islands Genetic
African American Registry (Project SuGAR).

RESEARCH DESIGN AND METHODS—We conducted a
genome-wide linkage scan, genotyping 5,974 single nucleotide
polymorphisms in 471 affected subjects and 50 unaffected rela-
tives from 197 pedigrees. Data were analyzed using a multipoint
engine for rapid likelihood inference and ordered subsets analy-
ses (OSAs) for age at type 2 diabetes diagnosis, waist circumfer-
ence, waist-to-hip ratio, and BMI. We searched for heterogeneity
and interactions using a conditional logistic regression likelihood
approach.

RESULTS—Linkage peaks on chromosome 14 at 123-124 cM
were detected for type 2 diabetes (logarithm of odds [LOD] 2.10)
and for the subset with later age at type 2 diabetes diagnosis
(maximum LOD 4.05). Two linkage peaks on chromosome 7 were
detected at 44—45 cM for type 2 diabetes (LOD 1.18) and at 78 cM
for type 2 diabetes (LOD 1.64) and the subset with earlier age at
type 2 diabetes diagnosis (maximum LOD 3.93). The chromo-
some 14 locus and a peak on 7p at 29.5 cM were identified as
important in the multilocus model. Other regions that provided
modest evidence for linkage included chromosome 1 at 167.5 cM
(LOD 1.51) and chromosome 3 at 121.0 cM (LOD 1.61).

CONCLUSIONS—This study revealed a novel type 2 diabetes
locus in an African American population on 14q that appears to
reduce age of disease onset and confirmed two loci on chromo-
some 7. Diabetes 58:260-267, 2009
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here is little information available regarding

genes contributing to type 2 diabetes in the

indigenous or diasporic populations of sub-Sa-

haran Africa. To date, there have been only three
reported linkage scans for type 2 diabetes in populations
of African descent: two in African Americans (1,2) and one
in African families from Ghana and Nigeria (3). Although
there have been several recent genome-wide association
studies (GWASs) conducted in primarily European popu-
lations, none has been reported for African Americans,
and relatively few diabetes genes have been found in
African American populations using candidate gene ap-
proaches (4). Consequently, we have few insights into
genetic susceptibility factors in African Americans con-
tributing to greater type 2 diabetes prevalence.

To better understand the genetics of type 2 diabetes in
African Americans, we have studied Gullah-speaking Afri-
can Americans living in coastal communities and on the
sea islands of South Carolina. The ancestors of the Gullahs
derived from the “grain coast” of West Africa and were
forcibly imported because their rice-growing expertise
was critical for the culture of this cash crop on low
country plantations (5). Gullah-speaking African Ameri-
cans have high rates of type 2 diabetes, characterized by
relatively high rates of diabetic complications, early age of
onset, and a high relative risk to siblings, \g, of type 2
diabetes at 3.3 (6). The diet is uniformly rich in animal fats,
suggesting diabetes and obesity susceptibility alleles may
more predictably produce a corresponding phenotype.
Although there has been some emigration to northern
American cities, there has been little immigration of
African Americans born elsewhere into the Sea Islands.
Studies of admixture indicate that the Gullah people are
the most homogeneous population of African descent in
the U.S., with Caucasian admixture below 3.5% (6-8), the
lowest documented for any African American population.
Analyses of mitochondrial and Y-chromosomal markers
show that the genetic distance between the Gullah and
Sierra Leonean tribes is measurably shorter than other
African American populations (8-10).

Given the relatively low European admixture, diet high
in animal fats, and increased prevalence and familial
clustering of diabetes, studies of families from this popu-
lation were anticipated to provide unique insights into
predominantly “African”-derived diabetes loci. Thus, we
initiated the Sea Islands Genetic African American Regis-
try (Project SuGAR). Type 2 diabetes—affected sibling,
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half-sibling, or parent-child pairs were recruited and as-
sessed for medical, anthropometrical, and metabolic phe-
notypes in affected and nonaffected family members to
conduct a whole-genome linkage scan. This scan is the
first to be conducted for type 2 diabetes in African
Americans using the higher resolution single nucleotide
polymorphism (SNP) linkage panel.

