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    I N T R O D U C T I O N 

 The CFTR is an ATP-gated chloride channel, whose 

malfunction leads to cystic fi brosis, the most common 

lethal genetic disease among Caucasians. Being a mem-

ber of the ATP-binding cassette (ABC) transporter su-

perfamily ( Riordan et al., 1989 ), CFTR consists of two 

membrane-spanning domains (MSD1 and MSD2) and 

two nucleotide-binding domains (NBDs; NBD1 and 

NBD2). Like other members of this family, two NBDs 

dimerize in a head-to-tail confi guration upon ATP bind-

ing, and these dimerized NBDs represent the open-

channel conformation of CFTR ( Vergani et al., 2005 ). 

Recently, we showed that ATP opens the channel by 

binding to the binding pocket formed by the Walker A 

sequence of NBD2 and the signature sequence of NBD1 

( Zhou et al., 2006 ). Under normal conditions, hydroly-

sis of this bound ATP closes the channel presumably by 

breaking the dimer apart (for review see  Chen and 

Hwang, 2008 ). 

 Although operationally CFTR can be classifi ed as a li-

gand-gated channel, unlike classical ligand-gated chan-

nels, CFTR ’ s ligand (ATP) is consumed during the 

gating cycle. ATP hydrolysis at NBD2 provides an input 
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of free energy so that CFTR ’ s gating is not a process in 

thermodynamic equilibrium ( Chen and Hwang, 2008 ). 

However, CFTR may work as a classical ligand-gated ion 

channel when ATP hydrolysis is abolished (either by 

mutations or by using nonhydrolyzable ATP analogues). 

In this case, binding and unbinding of the ligand gates 

the CFTR channel. Recently we found that the disease-

associated mutation G551D (the single – amino acid sub-

stitution of glycine to aspartate in the signature sequence 

of NBD1) abolishes the ATP-dependent gating of the 

channel ( Bompadre et al., 2007 ). The importance of 

the signature sequence is attested by how drastically the 

G551D mutation affects the gating of the channel and 

by the severity of the disease phenotype associated with 

this mutation, but little is known about its specifi c role 

in CFTR gating. Although the signature sequence is 

part of the ATP-binding pocket in a dimerized confi gu-

ration, the crystal structure of isolated NBD1 of CFTR 

shows that ATP binds to the Walker A region ( Lewis 

et al., 2004 ), and it is presumed that the signature se-

quence of the partner NBD may contact the bound ATP 
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hydryl reagent 2-aminoethyl methane thiosulfonate hy-

drobromide (MTSEA) abolished the effect of Cd 2+ , 

suggesting that Cd 2+  ions are coordinated by 551C/D 

and some other partner cysteine(s). Identifying the re-

sponsible cysteine residue(s) will provide molecular in-

sight into the gating mechanism of CFTR. 

 MATERIALS AND METHODS 

 Site-directed Mutagenesis and Cell Culture 
 Mutations were introduced into WT-CFTR, as described previ-
ously ( Bompadre et al., 2007 ), using a QuickChange XL kit (Agi-
lent Technologies) according to the manufacturer ’ s instructions. 
All mutations were confi rmed by sequencing (DNA core, Univer-
sity of Missouri-Columbia). The cDNA of WT or mutant CFTR 
was cotransfected with pEGFP-C3 (Clontech Laboratories, Inc.) 
to Chinese hamster ovary cells using Superfect transfection re-
agent (QIAGEN) according to the manufacturer ’ s instructions. 
Cells were used for patch clamp experiments at least 2 d after 
transfection. 

