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    Introduction 
 A DNA double-strand break (DSB) can be induced by ionizing 

radiation, chemicals, and single-strand breaks (SSBs) in repli-

cation. Camptothecin (CPT) inhibits topoisomerase I (Topo I) 

and is one of the DSB-inducing reagents for which the action 

mechanism has been characterized in detail. The drug revers-

ibly abolishes the religation activity of Topo I to generate SSBs 

to which the protein is covalently linked. DSBs arise when rep-

lication forks collide with the SSBs and run off ( Pommier et al., 

2003 ). Thus, CPT-induced DSBs are largely replication depen-

dent. Eukaryotes have two pathways for repairing DSBs: ho-

mologous recombination (HR) and nonhomologous end joining 

(NHEJ). The relative contribution of these two DSB repair path-

ways seems to differ depending on the cell cycle; HR occurs 

more frequently in the S and G2 phases, and NHEJ is most effi -

cient in the G1 phase ( Takata et al., 1998 ;  Essers et al., 2000 ). 

For these reasons, CPT-induced replication-dependent DSBs 

are usually repaired by the HR pathway ( Arnaudeau et al., 

2001 ). The choice of these two DSB repair pathways is likely to 

be decided by a molecular mechanism activated immediately 

after DSB formation. 

 Poly-ADP ribosylation is a posttranslational modifi cation 

catalyzed by poly-ADP ribose polymerase 1 (PARP-1) and 

PARP-2 and is one of the earliest cellular responses to DNA 

damage. PARP-1 and -2 bind to the damage sites and activate 

themselves by automodifi cation. This process causes chromatin 

decondensation around damage sites, recruitment of repair ma-

chineries such as DNA ligase III – XRCC-1 base excision repair 

complexes, and accelerates DNA damage repair, especially in 

the case of SSBs ( Caldecott et al., 1996 ;  Masson et al., 1998 ; 

 Leppard et al., 2003 ). PARP-1 also seems to affect DSB repair 

because PARP-1 – defi cient cells are hypersensitive to DSB-

inducing agents, especially to CPT ( Chatterjee et al., 1989 ; 

 Bowman et al., 2001 ;  Pommier et al., 2003 ). Biochemical stud-

ies showed that NHEJ proteins such as Ku and DNA-PK are 

poly-ADP ribosylated by PARP-1, and the affi nity of Ku to 

DSBs was decreased ( Ariumi et al., 1999 ;  Galande and Kohwi-

Shigematsu, 1999 ;  Li et al., 2004 ). Moreover, a genetic study 

 P
 oly-ADP ribose polymerase 1 (PARP-1) is activated 

 by DNA damage and has been implicated in the 

 repair of single-strand breaks (SSBs). Involvement of 

PARP-1 in other DNA damage responses remains contro-

versial. In this study, we show that PARP-1 is required for 

replication fork slowing on damaged DNA. Fork progres-

sion in  PARP-1   � / �   DT40 cells is not slowed down even in 

the presence of DNA damage induced by the topoisomer-

ase I inhibitor camptothecin (CPT). Mammalian cells 

treated with a PARP inhibitor or PARP-1 – specifi c small 

interfering RNAs show similar results. The expression of 

human PARP-1 restores fork slowing in  PARP-1   � / �   DT40 

cells. PARP-1 affects SSB repair, homologous recombina-

tion (HR), and nonhomologous end joining; there fore, we 

analyzed the effect of CPT on DT40 clones defi cient in 

these pathways. We fi nd that fork slowing is correlated 

with the profi ciency of HR-mediated repair. Our data sup-

port the presence of a novel checkpoint pathway in which 

the initiation of HR but not DNA damage delays the 

fork progression.
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untreated cells, the poly-ADP ribosylation level in CPT-treated 

cells was higher over a wide size range of proteins ( Fig. 2 B ). 

NU1025 treatment led to the disappearance of poly-ADP ribo-

sylated proteins. Using fl uorescence microscope analysis, we 

confi rmed that poly-ADP ribosylation was inhibited by NU1025 

in the presence of CPT and found that NU1025 sensitized cells 

to CPT ( Fig. 2, C and D ). 

