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ABSTRACT

Transcription factors play a key role in gene regulation by interacting with specific binding

sites or motifs. Therefore, enrichment of binding motifs is important for genome annotation

and efficient computation of the statistical significance, the p-value, of the enrichment

of motifs is crucial. We propose an efficient approximation to compute the significance.

Due to the incorporation of both strands of the DNA molecules and explicit modeling of

dependencies between overlapping hits, we achieve accurate results for any DNA motif based

on its Position Frequency Matrix (PFM) representation. The accuracy of the p-value ap-

proximation is shown by comparison with the simulated count distribution. Furthermore, we

compare the approach with a binomial approximation, (compound) Poisson approximation,

and a normal approximation. In general, our approach outperforms these approximations

or is equally good but significantly faster. An implementation of our approach is available

at http://mosta.molgen.mpg.de.

Key words: binding site clumps, compound Poisson distribution, count statistics, DNA motif,

overlapping occurrences, PFM, Position Frequency Matrix, p-value.

1. INTRODUCTION

TRANSCRIPTION FACTORS (TFs) play a key role in gene regulation by binding to genomic sequences

(Alberts et al., 2002). Binding sites of TFs are often represented as position frequency matrices

(PFMs) introduced by Stormo et al. (1982). Genome annotation and the understanding of genetic regulatory

networks require the assessment of the statistical significance of TF binding site occurrences. Reliable

results for the significance are given by p-values derived from the count statistic (Denise et al., 2001).

Exact calculation of the count distribution can be done by generating functions (Gentleman and Mullin,

1989; Hertzberg et al., 2005; Kleffe and Langbecker, 1990; Régnier, 2001) or other methods (Beckstette
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et al., 2006; Bejerano et al., 2004; Staden, 1989; Zhang et al., 2007). Unfortunately, the calculation of exact

p-values is NP-hard (Zhang et al., 2007). Hence, many efforts are concerned with the asymptotic word

count distribution using normal approximations (Brendel et al., 1986; Leung et al., 1996; Waterman, 2000;

Prum et al., 1995), (compound) Poisson approximations (Chryssaphinou and Papastavridis, 1988; Godbole,

1991; Schbath, 1995; Robin, 2002; Roquain and Schbath, 2007), and large deviation results (Denise et al.,

2001; Reinert et al., 2000). Both the exact and the asymptotic approaches require the enumeration of all

compatible words which are words encoded in the PFM yielding a hit on the sequence. The number of

compatible words grows exponentially with the length of the PFM. Thus, calculation is inefficient for long

PFMs.

In this article, we propose an approximation based on the compound Poisson distribution for the number

of occurrences of a PFM without enumerating all compatible words. Furthermore, we incorporate both

strands of the DNA molecules, which is important for palindromic PFMs. We explicitly consider depen-

dencies of overlapping hits. The approach outperforms existing approximations (Schbath, 1995; Waterman,

2000; Roquain and Schbath, 2007). In contrast to the most recent exact calculation (Zhang et al., 2007),

its complexity neither depends on the number of compatible words nor on the sequence length.

The next section introduces the statistical framework (Rahmann et al., 2003) and develops the ap-

proximation for the count statistic. Since we explicitly model the self-overlap of the PFM that results in

dependencies, we can calculate two characteristic values for the self-overlap and the palindromicity of a

PFM. Finally, the simulation for the comparison of the approaches is described, as well as the competing

approaches (Schbath, 1995; Waterman, 2000; Roquain and Schbath, 2007). The Results section contains

the comparison of the approaches. A discussion and an outlook are given in the final section.

2. METHODS

Our statistic for the number of binding sites uses the probability of a detected binding site, as well, as the

self-overlap of the PFM. For example, a PFM with the consensus “CTAACT” has a higher probability to

find two hits overlapping in two positions than to find two independent hits. Counting the number of binding

sites while taking care of the self-overlap has already been discussed for a single word (Guibas and Odlyzko,

1981; Robin and Schbath, 2001) and a small set of given words (Reinert et al., 2000). We give two reasons

for avoiding the Chen-Stein approach proposed by Reinert et al. (2000) and Roquain and Schbath (2007):

First of all, the enumeration of all compatible words encoded in the PFM is computationally demanding and

only possible for small PFMs. Second, the incorporation of the complementary strand can lead to two hits

at one position. In terms of word counting, this means that the words in the set of compatible words are not

necessarily different contradicting one important assumption for the (compound) Poisson approximation.