 Electrophysiological Experiments and Data Analysis 
 All data were recorded at room temperature (23 – 25 ° C) using an 
EPC10 patch clamp amplifi er (HEKA). Inside-out membrane 
patches were excised from the transfected cells and held at 
 � 50 mV. The currents were fi ltered at 100 Hz with a built-in four-
pole Bessel fi lter and digitized online at 500 Hz. A 50/60-Hz noise 
eliminator (Quest Scientifi c) was used to reduce 60-Hz noise. Cells 
were perfused with a bath solution containing (in mM): 145 NaCl, 
5 KCl, 2 MgCl 2 , 1 CaCl 2 , 5 glucose, 5 HEPES, and 20 sucrose (pH 
7.4 with NaOH). The pipette solution contained (in mM): 140 
NMDG-Cl, 2 MgCl 2 , 5 CaCl 2 , and 10 HEPES (pH 7.4 with NMDG). 
After establishing the inside-out confi guration, the patch was per-
fused with a standard perfusion solution containing (in mM): 150 
NMDG-Cl, 2 MgCl 2 , 10 EGTA, and 8 Tris (pH 7.4 with NMDG). 
The perfusion solution with the metal ions contained (in mM): 
150 NMDG-Cl, 2 MgCl 2 , and 8 Tris (pH 7.4 with  � 18 mM HEPES). 
Measurements of the steady-state mean current amplitude and the 
fi ts to the dose – response relationships were performed using Igor 
software (Wavemetrics). 

 Recordings with up to fi ve channel-opening steps were used for 
single-channel kinetic analysis. Mean open times were calculated 
using a program developed by L. Csanady ( Csanady, 2000 ), as de-
scribed previously ( Zhou et al., 2006 ). All averaged data are pre-
sented as mean  ±  SEM. 

 The Cd 2+  dose – response relationships were calculated as the ra-
tio between the steady-state current in the presence of different 
[Cd 2+ ] to the current under control conditions. For the G551D 
mutant, because it does not respond to ATP, we used the current 
in the absence of ATP (which is the same as in the presence of 
1 mM ATP) as control. For the G551C and S549C mutants, because 
they are ATP dependent, we used the current in the presence of 
1 mM ATP as control. The fold increase of the current in the pres-
ence of Cd 2+  was normalized to the maximal fold increase for each 
mutant (100  μ M for G551D, 10  μ M G551D, and 5  μ M for S549C). 

 Reagents 
 Mg-ATP was purchased from Sigma-Aldrich, PKA was purchased 
from Promega and Sigma-Aldrich, and MTSEA was purchased 
from Toronto Research Chemicals. 

 Online Supplemental Material 
 In the supplemental fi gures we show the comparison between 
the Cd 2+ -induced currents and the basal current (i.e., current 

molecule when the two NBDs approach each other to 

form a dimer ( Fig. 1 ).  

 Here, we found that  “ soft ”  metal ions such as Cd 2+  

and Zn 2+  can dramatically increase the activity of G551D-

CFTR with a micromolar-apparent affi nity. This effect 

of Cd 2+  was not seen with the wild-type (WT) channels 

or the corresponding mutation, G1349D, at the signa-

ture sequence of NBD2. The apparent affi nity for Cd 2+  

was further increased when glycine 551 was converted 

to cysteine, but the effect of Cd 2+  was mostly abolished 

when the G551 residue was substituted by an alanine. 

Engineering a cysteine residue at position 548 or 549, 

but not at 547, 552, and 553, also creates channels that 

can be effectively gated by Cd 2+ . These data strongly 

support the notion that, like in ATP-dependent gating 

of CFTR, the signature sequence of genetically modi-

fi ed NBD1 also plays a key role in mediating Cd 2+ -

dependent gating, presumably because the mutations 

craft a multi-dentate Cd 2+ -binding site. Consistent with 

this idea, pretreatment of the G551D-CFTR with the sul-

 Figure 1.   Schematic presentation of the interactions of ATP with 
key residues in the ATP-binding pocket of an NBD dimer. The 
crystal structure of  Escherichia coli  Malk NBD dimer (Protein Data 
Bank code  1Q12 ) was used to demonstrate these interactions. 
The ATP molecule is represented by the stick model. Selective 
residues are shown and represented by thin lines, including res-
idues of the signature sequence, the Walker A lysine, the D-loop 
aspartate, and the aromatic residue that strongly interacts with 
the adenine ring of ATP. These residues are colored by their atom 
types and labeled by their residue numbers as they appear in the 
amino acid sequence of  E. coli  Malk. The corresponding residues 
in CFTR are labeled in parentheses.   
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( Bompadre et al., 2007 ). A quick calculation gives us an 