 We hypothesized that the modulation of replication fork 

progression is one of the critical steps of DNA damage repair 

for replication-coupled DSBs. To measure the rate of fork pro-

gression, HeLa cells were pulse labeled for 20 min with IdU 

followed by CldU for 20 min in the presence or absence of CPT. 

After genomic DNA preparation and dynamic molecular comb-

ing, IdU- and CldU-labeled DNA were immunostained with 

each appropriate antibody. This allows use of the fi rst label, 

which is always incorporated under normal circumstances, to 

normalize the second-label fork rate for differences in fork rates 

that are intrinsic to different forks.  Fig. 2 (E and F)  shows typi-

cal images of replicating DNA in cells treated as indicated.  

Fig. 2 G  shows the histogram of the distribution of the ratio of 

fork rates during fi rst and second pulse label. Saturating amounts 

of CPT were added during CldU labeling. The mean ratio in 

CPT-treated HeLa cells was about twofold higher compared 

with untreated cells. If CPT-induced DSBs decrease the rates of 

replication fork progression in a PARP-1 – dependent manner, a 

PARP inhibitor should affect the replication fork progression 

kinetics. Interestingly, a similar mean ratio was observed in 

NU1025-treated cells in spite of CPT treatment during CldU 

pulse label. These results indicated that NU1025 counteracted 

the fork slowing induced by CPT. This result was confi rmed in 

another cell line, m5S (Fig. S1, available at http://www.jcb.org/

cgi/content/full/jcb.200806068/DC1). These results were also 

evident when the distribution of fork rates during IdU and CldU 

labeling was quantifi ed and plotted. Compared with the fork 

rates during IdU labeling, the entire distribution of fork rates 

shifted to slower fork rates during CldU labeling after CPT ad-

dition, and this decrease was reversed by NU1025 ( Fig. 2 H ). 

These results suggest that PARP activity could be responsible 

for lower rates of fork progression in response to CPT-induced 

DNA damage in mammalian cells. 

 To further evaluate the effect of PARP on replication 

forks, PARP-1 was reduced with a PARP-1 – specifi c siRNA. 

PARP-1 was effectively decreased in HeLa cells at 48 and 72 h 

after transfection of two individual siRNAs ( Fig. 3, A and B ). 

Compared with cells transfected with the negative control 

siRNA, the poly-ADP ribosylation level was decreased to the 

background level ( Fig. 3 C ). The ratio of fork rates during IdU 

and CldU labeling was about twofold higher in cells trans-

fected with PARP-1 – specifi c siRNA compared with those 

with the negative control siRNA in the presence of CPT ( Fig. 3 D ). 

Consistent with this result, the entire distribution of fork rates 

during CldU labeling shifted to faster fork rates in the pres-

ence of CPT in those cells transfected with the PARP-1 

siRNAs compared with cells transfected with negative control 

siRNA ( Fig. 3 E ). These results indicate that PARP-1 can af-

fect replication fork progression on a damaged chromosome 

caused by CPT. 

showed that PARP-1 could protect the HR pathway from toxic 

interference by Ku70 (in DT40 and mammalian cells) in re-

sponse to CPT-induced DSBs ( Hochegger et al., 2006 ). These 

studies suggest that PARP-1 can interfere with NHEJ, which 

might be unfavorable for DSB repair in S phase and provide ac-

cess for the HR machineries. These fi ndings have also suggested 

the possibility that PARP-1 is involved in the regulation of rep-

lication fork progression coupled with HR-dependent DSB re-

pair via its poly-ADP ribosylation activity. However, the role of 

PARP-1 in HR-coupled replication fork modulation in vivo has 

not been fully investigated. 