Therefore, we use the discrete nature of the PFM score to compute the probabilities of overlapping hits

(Pape et al., 2006). Based on these probabilities, we use a generalization of the Poisson distribution to model

overlaps. We couple a probability vector for the number of hits with a Poisson distribution. This is a so

called stopped-sum distribution (Johnson et al., 1995) or compound Poisson distribution. This distribution

is widely used for word count statistics.

2.1. The PFM framework

Each PFM represents a binding site. It contains specific probabilities for each nucleotide at every

position. We assume that the binding sites of each TF are described by only one PFM. An extension to

more than one PFM is not trivial but, in general, possible. The position specific scoring matrix (PSSM)

‰�;� is chosen to be the log-likelihood ratios of the nucleotide distribution of the PFM and the background

probabilities �� for every position � and for nucleotides � 2 †. We denote the length of the PSSM by `.

The background model is an i.i.d. model only defined by the GC content. Since we require the distribution

of hits on both strands to be equal, we need this restriction. We call this a symmetric i.i.d. background

model which can also be justified by Chargaff’s second law. Furthermore, in contrast to coding sequence,

there is no motivation to handle both strands in the upstream region differently.

Using the PSSM, we can assign a score to every position of the potential binding site depending on the

observed nucleotide. Sliding a window of length ` over the sequence �0 : : : �n and summing up the scores
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FIG. 1. The figure clarifies notation: The lower 50-30 strand is the leading strand. Given a motif CTAT, there are

two overlapping occurrences on the shown sequence region. Y1 D Y 0
3 D 1 indicate a hit starting at position 1 on

the leading strand and another hit ending at position 3 on the complementary strand. This definition of Yj and Y 0
j

simplifies notation.

in each window, yields a score Sj for every position j of the sequence

Sj D
`�1
X

�D0

‰�;�jC�
:

From now on, we consider the letters �j of the sequence as random variables. Thus, Sj s are random

variables, too.

Considering the complementary strand requires additional notation: In general, we use the same variables

with a prime for this purpose. We call the strand of the corresponding gene the 50-30 strand. Correspondingly,

the complementary strand is called the 30-50 strand. In contrast to the 50-30 strand, we assign a hit to the

position at the complementary strand where the actual hit ends (Fig. 1). This means, that S 0
j refers to the

score of the nucleotides � 0
j C`�1 : : : � 0

j where � 0
k denotes the complementary letter of �k .

We call a position a hit if the corresponding window yields a score s higher than a certain threshold t .

Denoting a hit at position j by the indicator random variable Yj D 1, we obtain the definition: Yj WD
1ŒSj � t �. Similarily, a detected binding site on the complementary strand at position j is denoted by

Y 0
j D 1 (Fig. 1).

2.2. Statistics for binding site detection

The threshold t controls the probabilities ˛ and ˇ given by ˛ WD PH0 .Sj � t/ and ˇ WD PH1 .Sj < t/

where H0 is the null model corresponding to a random sequence and H1 the model for the binding

site. Using the convolution of the position-specific score distributions according to the background model

(Rahmann, 2003), we can compute the threshold t depending on the choice of ˛. The parameter ˛ has

to be very small as the expected number of false positives on a sequence of length n is 2n � ˛ for both

strands. To control the power of the PFM to seperate compatible from non-compatible words, we set the

threshold as described by Pape et al. (2006). There, the threshold is set such that ˛ and ˇ are balanced on

a reasonable level. In general, the count statistic is robust against the actual threshold as long as neither

all positions are hits nor none because ˛ is incorporated into its computation.

2.3. Count statistic

After this review of the detection of binding sites, we move on to the statistics of the number of detected

binding sites. As previously mentioned, the probability of detecting a binding site by chance in a symmetric

i.i.d. sequence model is ˛. Hence, the indicator random variables Yj and Y 0
j have a Bernoulli distribution

with PH0 .Yj D 1/ D PH0.Y
0

j D 1/ D ˛ and PH0.Yj D 0/ D PH0 .Y
0

j D 0/ D 1 � ˛. Let X denote the

number of binding sites in a region of length n of a sequence:

X D
n�
X̀

j D0

.Yj C Y 0
j /:
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In fact, Yj and Y 0
j are defined on an infinite sequence but in practice we are concerned with finite sequences.

Hence, the dependencies of Yj and Y 0
j are different at the beginning and the end of the sequence. These

boundary effects are negligibly small under the rare hit assumption (Barbour et al., 1992). The rare hit

assumption holds because we set ˛ and the threshold t such that only a very small fraction of all possible

words have a score greater than or equal to the threshold.