opening rate of 0.010  ±  0.003 s  � 1  (from P o  =  �  o /( �  o + �  c ), 

where  �  o  is the open time of the channel,  �  c  = 1/r co  is 

the closed time of the channel, and r co  is the opening 

rate). Because 100  μ M Cd 2+  potentiates G551D activity 

by  � 20-fold, we estimate that the P o  of G551D-CFTR is 

0.08  ±  0.03 under this condition. From patches with 

fewer than fi ve simultaneous channel opening steps, we 

calculated the open time of G551D channels in the 

presence of 100  μ M Cd 2+  to be 2.4  ±  0.4 s ( n  = 10). Then 

the opening rate of G551D-CFTR in the presence of 

100  μ M Cd 2+  is  � 0.036  ±  0.015 s  � 1 , a near fourfold in-

crease (3.6  ±  1.8) of the opening rate of G551D-CFTR 

in the absence of Cd 2+ . 

 Although Cd 2+  increases the activity of G551D-CFTR, 

Cd 2+  shows little effect on G1349D-CFTR ( n  = 5) (not 

depicted), a mutation of the corresponding glycine resi-

due in the signature sequence of NBD2, indicating that 

this effect of Cd 2+  is specifi c for the glycine-to-aspartate 

mutation at NBD1. To ensure that the channels opened 

by Cd 2+  were indeed CFTR, we tested Cd 2+  in patches ex-

cised from nontransfected cells and did not observe any 

channel activation ( n  = 5). In addition, the channels 

opened by 200  μ M Cd 2+  could be inhibited by inhibitor-

172, a specifi c CFTR inhibitor that has been shown to 

modulate gating of WT-CFTR ( Ma et al., 2002 ;  Caci 

et al., 2008 ). As shown in  Fig. 3 B , the current induced by 

200  μ M Cd 2+  was nearly abolished by 5  μ M inh-172 (97.2  ±  

0.8% inhibition;  n  = 7). Thus, like ATP-dependent gat-

ing for WT-CFTR, activation of G551D mutant channels 

by Cd 2+  requires pre-phosphorylation of the channel by 

PKA, and the Cd 2+ -induced currents can be readily and 

reversibly inhibited by inh-172. Because the activation 

of G551D-CFTR channels by Cd 2+  is more effective than 

Zn 2+ , we focused our studies on this particular cation. 

in the absence of ATP) for all the tested mutants. The fi gures 
also point to the 548 – 551 amino acids as the critical region for 
mediating Cd 2+  effects when they are converted to cysteine. The 
online supplemental material is available at http://www.jgp
.org/cgi/content/full/jgp.200810049/DC1. 

 R E S U LT S 

 Cd 2+  Increases the Activity of G551D-CFTR 
 We studied the effect of different divalent cations, in-

cluding Cd 2+ , Ca 2+ , Ni 2+ , and Zn 2+ , on G551D-CFTR 

channels in excised inside-out membrane patches from 

transiently transfected Chinese hamster ovary cells. 