 In this study, we investigated the contributions of PARP-1 

to the progression of replication forks on CPT-damaged DNA 

using an in vivo replication labeling assay and a dynamic mo-

lecular combing technique that allowed us to analyze the pro-

gression of individual replication forks in vivo. Interestingly, 

the addition of CPT signifi cantly slowed down fork progression 

when PARP-1 was active, whereas inhibition or defi ciency of 

PARP-1 resulted in unchanged fork progression rates in the 

presence of CPT. We also found that this slowing down of the 

replication fork in wild-type cells depended on the HR pathway, 

which was diminished in PARP-1 knockout cells as a result of 

negative interference by Ku. 

 Results and discussion 
 Previous studies showed that PARP-1 interacted with some rep-

lication fork machineries ( Dantzer et al., 1998 ;  Frouin et al., 

2003 ). To test for a possible association between PARP-1 and 

replication forks in our experimental system, we examined the 

immunofl uorescence of PARP-1 and replicating DNA in mouse 

fi broblast cells, m5S. We found that PARP-1 is likely to interact 

with replication forks because some of the PARP-1 foci in the 

nucleus colocalized with replication foci throughout S phase 

( Fig. 1 A ). Next, PARP-1 – enhanced YFP (EYFP) and prolifer-

ating cell nuclear antigen (PCNA) – RFP were transiently ex-

pressed in COS-7 cells, and BrdU pulse labeling was performed. 

We found that in S phase, PARP-1 – EYFP was adjacent or co-

localized to PCNA-RFP and BrdU foci ( Fig. 1 B ). Similar results 

were also observed when we transiently expressed Topo I –

 DsRed instead of PCNA-RFP ( Fig. 1 C ). In BrdU-negative 

cells, PARP-1 – EYFP was enriched in nucleoli as previously re-

ported ( Yung et al., 2004 ) and did not form any foci as seen 

in S-phase cells ( Fig. 1 D ). We confi rmed that a fraction of 

PARP-1 – EYFP seemed to colocalize to PCNA- and BrdU-

containing foci in HeLa cells. Again, PARP-1 – EYFP appeared to 

be concentrated in nucleoli in nonreplicating HeLa cells ( Fig. 1 F ). 

 To investigate the involvement of PARP-1 in modulation 

of fork progression on DNA damaged with CPT, we treated 

cells with CPT in combination with the PARP inhibitor NU1025. 

Before analysis of replication fork kinetics, we evaluated poly-

ADP ribosylation activity after CPT treatment and the inhibi-

tory effect of NU1025. CPT-induced DNA damage is largely 

replication dependent. In fact,  � -H2AX foci were detected only 

in the presence of CPT in S-phase nuclei ( Fig. 2 A ). First, we 

performed Western blotting to detect poly-ADP ribosylated 

proteins using FITC-NAD +  as a substrate. Compared with 
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 Figure 1.    Localization of PARP-1 to the replicating genomic region.  (A) Digoxigenin – deoxy-UTP was introduced into m5S cells to label replicating cells. 
PARP-1 and digoxigenin – deoxy-UTP (dig-dUTP) were visualized by immunofl uorescence. DNA was counterstained with DAPI. (B and C) Localization of 
PARP-1 – EYFP and PCNA-RFP or PARP-1 – EYFP and Topo I – DsRed during S phase in COS-7 cells. After pulse labeling with BrdU, cells were fi xed and 
BrdU was immunodetected. (D) Typical localization of PARP-1 – EYFP out of S phase in COS-7 cells. (E) Localization of PARP-1 – EYFP and PCNA-RFP during 
S phase in HeLa cells. (F) Typical localization of PARP-1 – EYFP out of S phase in HeLa cells. Overlaid images and magnifi ed views of the boxed areas are 
shown. n, nucleoli. Bars, 5  μ m.   
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 Figure 2.    A PARP inhibitor abrogates CPT-induced replication fork slowing.  (A) m5S cells were labeled with digoxigenin – deoxy-UTP and release cultured 
in the presence of CPT. Merged images show that  � -H2AX are detected only in S-phase nuclei. (B) Cells were pretreated with NU1025 before CPT treat-
ment and incubated with FITC-NAD +  and CPT for 15 min as described in Materials and methods.  � -Actin was used as a loading control. (C) Fluorescent 
microscope images of poly-ADP ribose in cells were treated as indicated. Fluorescence intensities of each nucleus ( > 50 cells) were quantifi ed. (D) Sensitiv-
ity of NU1025-treated cells to CPT. The mean of three independent experiments and standard deviation are shown. (E) A typical global image of DNA 
fi bers. HeLa cells were pulse labeled with IdU (red) and sequentially with CldU (green). After molecular combing, replicated DNA was immunodetected as 
described in Materials and methods. (F) The images show the typical DNA fi bers in cells treated with the indicated inhibitors. Cells were pretreated with 
NU1025 and pulse labeled with IdU for 20 min. After washing in PBS, cells were treated with CldU in the absence or presence of CPT for 20 min. 
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this hypothesis, we tested two DT40 mutants in DNA DSB re-