RESEARCH DESIGN AND METHODS

This study was conducted under Institutional Review Board approval from the
Medical University of South Carolina, the University of Alabama at Birming-
ham (UAB), and Wake Forest University School of Medicine and adhered to
the tenets of the Declaration of Helsinki. Project SUGAR enlisted medical
clinics, churches, and established organizations on the Sea Islands to aid in
identifying patients with type 2 diabetes who belonged to families with
multiple affected members (6). Inclusion criteria included self-described
African American race, at least one type 2 diabetes—affected sibling pair, no
more than one of the parents affected with type 2 diabetes, and at least one
parent still living. Probands and their parents were all born and raised in the
South Carolina low country.

Project SUGAR assessed medical, anthropometrical, and metabolic infor-

mation on all consenting affected and nonaffected family members. The data
were collected based on a multipage questionnaire, detailed family history and
medical history, standardized blood pressures, physical examination, body
dimensions, estimation of percent body fat, and laboratory testing. Weights
were determined using electronic calibrated scales (Detecto, Cleveland, OH)
at 8:00-10:00 A.m. after voiding and before breakfast. Heights were measured
with a portable Harpenden statiometer. BMI (kg/m?) was calculated. Standard
arm, waist, hip, and thigh circumferences were recorded using a tension-
controlled tape measure (Novel Products, Rockton, IL). Laboratory testing
included complete blood count, electrolytes, creatinine/blood urea nitrogen,
liver function tests, A1C, fasting lipid panel (cholesterol, triglycerides, and
HDL), circulating islet cell antibodies (if diabetic), fasting glucose, and urine
albumin-to-creatinine ratio. Diabetes was confirmed in cases using fasting
glucose measures and/or need for diabetes medications coupled with review
of medical records. All participating nondiabetic family members were
evaluated with an oral glucose tolerance test or by fasting glucose. The criteria
established by the National Diabetes Data Group as modified by the Expert
Committee of the American Diabetes Association were used to define subjects
as diabetic, impaired fasting glucose, impaired glucose tolerance, and normal
glucose tolerance (NGT). The current genome scan involved a total of 521
individuals, including 471 affected subjects and 50 unaffected relatives who
were recruited from 197 families. We included all phenotyped nondiabetic
relatives in the ascertained families to assist in generating accurate phase (and
hence identity by descent [IBD]) information. The mean pedigree size was 2.6
relatives, and pedigree sizes ranged from 2 to 7 individuals. One hundred
twenty-one pedigrees contained 2 genotyped individuals, 48 pedigrees con-
tained 3 genotyped individuals, and 28 pedigrees contained more than 3
genotyped individuals. For the purposes of linkage analyses, phenotype
categories were defined as affected (type 2 diabetes), unaffected (NGT), and
unknown (used for ungenotyped relatives required to connect genotyped
individuals).
Genotyping. DNA was extracted from 20-40 ml venous blood using a
standardized DNA isolation kit (Gentra Systems, Minneapolis, MN). The
Project SUGAR registry includes 70 sibpairs plus available parents totaling 162
participants who were part of the Genetics of Non-Insulin Dependent Diabetes
(GENNID) study. For the GENNID subjects, blood was sent to the central
laboratory for lymphocyte transformation, and DNA extraction was per-
formed by Coriell Cell Repositories.

A genome-wide scan was completed by the Center for Inherited Disease
Research (CIDR) using Illumina HumanLinkage Panel IVb. A total of 5974
SNPs were successfully genotyped, with a mean spacing of 0.65 cM (518 kb).
The missing data rate was 0.26% (17,434 missing genotypes/6,626,408 total
genotypes), and after correction or removal of likely misspecified relation-
ships as determined using the genetic data (see below), the Mendelian
consistency rate was 99.99% (535 events/6,292,704 study genotypes). The blind
duplicate reproducibility rate was 99.998% (7 events/321,713 paired geno-
types). Thirteen SNPs were removed from analyses because they violated
Hardy-Weinberg assumptions (P < 0.0001).