 Fig. 2 A  shows a real-time recording of G551D-CFTR 

channels in an excised patch that have been activated 

with 1 mM ATP and PKA (not depicted) before being 

exposed to different metal ions.  Application of 10  μ M 

Zn 2+  or 10  μ M Cd 2+  in the absence of ATP increased the 

channel activity by 5.0  ±  0.4-fold ( n  = 6) and 12.2  ±  1.2-

fold ( n  = 6), respectively, but neither 1 mM Ca 2+  nor 10  μ M 

Ni 2+  had signifi cant effects ( n  = 10). As a control, we ap-

plied the same metal ions to patches containing WT-

CFTR channels. None of these cations, when applied in 

the absence of ATP, had any effect on WT-CFTR ( n  = 10) 

( Fig. 2 B ). Because CFTR channels can only be opened 

by ATP after they have been phosphorylated by PKA, 

we tested whether the effect of Cd 2+  on G551D-CFTR is 

also phosphorylation dependent. We applied the same 

[Cd 2+ ] before and after PKA-dependent phosphory-

lation. As shown in  Fig. 3 A , Cd 2+  only increased the 

current of G551D-CFTR after the channels had been 

pre- phosphorylated by PKA ( n  = 5).  

 Previously, we estimated the P o  of G551D channels to 

be 100-fold smaller than the maximal P o  of WT chan-

nels,  � 0.004  ±  0.001 with a mean open time of 367  ±  42 ms 

 Figure 2.   Effect of different metal ions on 
G551D-CFTR and WT-CFTR currents. (A) 10  μ M 
Cd 2+  and 10  μ M Zn 2+  potentiate G551D-CFTR 
ATP-independent currents, but 1 mM Ca 2+  and 
10  μ M Ni 2+  have little effect on the currents. 
(B) WT-CFTR currents are not affected by any of 
these cations. Dashed lines in all fi gures repre-
sent the baseline.   
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The normalized dose – response relationships of Cd 2+  

for these two mutants are shown in  Fig. 4 (C and D) . For 

G551D-CFTR, 100  μ M Cd 2+  increases the current by 

21.38  ±  4.19-fold ( n  = 6), but the current response is not 

quite saturated. On the other hand, 10  μ M Cd 2+  already 

generates a maximal response for G551C-CFTR, with a 

maximal fold increase of 7.4  ±  0.3 ( n  = 5) compared 

with the currents generated by 1 mM ATP. Fitting the 

dose – response relationships with the Hill equation 

yields a K 1/2  of 14.6  ±  6.3  μ M and 3.29  ±  0.66  μ M for 

G551D and G551C, respectively. 

 To further test our hypothesis that the engineered as-

partate or cysteine at position 551 is directly involved in 

coordinating Cd 2+ , we mutated G551 to alanine, which 

Cd 2+  should not be able to bind effectively. Like the 

G551C mutant, G551A-CFTR remains responsive to 

ATP. However, the effect of Cd 2+  on G551A-CFTR is neg-

ligibly small compared with that of G551C-CFTR ( Fig. 5 A  

vs.  Fig. 4 B ).  This difference between G551A and G551C 

was quantified in  Fig. 5 B , where we compared the 

current generated by 1 mM ATP with the current ge-

nerated by 10  μ M Cd 2+  for these two mutants. Because 

the side chains of aspartate and cysteine, but not ala-

nine, are found in the multi-dentate coordinating ge-

ometries of metalloproteins that bind Cd 2+  ( Rulisek and 

Vondrasek, 1998 ), these results support the notion that 

Cd 2+  interacts directly with the side chain of engineered 

aspartate or cysteine at position 551 despite the differ-

ent apparent affi nities. 

 Cd 2+  Increases the Activity of Other Signature Sequence 
Mutants 
 To further probe the Cd 2+ -binding position and specifi c-

ity, we introduced a cysteine at different positions in the 

signature sequence of NBD1 (LSGGQ), as well as the 

two amino acids framing the signature sequence. Specif-

ically, we mutated amino acids T547, L548, S549, G551, 

Q552, and R553, one at a time, to cysteine. A representa-

tive S549C-CFTR current recording is shown in  Fig. 6 A .  