pair pathways,  XRCC3   � / �   mutant cells that are defective in HR 

and  Ku70  � / �    mutants that are defective in NHEJ. Interestingly, 

slowing of replication fork progression occurred at the same 

levels as wild type in the  Ku70   � / �   single mutant but was clearly 

reversed in  XRCC3   � / �   cells ( Fig. 5  and Fig. S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200806068/DC1). No ef-

fect of NU1025 was observed in  XRCC3  � / �    cells. Similar results 

were observed in other HR-defective  BRCA2 tr/ �    DT40 cells 

(Fig. S3, C and D;  Hatanaka et al., 2005 ). These results suggest 

that replication forks slow down in response to CPT as a result 

of the activation of the HR pathway. 

 Previously,  Hochegger et al. (2006)  showed that  PARP-1  � / �    
DT40 cells had reduced levels of HR, and concomitant deletion 

of Ku70 in these  PARP-1  � / �    cells reestablished their ability to 

perform HR. From the results that CPT-induced fork slowing is 

HR dependent, we speculated that the effect of PARP-1 deletion 

on the replication fork could be reversed by concomitant dele-

tion of Ku. Indeed, using  PARP-1/Ku70  � / �    DT40 cells, we 

found that deletion of Ku reversed the effects of the PARP-1 

mutant on the replication fork progression ( Fig. 5 B ). Thus, the 

entire distribution of fork rates during CldU labeling shifted to 

slower fork rates in the presence of CPT in the PARP/Ku double 

knockout cells (Fig. S3). To confi rm the dependency of the 

PARP-1 phenotype on Ku, we investigated the rate of fork pro-

gression using  PARP-1 / Ku70  � / �    cells that stably expressed ex-

ogenous Ku70. As expected, the fork rates did not decrease after 

CPT addition, which is similar to the PARP-1 single mutant 

( Fig. 5 B  and Fig. S3). Collectively, these results suggest that 

progression of the replication fork can be modulated by the HR 

pathway when replication forks collide with CPT-induced DNA 

damage. This activity clearly depends on PARP-1, which seems 

to function as a safeguard against the NHEJ pathway on stalled 

replication forks. 