Primary linkage analyses. Each pedigree was examined for consistency of
familial relationships using the Pedigree Relationship Statistical Test (11).
When the self-reported familial relationships were strongly inconsistent with
the genotypic data for that pedigree, then 1) the pedigree was modified when
the IBD statistics suggested a very clear alternative, or 2) a minimal set of
genotypic data was converted to missing. A total of 46 pedigrees (23.7%)
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exhibited probable misspecified familial relationships and were modified as
above, with 43.3% of these changes from a full sibling to half-sibling. After
modifying all family relationships that appeared to be inconsistent with the
genome scan data, there were the following affected relationship pairs: 152 full
sibpairs, 55 half sibpairs, 43 parent-offspring pairs, 6 grandparent-grandchild
pairs, 65 avuncular pairs, 18 first-cousin pairs, 16 half-avuncular pairs, and 2
half first-cousin pairs. Each marker was examined for Mendelian inconsisten-
cies using PedCheck (12), and sporadic problem genotypes were converted to
missing. Allele frequency estimates were computed using the maximum
likelihood methods implemented in the software Recode (D. Weeks, personal
communication). Map distances were based on the Rutger’s genetic map (13).
Where two SNPs displayed linkage disequilibrium values of 1* > 0.3, we
removed one SNP of the pair; 230 SNPs were removed for this reason.

The data were analyzed using the nonparametric linkage (NPL),,;, statistic

and multipoint engine for rapid likelihood inference (MERLIN) (14). All
results presented in the tables and figures represent multipoint analyses. We
computed NPL regression analyses using the NPL,,, . statistics outputted
from MERLIN, which we modified (15-17). The models without covariates test
for excess allele sharing and are asymptotically equivalent to the MERLIN
results.
Multilocus tests of heterogeneity and genome X genome interaction
analyses. The NPL regression approach uses a conditional logistic regres-
sion likelihood with the family-specific NPL statistic at the locus of interest
as the independent variable (15-17). The primary advantage of this
regression-based approach is that it allows for the simultaneous evaluation
of multiple loci and their interactions. That is, because NPL regression is
aregression analysis, it allows for multiple loci to be in the model and tests
for linkage at one locus adjusted for evidence for linkage at the other loci
in the model. In this sense, it accounts for genetic heterogeneity. The
multilocus model building was completed using stepwise conditional
logistic regression allowing all autosomal loci in the genome at 0.5 cM
spacing to be candidates to enter the model. Model building proceeded
using standard stepwise regression methods with entry and exit criteria at
P = 0.05. In stepwise methods, a locus enters the model if the locus
provides evidence for linkage while adjusting for the evidence for linkage
at all other loci in the model. Once a locus enters the model, all loci are
tested for linkage, conditional on the other loci in the model. If on
inclusion of a new locus, a previously significant locus is no longer
significant, the latter is removed.

To test for an interaction, or epistasis, between two loci (genome by

genome interaction analyses), we included the two loci and their statistical
interaction into the model and computed the significance of the coefficient
for the interaction term using a 1-degree of freedom test. As an exploratory
tool, we computed all such two-locus interactions at every 2.5 cM across
the entire genome. The shift to every 2.5 cM is due to the number of pairs
of loci. Simulations show that little is lost in linkage analyses with this
increased grain. Although a large number of comparisons were made, P
values <10~ ° were considered indicative of epistasis between loci in these
exploratory tests. A Bonferroni correction was applied for the number of
comparisons made; however, this exploratory analysis should be viewed
with caution given the large number of tests computed.
Ordered subsets linkage analysis. A series of ordered subset analyses
(OSAs) (18) were computed to investigate the influence of the mean age of
type 2 diabetes diagnosis of affected family members, BMI, waist circumfer-
ence, and waist-to-hip ratio (WHR) on linkage analyses. Analyses were
conducted ranking the family level means for these parameters in ascending,
and then in descending, order. For waist and WHR, we used the residuals
computed from a linear model that predicts the trait as a function of age, sex,
and their interaction as the trait of interest for the OSA. The statistical
significance of the change in the logarithm of odds (LOD) score was evaluated
by a permutation test under the null hypothesis that the ranking of the
covariate is independent of the LOD score of the family on the target
chromosome. Thus, the families were randomly permuted with respect to the
covariate ranking, and an analysis proceeded as above for each permutation
of these data. The resulting empirical distribution of the change in the LOD
scores yielded a chromosome-wide P value (AP).

NPL regression and OSA methods are described in greater detail in the
online appendix of Sale et al. (2).