Cd 2+  elicited macroscopic current even at sub-micromolar 

[Cd 2+ ]. At a concentration as low as 5  μ M, Cd 2+  already 

induced a maximal response that is 4.6  ±  0.4-fold ( n  = 6) 

larger than the currents generated by 1 mM ATP. Fitting 

the dose – response relationship with the Hill equation 

yields a K 1/2  value of 2.4  ±  0.8  μ M ( Fig. 6 C ). 

 In contrast, 10  μ M Cd 2+  shows negligible effect on the 

T547C mutant ( Fig. 6 B ).  Fig. 6 D , in which the relative 

effi cacy of ATP (1 mM) versus Cd 2+  (10  μ M) is com-

pared, summarizes data for all these mutations in or 

around the signature sequence. It appears that when 

cysteine is engineered outside the signature sequence 

(i.e., T547C and R553C) or at the C-terminal end of the 

signature sequence (i.e., Q552C), ATP remains a much 

better ligand than Cd 2+  (e.g.,  Fig. 6 B ). However, for 

L548C, S549C, and G551C, the specifi city of the ligand 

is altered so that Cd 2+  becomes more effective at gating 

 Cd 2+  Is More Potent on G551C than on G551D 
 We considered two possible mechanisms for the effect 

of Cd 2+  on G551D-CFTR. First, Cd 2+  may directly inter-

act with the side chain of the aspartate at position 551 

and form a metal bridge between D551 and some other 

amino acids. Alternatively, the G551D mutation may in-

duce protein conformational changes, and these struc-

tural changes enable Cd 2+  to enhance the activity of 

G551D-CFTR. In this case, Cd 2+  may exert its effects by 

binding to somewhere else and opening the channel in 

a nonspecifi c manner. To differentiate these two possi-

bilities, we fi rst mutated the glycine at position 551 to 

cysteine. We reasoned that if Cd 2+  directly interacts with 

the side chain of the aspartate at 551, it will do so more 

effectively with a cysteine at that position because the 

thiol group of cysteines can better coordinate soft metal 

ions like Cd 2+  ( Rothberg et al., 2003 ).  Fig. 4  shows rep-

resentative traces of G551D (A) and G551C (B) in the 

presence of different [Cd 2+ ].  Note that 5  μ M Cd 2+  in-

duces a higher G551C-CFTR current than 1 mM ATP, 

despite that this mutation retains responsiveness to ATP. 

 Figure 3.   Functional characterization of the Cd 2+ -dependent ef-
fect in G551D-CFTR. (A) Activation of G551D-CFTR by Cd 2+  is 
phosphorylation dependent. Note that in the same patch, Cd 2+  
only increases the activity of G551D-CFTR after the channels are 
activated by PKA and ATP. (B) A CFTR-specifi c blocker, inh-172, 
can inhibit the G551D-CFTR current induced by 200  μ M Cd 2+ .   
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ing a high-affi nity binding site for Cd 2+ . To test this idea, 

we used the thiol-specifi c reagent MTSEA.  Fig. 7  shows a 

representative recording.  The G551D-CFTR channels 

were exposed to 1 mM MTSEA for a short period of time 

( < 1 min), and MTSEA was subsequently washed out. 

Cd 2+  no longer increased the channel activity after 

MTSEA pretreatment ( n  = 5). However, this effect of 

MTSEA can be reversed by 5 mM DTT. This result suggests 

that the binding partner of Cd 2+  is likely a cysteine resi-

due. To further test this hypothesis, we made a G551D-

CFTR construct with 16 out of the 18 endogenous 

cysteine residues replaced with serines (the 2 cysteine 

residues, C590 and C592, left unchanged are essential 

for protein expression). Cd 2+  can no longer activate this 

G551D/16-Cys – less channel (not depicted). We therefore 

conclude that Cd 2+  opens these CFTR mutants likely 

by forming a metal bridge between the introduced 

the channels than ATP. These results set apart amino ac-

ids 548 – 551 in the signature sequence in mediating the 

effect of Cd 2+ . It is interesting to note that S549 and 

G551 residues are involved in forming hydrogen bonds 

with the  � -phosphate of the bound ATP in several crystal 

structures of NBD dimers (e.g.,  Fig. 1 ) in the ABC trans-

porters ( Hopfner et al., 2000 ;  Smith et al., 2002 ;  Chen 

et al., 2003 ;  Zaitseva et al., 2005 ). The signifi cance of 

these overlapping regions of the signature sequence be-

tween ATP-dependent gating for WT-CFTR and Cd 2+ -

dependent gating of mutant channels is discussed below. 