 In this study, we found that PARP-1 can slow replication 

forks in response to DNA damage induced by CPT. We focused 

on the PARP-1 – related repair pathways and found that the HR-

dependent repair pathway may be involved in the modulation 

of fork progression on damaged templates in vertebrate cells 

( Fig. 5 C ). Previous studies indicated that PARP-1 interacts with 

the Ku – DNA-PK complex that is required for the NHEJ pathway 

( Ariumi et al., 1999 ;  Galande and Kohwi-Shigematsu, 1999 ;  Li 

et al., 2004 ), and PARP-1 poly-ADP ribosylates Ku, decreasing 

the binding affi nity of Ku to DSBs ( Li et al., 2004 ). After these 

observations,  Hochegger et al. (2006)  suggested a biological 

role of the interaction of PARP-1 and NHEJ factors, proposing 

that PARP-1 minimized the suppressive effect of Ku and the 

NHEJ pathway on HR after replication fork collapse. Conse-

quently, PARP-1 defi ciency could result in reduced effi ciency of 

HR because of the presence of Ku, resulting in enhanced pro-

gression of the replication fork. A previous study supports this 

 Chicken DT40 cells are useful for the analysis of gene func-

tions caused by the abundant stocks of mutants. Chicken cells ap-

pear to lack a PARP-2 homologue, which is another repair-related 

PARP, so  PARP-1   � / �   DT40 cells could have no repair-associated 

poly-ADP ribosylation activity and, therefore, are hypersensitive 

to CPT as well as other DSB-inducible reagents ( Hochegger et al., 

2006 ). Thus, we analyzed the involvement of PARP-1 in fork pro-

gression on damaged DNA using  PARP-1   � / �   DT40 cells. The 

mean ratio of fork rates in CPT-treated wild-type cells was about 

twofold higher compared with untreated cells, whereas a similar 

mean ratio was observed in  PARP-1   � / �   cells in spite of CPT treat-

ment during CldU pulse labeling ( Fig. 4 A ). Quantifi cation of the 

mean fork rate revealed that CPT treatment did not induce fork 

slowing in  PARP-1   � / �   cells, and the rate of fork progression was 

similar in the absence of CPT ( Fig. 4 B ). NU1025 treatment also 

recovered the CPT-induced slowing of fork progression in DT40 

cells ( Fig. 4, C and D ). If CPT-induced replication fork slowing is 

dependent on PARP-1 activity, additional expression of PARP-1 

should restore the impact of CPT on replication fork progression. 

Therefore, we measured the rate of fork progression in  PARP-1   � / �   

DT40 cells stably expressing human PARP-1. Strikingly, human 

PARP-1 completely restored the kinetics of fork progression in 

the presence of CPT in  PARP-1   � / �   cells ( Fig. 4, A and B ). These 

results clearly indicate that PARP-1 can affect the replication fork 

progression in response to CPT-induced DNA damage. 

 It is possible that the CPT-induced fork slowing is caused 

by PARP-1 – induced repair activities because PARP plays a role 

in damage response to CPT in the following two manners: fi rst, 

CPT stabilizes Topo I – DNA covalent complexes, and resulting 

SSBs are repaired by PARP, XRCC1, and DNA polymerase  �  

( Plo et al., 2003 ;  El-Khamisy et al., 2005 ). Second, Topo I – DNA 

covalent complexes that encounter replication forks lead to the 

formation of DSBs. PARP may suppress the toxic effect of 

NHEJ-mediated repair, which may result in chromosomal trans-

location and thereby indirectly facilitate accurate HR-mediated 

DSB repair ( Hochegger et al., 2006 ). 

 To address a role of PARP-1 in SSB repair (SSBR), we ana-

lyzed the rate of fork progression in polymerase  �  – defi cient DT40 

cells, but CPT-induced fork slowing was not reversed in  poly-
merase  �    � / �   cells (Fig. S2, A and B, available at http://www.jcb

.org/cgi/content/full/jcb.200806068/DC1). To confi rm these re-

sults in mammalian cells, HeLa cells in which another SSBR fac-

tor, XRCC1, was knocked down by siRNA were used. The protein 

level of XRCC1 was signifi cantly reduced at 48 or 72 h after 

siRNA transfection (Fig. S2 C). Similar to  polymerase  �    � / �   DT40 

cells, CPT-induced fork slowing was not recovered in XRCC1-

depleted HeLa cells (Fig. S2, D – F), suggesting that PARP-1 regu-

lates replication fork progression in response to CPT-induced 

DNA damage independently of its SSBR-related activity. 

 We hypothesized that a PARP-1 – related DSB repair path-

way is responsible for CPT-induced fork slowing. To address 

(G) Distribution of the ratio of the rate of fork progression in cells treated as indicated. The p-value of the Kolmogorov-Smirnov test for the ratio distribution 
of NU1025-treated cells for CPT treatment compared with NU1025-untreated cells is shown. (H) Distribution of the rate of fork progression during IdU and 
CldU pulse labeling in each cell. The p-value of the Wilcoxon signed-rank test for the distribution of fork rate in each cell is shown. (I) The tabular data are 
mean fork rates for each cell treated as indicated. The mean rates were calculated from the data described in H. Bars, 10 kb.   