RESULTS

Population characteristics. The clinical and phenotypic
characteristics for the diabetes-affected individuals who
were genotyped as part of the genome-wide scan are
summarized in Table 1. The genotyped population was
76.8% female, probably reflecting participation bias. The
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TABLE 1

Characteristics of diabetic African American subjects

Trait n Mean Median SD Range
Age at study entry (years) 466 55.2 55.7 13.7 14.3-101
Age at diabetes diagnosis (years) 449 43.4 44.0 14.1 4-85
Duration of diabetes (years) 449 11.7 9.0 9.9 0-52
A1C (%) 401 9.0 8.8 2.2 4.1-20.6
BMI (kg/m?) 436 33.6 32.8 7.2 17.3-53.5
Waist circumference (cm) 423 105.7 104.0 15.4 75-155
Waist-to-hip ratio 420 0.91 0.91 0.08 0.64-1.30

diabetes-affected individuals are obese (median BMI 32.8
kg/m?) and have relatively poor glucose control (median
AIC 8.8%, normal range 4.5-5.7). The median age at
diagnosis (43 = 15 years) was relatively young; 8 years
earlier than the first published study of type 2 diabetes in
African Americans, which had a mean age of onset of 51
(1) and comparable with the mean age of the families
described by Sale et al. (2) of 41 = 12 years.

Primary linkage results. Genome-wide linkage results
are shown in Fig. 1, and all LOD scores >1 from linkage
analyses are presented in Table 2. Six regions of the
genome yielded LOD scores >1. Chromosome 14 at

123.6 cM had the strongest evidence for linkage with
type 2 diabetes (LOD 2.10; Fig. 2). Other regions that
provided modest evidence for linkage included chromo-
some 1 at 167.5 cM (LOD 1.51), chromosome 3 at 121.0
cM (LOD 1.61), and three peaks on chromosome 7 at
29.5 cM (LOD 1.15), 44.5 cM (LOD 1.18), and 78.0 cM
(LOD 1.64).

Multilocus conditional logistic regression results.
The results of the multilocus NPL regression model are
also shown in Table 2. Two chromosomal regions (one on
14q and one on 7p) were retained in the model (using P <
0.05 as our threshold) after adjusting for the evidence for
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FIG. 1. Genome-wide linkage, NPL, results for type 2 diabetes.
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TABLE 2

Linkage results with LOD > 1.0 and multilocus conditional logistic regression results

Multilocus conditional
logistic regression

Position Primary linkage analysis analysis
Chromosome (cM) Flanking markers LOD LOD-1 interval P value LOD LOD-1 interval
1 167.5 rs1319898/rs869714 1.51 155.0-181.5 0.00842
3 121.0 rs1317244/rs12736 1.61 113.5-127.5 0.0064
7 29.5 1s726395/rs1029718 1.15 7.0-96.5 0.0212 1.62% 23.0-55.0
7 44.5 rs1404282/rs1860759 1.18 7.5-60.5 0.0195
7 78.0 rs1105305/rs517258 1.64 64.5-88.5 0.00598
14 123.6 rs1132975/rs988131 2.10 117.1-tel 0.00189 2.52% 118.39-tel

*The evidence for linkage on 7p is adjusted for linkage on 14q, and similarly, the 14q locus is adjusted for linkage at 7p.

linkage at the other locus. Comparisons of the linkage and
multilocus conditional logistic regression results for chro-
mosomes 14 and 7 are shown in Figs. 2 and 3, respectively.
Conditional on the model containing these two loci, no
other regions of the genome provided evidence of linkage.
Genome X genome interaction analyses. Four regions
provided evidence for an interaction between two chro-
mosomal regions (supplementary Table 1, available in an
online appendix at http://dx.doi.org/10.2337/db08-0198).
The interaction two-dimensional response surface is
shown in supplementary Fig. 1, available in the online
appendix. The P values for these four instances of epi-
static loci were considered robust relative to the number
of comparisons per chromosome (corrected P value range
0.005-0.02). None of the regions identified in these analy-
ses showed single-locus evidence for linkage. These anal-
yses can be considered exploratory.
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OSA. The OSA found differential evidence for linkage
depending on age at type 2 diabetes diagnosis and BMI,
but no increased evidence for linkage was detected sub-
setting on age-adjusted measures of waist or WHR. Re-
gions displaying an increase in the LOD score equivalent to
a chromosome-wide P value (AP) of <0.05 are shown in
Table 3. Three of the four strongest results were seen with
age at diagnosis. Subset analysis on the 105 pedigrees
(54%) with the earliest age of diagnosis increased the
chromosome 7p LOD score from 1.64 to 3.93 (AP = 0.0052)
at 78 cM, as shown in Fig. 3. In contrast, subsetting on the
120 pedigrees (61%) with the latest age at type 2 diabetes
diagnosis increased the chromosome 14 LOD score from
2.06 to 4.05 (AP = 0.0069) at 123.1 cM (Fig. 2). A third
region on chromosome 18 at 91.0 cM also showed evi-
dence for linkage in the subset of pedigrees with earliest
age at type 2 diabetes diagnosis (AP = 0.0074 for the