 The Binding Partner of Cd 2+  Is Likely To Be 
a Cysteine Residue 
 The micromolar affi nity of Cd 2+  in activating G551C or 

S549C mutants raises the possibility that some endoge-

nous cysteine(s) or histidine(s) may participate in form-

 Figure 4.   Representative current traces of 
G551D-CFTR (A) and G551C-CFTR (B) in 
the presence of different [Cd 2+ ]. The Cd 2+  
dose – response relationships for G551D-
CFTR (C) and G551C-CFTR (D) were 
fi tted with the Hill equation, y = min + 
(max � min)/ [1+ (K 1/2 /[x]) n )] (smooth 
curves). The fold increase of the current 
in the presence of Cd 2+  was normalized to 
the maximal fold increase for each mutant 
(G551D: 21.38  ±  4.19-fold, 100  μ M Cd 2+ ; 
G551C: 7.4  ±  0.3, 10  μ M Cd 2+ ). G551D: 
K 1/2  = 14.6  ±  6.3  μ M and  n  = 1.03  ±  0.34; 
G551C: K 1/2  = 3.29  ±  0.66  μ M and  n  = 
1.89  ±  0.52.   

 Figure 5.   Comparison of Cd 2+  
and ATP-induced currents 
between G551A and G551C 
mutants. (A) Representative 
current trace of G551A-CFTR. 
Although G551A-CFTR re-
mains ATP dependent, Cd 2+  
fails to increase the activity 
of the channels. (B) The ratio 
of currents induced by 10  μ M 
Cd 2+  and those with 1 mM 
ATP for G551C-CFTR and 
G551A-CFTR.   
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SCHEME 1 

 Scheme 2, a more generalized scheme for ligand-gated 

channels, proposes that Cd 2+  can bind to both the open 

state and the closed state, but the Cd 2+ -bound channel 

assumes a more favorable gating transition for the open 

state than the ligand-free channel. 

 

SCHEME 2 

 The major difference between these two schemes is 

that Scheme 1 predicts an unaltered opening rate in 

the presence of Cd 2+ . As described above, the opening 

rate of G551D-CFTR is increased by Cd 2+ . For G551C-

CFTR, this effect of Cd 2+  on the opening rate likely also 

occurs. The open time for G551C-CFTR in the absence 

of ATP is 202.6  ±  29.6 ms ( n  = 3). In the presence of a 

saturating concentration of Cd 2+ , the open time, esti-

mated from the current relaxation upon removal of 

Cd 2+ , is increased to 1.58  ±  0.21 s ( n  = 7). This approxi-

mately eightfold increase of the open time can hardly 

cysteine/aspartate and the endogenous cysteine(s) that 

has yet to be identifi ed. 

 D I S C U S S I O N 

 Here, we show that micromolar concentrations of Cd 2+  

can dramatically increase the activity of G551D-CFTR, a 

disease-associated mutant, as well as G551C-CFTR, 

L548C, and S549C-CFTR, in the absence of ATP. We 

speculate that this effect of Cd 2+  is mediated by forming 

a metal ion bridge between the engineered aspartate or 

cysteine residue in the signature sequence of NBD1 

(LSGGQ) and the yet to be identifi ed cysteine residue(s) 

in another part of the CFTR protein. 

 Possible Kinetic Mechanism for the Action of Cd 2+  
 Before we discuss the possible biochemical/structural 

implications of our results, we will fi rst look into the 

possible kinetic mechanism for the action of Cd 2+ . 