 



JCB • VOLUME 183 • NUMBER 7 • 2008 1208

 Figure 3.    Effects of PARP-1 knockdown on kinetics of replication forks.  (A and B) Evaluation of PARP-1 knockdown in HeLa cells. The amount of PARP-1 
in cells transfected with two different siRNA duplexes against PARP-1 and negative control siRNA (siNC) was evaluated by Western blotting (A) and im-
munofl uorescence (B).  � -Actin was used as a loading control. (C) Poly-ADP ribosylated proteins were detected as shown in  Fig. 1 B . The arrow indicates 
the molecular mass of PARP-1. (D) Distribution of the ratio of the rate of fork progression in cells transfected with each siRNA. (E) Distribution of the rate of 
fork progression during IdU and CldU pulse labeling in cells transfected with each siRNA. (F) The tabular data are mean fork rates for each cell treated as 
indicated. The mean rates were calculated from the data described in E. Bar, 10  μ m.   
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fork slowing in response to CPT is likely to be reestablishment 

of HR-mediated DSB repair processes. 

 We think the reason why fork rates in  PARP-1   � / �   cells 

were the same as those of wild-type cells in the presence of CPT 

because of the following points. A mutant of the checkpoint pro-

tein, Hus1, showed normal replication fork rates in the presence 

of CPT ( Wang et al., 2004 ). This mutant is also defi cient in the 

HR process ( Wang et al., 2006 ). Intriguingly, PCNA dissociates 

from chromatin in response to CPT treatment in wild-type cells 

but not in the Hus1 mutant, indicating that restoration of chroma-

tin binding of PCNA appears to be associated with a normal rate 

of fork progression in the presence of CPT. However, another 

study reported that Ku facilitated the association of PCNA to 

chromatin in response to DSBs ( Park et al., 2004 ), so it is con-

ceivable that restoration of chromatin binding of PCNA by Ku 

associates with normal fork rates on damaged DNA in PARP-1 

or HR-defective cells. Indeed, we found that the chromatin-

bound PCNA decreased in response to CPT but not in the pres-

ence of NU1025 (unpublished data).  Heller and Marians (2006)  

showed that replication could be restarted and that leading-strand 

synthesis reinitiated downstream of an unrepaired block to 

leading-strand progression. If this occurs downstream of a DSB, 

de novo loading of PCNA by Ku might facilitate the restart. Fur-

ther in-depth investigations are required to test this hypothesis. 

 We also suggest an alternative plausible model. Recently, 

the molecular details of a cytotoxic mechanism for CPT were 

suggested ( Koster et al., 2007 ). They suggested that the accu-

mulation of positive supercoils was induced by CPT ahead of 

the replication machinery and that DNA damages were induced 

within the supercoil. If PARP-1 or HR is defi cient, Ku-mediated 

chromosomal translocation might occur within the supercoil. 

Presumably, the replication fork could then move on the trans-

located chromosome. However, we do not have any evidence to 

support this hypothesis. 

 In summary, we have shown that PARP-1 activity infl u-

ences replication fork progression when replication forks collapse 

at CPT-induced single-strand gaps. The target of PARP-1 activity 

in this novel mechanism appears to be Ku, which interferes with 

HR-dependent DSB repair at the collapsed replication fork. 

 Materials and methods 
 Cell culture and drug treatment 
 HeLa cells, COS-7 cells, and m5S ( Sasaki and Kodama, 1987 ) were 
grown in DME supplemented with 10% FBS at 37 ° C with 5% CO 2 . DT40 
cells were grown in RPMI 1640 medium supplemented with 10% FBS, 1% 
chicken serum, and 10  μ M  � -mercaptoethanol at 39 ° C with 5% CO 2 . 