0 0 t——— i i i =

Map position (cM)

FIG. 2. Chromosome 14 results using the primary linkage approach (solid line), the multilocus conditional logistic regression model (dashed line),
and the OSA analysis with later age at type 2 diabetes diagnosis (T2DM) (long dashed line).
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FIG. 3. Chromosome 7 results using the primary linkage approach (solid line), the multilocus conditional logistic regression model (dashed line),
and the OSA analysis with earlier age at type 2 diabetes (T2DM) diagnosis (long dashed line).

change in LOD score from 0.09 to 3.81), although the
number of pedigrees linked at this region was consider-
ably fewer (16%, 32 pedigrees). Similarly, 50 pedigrees
(26%) with the lowest mean BMI values showed increased
evidence of linkage on chromosome 17 at 5.5 cM (AP =
0.0049; LOD score change 0.09 to 2.78). It is also interest-
ing to note that the borderline increased evidence for
linkage at 120 cM on chromosome 3 in the subset contain-

ing the 73% of pedigrees with earlier mean age at diagnosis
(AP = 0.042) overlaps with the chromosome 3 single locus
result at 121 cM (Table 2).

DISCUSSION

The history of the Gullah-speaking African American pop-
ulation has resulted in relatively low European admixture

TABLE 3
Ordered subset analyses (AP < 0.05) of age at diagnosis and BMI
Empirical
Entire P value Proportion
Linked Position sample Maximum Optimal Remaining for of
Chromosome subset Flanking markers (cM) LOD LOD subset families change pedigrees
Early age
3 diagnosis rs1512532/rs1398748  120.0 1.52 2.93 39.43 £ 8.19 56.00 =548  0.0419 0.73
4 High BMI  rs1456860/rs1450900 75.8 0.12 2.72 39.35 £3.70 30.56 = 3.14  0.0167 0.36
Early age
7 diagnosis rs1105305/rs517258 78.0 1.64 3.93 36.54 £ 7.70 52.40 = 6.00  0.0052 0.54
9 High BMI  rs994367/rs560764 53.0 0.02 2.30 39.47 £ 3.69 30.64 = 3.18 0.0149 0.35
Early age
9 diagnosis rs2026406/rs927632 71.5 0.54 1.84 37.92 £ 793 5381 £5.83 0.0321 0.62
Late age
9 diagnosis rs1819730/rs1407850  110.0 0 2.76 62.42 = 4.40 42.16 = 9.19  0.0486 0.09
12 High BMI  rs617022/rs1558776 15.0 0.62 2.84 37.08 £4.03 28.67 =239 0.0176 0.60
Late age
14 diagnosis rs1547350/rs6644 123.1 2.06 4.05 50.37 £ 6.40 33.74 =7.30 0.0069 0.61
16 Low BMI  rs870856/rs869048 131.1 0.07 1.95 26.07 = 1.75 35.05 =4.65  0.0247 0.15
17 Low BMI  rs12939286/rs11062 5.5 0.09 2.78 2743 £2.10 35.89 =4.38 0.0049 0.26
Early age
18 diagnosis rs1517162/rs565973 91.0 0.09 3.81 27.04 £6.48 4722 +=7.64 0.0074 0.16

Data are means *= SD.
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that, when coupled with a diet rich in saturated fats, has
produced high rates of type 2 diabetes. The first linkage
scan performed in this population using a high-density
SNP linkage panel has revealed a novel locus on 14q and
two suggestive loci on chromosome 7 that appear to act
independently and have stronger support in specific
subsets.

The highest linkage peak for type 2 diabetes was seen on
chromosome 14 at 123-124 cM (LOD 2.10), and this locus
also showed increased evidence for linkage in a subset
with later age at type 2 diabetes diagnosis (maximum LOD
4.05). This locus does not appear to have been reported
previously; any chromosome 14 linkages and significant
GWAS results for related phenotypes are more than 20 cM
proximal to this region. The traits linked at this locus
suggest that it may take some time to result in disease
development. There are few obvious diabetes candidate
genes under this peak, although this region does contain
AKT1, a mediator of insulin and IGF-I signaling (19,20).
One study of this gene in an Ashkenazi Jewish population
did not find an association with type 2 diabetes (21).