It should be noted that this discussion on kinetics is 

meant to facilitate a better understanding of the action 

of Cd 2+  and by no means suggest a defi nitive kinetic 

mechanism for Cd 2+ , which will require extensive single-

channel studies. The simplest interpretation of Cd 2+ -de-

pendent activation of CFTR mutants shown here is to 

consider Cd 2+  as a ligand that increases the open proba-

bility (P o ) of the channels. Two basic kinetic mecha-

nisms are considered. Scheme 1 dictates that Cd 2+ , by 

binding to the open state, induces another open state to 

increase the P o . This scenario can be envisioned if the 

Cd 2+  binding site is exposed when the channel is in the 

open state. 

 Figure 6.   Comparison of Cd 2+  and 
ATP-induced currents for different 
mutants in the signature sequence 
region of NBD1. (A) Representative 
S549C-CFTR current recording in 
the presence of different [Cd 2+ ]. 
(B) Representative T547C current re-
cording in the presence of 1 mM ATP 
or 10  μ M Cd 2+ . (C) Dose – response re-
lationship for S549C-CFTR fi tted with 
the Hill equation (solid line); K 1/2  = 
2.4  ±  0.8  μ M and  n  = 1.12  ±  0.39. The 
maximum fold increase is 4.6  ±  0.4. 
(D) Summary of the current ratios 
for different mutants with cysteine-
substituting amino acids in or around 
the signature sequence of NBD1.   
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CFTR channels through an interaction with 551D/C, 

548C, or 549C not only reinforces the role of ABP2 in 

channel gating, but also provides mechanistic insights 

into the functional role of the signature sequence in 

NBD1. We propose that the signature sequence of NBD1 

may serve as a  “ switch ”  that, when activated by a ligand 

(ATP or Cd 2+ ), transmits the signal to the channel gate 

presumably located in the membrane-spanning domains 

that form the anion-selective pore. 

 The idea that ATP and Cd 2+  gate the channel through 

a common structural motif of the signature sequence is 

supported by several pieces of evidence. First, as shown 

in  Fig. 3 A , gating of G551D-CFTR by Cd 2+ , like ATP-

dependent gating of WT-CFTR, requires prior phosphor-

ylation of the channels by PKA. Second, G551D-CFTR 

currents induced by Cd 2+  can be inhibited by inhibitor-

172, a gating modifi er that has been shown to inhibit 

ATP-dependent gating of WT-CFTR ( Ma et al., 2002 ; 

 Caci et al., 2008 ). Third, normal gating of WT-CFTR 

channels involves interactions of ATP with the signature 

sequence of NBD1, as exemplifi ed by the G551D muta-

tion that completely eliminates the ATP-dependent gat-

ing ( Bompadre et al. 2007 ).  Fig. 6  demonstrates that the 

Cd 2+ -dependent gating also involves the signature se-

quence because engineering cysteine residues framing 

the signature sequence (i.e., T547C and R553C) did not 

confer this effect of Cd 2+ . It should be noted that crys-

tal structures of NBD dimers (e.g.,  Fig. 1 ) reveal that 

 � -phosphate, a critical component for ATP being a suc-

cessful ligand for CFTR gating, forms hydrogen bonds 

explain an  � 40-fold (40.3  ±  2.5;  n  = 3) increase of the 

macroscopic current unless the opening rate is also in-

creased signifi cantly by Cd 2+ . Although more compli-

cated schemes are necessary to explain the full effect of 

Cd 2+ , we consider Scheme 2, a generalized allosteric 

mechanism for the modulation of protein function by 

ligand binding ( Monod et al., 1965 ), as a simplistic 

model merely to aid this discussion. 