 Antibodies 
 Mouse anti-BrdU antibody was purchased from BD. Rat anti-BrdU antibod-
ies were purchased from Oxford Biotechnology or Abcam. Mouse an-
tiphosphohistone H2A.X (Ser139) antibody was purchased from Millipore. 
Mouse anti – PARP-1 and mouse anti – poly-ADP ribose antibodies were pur-
chased from Trevigen. Goat anti – PARP-1 antibody was purchased from 
R & D Systems. Mouse anti –  � -actin antibody was purchased from Sigma-
Aldrich. Rhodamine-conjugated sheep antidigoxigenin antibody was pur-
chased from Roche. 

 Colony formation assay 
 200 spontaneously growing HeLa cells were plated into each well of a 
6-well dish. 24 h later, CPT (Topogen) was added at various concentrations 

idea, which found that replication fork arrest or slowing on 

damaged chromosomes was induced in an HR-dependent man-

ner ( Henry-Mowatt et al., 2003 ). Therefore, the reason why 

concomitant deletion of Ku70 in  PARP-1  � / �    mutants resulted in 

 Figure 4.    Replication fork progression in  PARP-1  � / �    DT40 cells.  (A) Distri-
bution of the ratio of the rate of fork progression in wild-type (WT), 
 PARP-1  � / �    DT40, and  PARP-1  � / �    + human PARP-1 (hPARP-1) DT40 cells. 
(B) Distribution of the rate of fork progression during IdU and CldU pulse 
labeling in each cell. (C and D) Distribution of the ratio of the rate of fork 
progression and the rate of fork progression during IdU and CldU pulse la-
beling in wild-type DT40 cells pretreated with NU1025. Data bars are the 
means of three independent experiments, and error bars represent SEM.   
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(Trevigen) was added with or without 10  μ M CPT (Topogen). After 15 min, 
cells were fi xed with ice-cold methanol/acetone (1:1) for 10 min. Fixed 
cells were counterstained with DAPI. For immunoblotting, 10 5  cells were 
lysed in 10  μ l of 1 ×  SDS gel loading buffer, and the lysate was loaded 
onto a 12% SDS-PAGE gel, transferred to nitrocellulose membrane (Bio-
dyne), and detected with the mouse anti – FITC-HRP (1:2,500; Jackson 
ImmunoResearch Laboratories). Chemiluminescent signals were detected 
by the ECL system (GE Healthcare). 

to the medium in the presence or absence of 200  μ M NU1025 (EMD). 
Cells were washed with PBS 22 h later and cultured in 10% FBS-containing 
medium for 6 or 7 d. Colonies consisting of  > 10 cells were counted. 

 Biochemical detection of poly-ADP ribose 
 Cells were grown on a coverslip (Matsunami Glass) and incubated for 1 h 
at 37 ° C in 56 mM Hepes, pH 7.5, 28 mM NaCl, and 0.01% digitonin in 
the presence or absence of 200  μ M NU1025, and 25  μ M FITC-NAD +  

 Figure 5.    Recovery of the lower rates of fork pro-
gression in the presence of CPT in PARP-1 mutant is 
not observed under the defi ciency of NHEJ capacity.  
(A and B) Distribution of the ratio of the rate of fork 
progression during IdU and CldU pulse labeling in 
each indicated DT40 cell. The total number of the forks 
analyzed in each cell is also indicated. (C) Model illus-
trating how PARP-1 affects replication fork progression 
on damaged DNA. Data bars are the means of three 
independent experiments, and error bars represent 
SEM. WT, wild type.   
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 Microscopy 
 Nuclei were examined using a microscope (Axioplan 2 MOT; Carl Zeiss, 
Inc.) with a 63 ×  Plan Apochromat NA 1.4 objective lens equipped with a 
charge-coupled device camera (MicroMAX; Princeton Instruments). For de-
convolution analysis of the nucleus, z-stack images were captured at a step 
of 0.2  μ m and processed using MetaMorph software (version 6.1; MDS 
Analytical Technologies). 

 Online supplemental material 
 Fig. S1 shows the effect of PARP inhibitor on replication fork progression in 
mouse m5S cells. Fig. S2 shows replication fork kinetics in HeLa cells 
treated with XRCC1 siRNA. Fig. S3 shows replication fork kinetics in 
 BRCA2 tr/ �    DT40 cells. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200806068/DC1. 
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