The type 2 diabetes linkage peak identified on chromo-
some 7 at 77.5 cM (LOD 1.64) overlapped with a locus for
earlier age at type 2 diabetes diagnosis (78.0 cM, maximum
LOD 3.93). Linkage with early age at type 2 diabetes
diagnosis has previously been reported at 62 cM in a
French population (22). Candidate genes under the LOD-1
intervals for the three chromosome 7 peaks in Table 2
include previously identified type 2 diabetes genes glucoki-
nase 1 (23), interleukin 6 (24), and growth factor receptor-
bound protein 10 (25,26) and IGF binding proteins
IGF2BP3, IGFBP1, and IGFBP3. The IGF pathway is now
suspected to play a role in diabetes because of observed
associations with IGF2BP2 (27-29).

The modest linkage peak on chromosome 1 at 167.5 cM
(LOD 1.51) is within the International Chromosome 1
Diabetes Genetics Consortium region (30), which includes
an African American population from Arkansas (31), and
is also close to the reported association with intergenic
SNP rs2501354 (28). There were no other major loci that
overlapped with prior type 2 diabetes linkage scans in
populations of African descent (1-3), possibly because of
the modest power of all African American linkage studies
to date, genetic heterogeneity, and/or differences in popu-
lation history, including ancestral origins and population
bottlenecks. Studies of mitochondrial and Y-chromosomal
markers have determined that the genetic distance be-
tween the Gullah and Sierra Leonean tribes (Mende,
Temne, etc.) is quite short and measurably shorter than
other African American populations (8-10); thus, study-
specific loci may represent ancestral differences between
the Gullah and the Ghanaian and Nigerian families of the
Africa America Diabetes Mellitus study (3). Interestingly,
the region of chromosome 10 containing the transcription
factor 7-like 2 (TCF7L2) gene—shown to be important in
populations with African ancestry (32-34)—did not pro-
duce evidence for linkage in this population.

Although GWASs have proven effective in identifying
novel type 2 diabetes genes in European populations,
association with CDKAL1 SNP rs7756992 was not success-
fully replicated in a West African population (35), and
“confirmed” diabetes genes— calpain 10, K™ inwardly rec-
tifying channel, subfamily J, member 11 (KCNJ11), perox-
isome proliferator-activated receptor-y (PPARG), and
hepatocyte nuclear factor 4o (HNF4A)—showed modest
or no association in our prior studies of a different African

DIABETES, VOL. 58, JANUARY 2009

American type 2 diabetic case-control population (32). A
recent study in the same African American case-control
population investigating type 2 diabetes loci identified
from GWASs of European populations confirmed that the
majority of these loci, with the exception of TCF7L2, do
not have a major contribution to type 2 diabetes risk in
African Americans (36). Currently, there are no published
reports of GWASs for type 2 diabetes in populations of
African descent, although it is highly likely that future
GWASSs of African and African American populations will
reveal novel type 2 diabetes susceptibility loci. In the
absence of African American GWAS data for type 2
diabetes at present, the current linkage study adds to our
knowledge of putative susceptibility-containing loci in this
high-risk population. Because of the lack of overlap be-
tween linkage peaks and GWAS loci for an increasing
number of disorders investigated using both approaches in
well-powered studies, speculation is increasing that link-
age peaks may represent regions containing both allelic
and genetic heterogeneity, i.e., multiple uncommon sus-
ceptibility variants in one or more genes. Thus, it is
plausible that linkage analyses may identify novel loci
containing multiple uncommon risk alleles of high pen-
etrance that may not be captured under current GWAS
SNP tagging approaches of common variants because
genotyping products are constructed to tag only common
alleles and capture lower levels of variation in African-
derived populations due to decreased linkage disequilib-
rium. However, if the few known type 2 diabetes linkage
loci in African Americans represent common alleles, they
may be detected using a GWAS approach. In contrast to
contemporary African populations, the relative homogene-
ity of ancestry and cultural factors such as diet in the
Project SuGAR population is anticipated to result in
increased expressivity of risk alleles, while still identifying
susceptibility loci relevant to African-derived populations.
Independent diabetes loci on chromosomes 14 and 7
warrant investigation in additional African American pop-
ulations and follow-up analyses in the Gullah-speaking
African American population.
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