 Structure/Function Implications of the Effects of Cd 2+  
on CFTR Mutants 
 Although the signature sequence of ABC transporters is 

highly conserved, its functional role remains unclear 

despite numerous reports that mutations in this region 

perturb the function of the ABC proteins ( Browne et al., 

1996 ;  Schmees et al., 1999 ;  Chen et al., 2004 ;  Ren et al., 

2004 ;  Szentpetery et al., 2004 ;  Cai et al., 2006 ). Our pre-

vious studies have suggested that the ATP-binding 

pocket (i.e., ABP2 in  Bompadre et al., 2007 ), formed by 

the Walker A region of NBD2 and the signature sequence 

of NBD1, plays a key role in the ATP-dependent opening 

of CFTR. Mutations of a conserved tyrosine residue 

(Y1219) at NBD2 signifi cantly reduce the potency of 

ATP to increase the opening rate of CFTR, likely because 

the mutations decrease ATP-binding affi nity at ABP2 

( Zhou et al., 2006 ). That a mutation in the signature se-

quence of NBD1 (i.e., G551D) renders a channel com-

pletely irresponsive to ATP further supports the critical 

role of ABP2 in catalyzing channel opening ( Bompadre 

et al., 2007 ). The current fi nding that Cd 2+  can gate 

 Figure 7.   MTSEA abolishes 
the effect of Cd 2+  on G551D-
CFTR. G551D-CFTR channels 
were activated with 1 mM 
ATP plus PKA (not depicted). 
Pretreatment of the patch 
with the thiol-specifi c re-
agent MTSEA abolished the 
potentiation effect of Cd 2+ . 
5 mM DTT can reverse the 
effect of MTSEA. Note that 
neither MTSEA nor DTT by 
itself had discernable effects 
on the channel activity.   
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 Pathophysiological Implications 
 The disease-associated mutant G551D has an  � 100-fold 

smaller P o  than WT channels. Many compounds ( Amaral 

and Kunzelmann, 2007 ) and ATP analogues ( Cai 

et al., 2006 ;  Bompadre et al., 2007 ) have been found to 

potentiate the activity of G551D-CFTR channels, but 

none of them could increase the activity of G551D-

CFTR to WT levels. The binding site for only a very lim-

ited number of these CFTR  “ potentiatiors ”  has been 

identifi ed ( Bompadre et al., 2008 ). Interestingly, the 20-

fold increase of the G551D-CFTR current by Cd 2+  is by 

far the most effective potentiation demonstrated for 

this disease-associated mutant. Unfortunately, because 

of its toxicity, Cd 2+  cannot be used therapeutically. Al-

though Zn 2+  may be an interesting alternative, its low 

potency and effi cacy also prohibit a possible therapeu-

tic application. Nevertheless, our fi ndings open the 

door for rational drug design that can greatly benefi t 

cystic fi brosis patients carrying the G551D mutation. 

These studies suggest that the signature sequence of 

NBD1 can be a drug target for rescuing the dysfunc-

tional G551D channels. It is worth noting that the sig-

nifi cance of our results in future drug design should 

hold even if this Cd 2+ -dependent gating for G551D-

CFTR and normal ATP-dependent gating of WT chan-

nels turn out to use different gating machinery. 
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clear. There are 18 cysteines in human CFTR (14 cyste-

ines in the cytoplasmic domains). We are currently in 

the process of identifying the partner cysteine by sys-

tematically removing cysteines in different parts of 

CFTR. Although our top candidates will be cysteine(s) 

in NBD2 because NBD dimerization is coupled to ATP-

dependent opening of CFTR ( Vergani et al., 2005 ), we 

do not exclude the possibility that cysteine(s) in other 

domains may be involved. In fact, demonstrating an in-

volvement of cysteines outside of NBD2 could bring up 

the possibility of opening CFTR channels indepen-

dently of NBD dimerization. Our preliminary data (not 

depicted) indeed suggest that this may be the case be-

cause removing all six cysteines in NBD2 does not seem 

to affect the action of Cd 2+  on S549C-CFTR. More thor-

ough studies are currently underway to test this interest-

ing possibility. 
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