Now, we can compute the enrichment of binding sites on a sequence using the probability p D PH0.X �
x/ as p-value where x is the observed number of binding sites. Although we know the probability of Yj and

we assume the symmetric i.i.d. sequence model, calculation of p is not straightforward due to dependencies

between Yj s and Y 0
j s. The dependencies are caused by self-overlap of the PFM and by incorporation of

the complementary strand both leading to overlapping binding sites.

2.4. Computing probabilities of clumps

Dealing with overlapping hits requires a refined vocabulary: A hit and its overlapping hits together can

be defined as a clump. The size of the clump corresponds to the number of contained overlapping hits. Also

a single hit without any overlaps is called a clump of size 1. Thus, a clump is a left- and right-maximal

set of overlapping hits on both strands.

Now, we incorporate the notion of clumps into our definitions. We assume that the number of clumps

N is distributed as a Poisson random variable P.r/ with unknown rate parameter r . The size Zi of the

clumps are assumed to be identically and independently distributed by an unknown probability vector E�
(Fig. 2). Both assumptions can be justified by the fact that they hold for word counting (Robin, 2002). The

number of counts per sequence is given by X D PN
iD1 Zi . X follows a compound Poisson distribution

CP.r; E�/.

In the remaining part of this section, we show how to compute approximations of the unknown parameters

of rate r and the probability vector E� . First of all, we reduce the computation of r to the computation of E� .

Then, we start with the probability �1 of having exactly one hit. Based on �1, we recursively compute the

remaining parameters. Furthermore, the analysis of the resulting formulation discovers two characteristic

values describing the self-overlap of the PFM.

2.4.1. Computing the rate r . The parameter r is the rate of clump occurrences. We cannot use the

probability ˛ of a false positive directly to compute it because ˛ is the probability for hits including

overlapping hits. In contrast, we need the rate for non-overlapping hits which is equal to the rate of

clumps. Using the law of total probability, we obtain:

EŒX� D EŒE.X j N /� D EŒN E.Z/� D EŒN �EŒZ� D rEŒZ�:

Thus, we can express r in terms of E� : EŒX� is the expected number of hits. The probability of a hit by

chance is ˛ as we defined the threshold in this way. Hence, the expected number of hits is given by the

fact that a hit can occur at each sequence position on each strand, thus

r D EŒX�

EŒZ�
D 2˛.n � ` C 1/

P

i>0 i�i

: (1)

FIG. 2. The horizontal line symbolizes the sequence. At certain position (marked by a cross), a clump occurs. The

size of each clump is modeled by an i.i.d. probability vector E� . The number of clumps N is distributed as a Poisson

random variable P.r/.
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2.4.2. Parameters for the probability vector. The probability vector E� D .�i /i>0 contains probabilities

for the different sizes of clumps i > 0. Here, we show how to compute approximations . Q�i /i>0 of these

probabilities. At first, we focus on one strand of the sequence only. Subsequently, we extend the approach

to deal with the complementary strand as well.

�1 corresponds to the event that there is exactly one hit at a certain position j while no overlapping hits

occur given the hit at position j . Using the fact that an overlapping hit is a hit within the range of the

length ` of the PFM, we obtain

�1 D PH0.Yj �`C1 D 0; : : : ; Yj �1 D 0; Yj C1 D 0; : : : ; Yj C`�1 D 0 j Yj D 1/: (2)

The conditional probability on the right hand side of Equation (2) is hard to compute because the events

in the collection .fYj Ck D 0g/�`C1�k�`�1;k¤0 are not independent, given fYj D 1g. However, in a first

order approximation we pretend that conditional independence holds and compute

Q�1 D
`�1
Y

kD�`C1;k¤0

PH0 .Yj Ck D 0 j Yj D 1/ D
`�1
Y

kD�`C1;k¤0

.1 � PH0.Yj Ck D 1 j Yj D 1//: (3)

Due to the symmetric i.i.d. random sequence, we can prove the symmetry PH0 .Yj �k D 1 j Yj D 1/ D
PH0.Yj Ck D 1 j Yj D 1/ by applying the law of conditional probabilities and substituting j D j 0 C k:

PH0 .Yj �k D 1 j Yj D 1/ D PH0 .Yj �k D 1; Yj D 1/

PH0.Yj D 1/

D PH0 .Yj 0Ck�k D 1; Yj 0Ck D 1/

PH0 .Yj 0Ck D 1/

D PH0 .Yj 0Ck D 1 j Yj 0 D 1/: (4)

Symmetry follows due to the symmetric i.i.d. background model. Thus, we obtain for Equation (3)

Q�1 D
 

`�1
Y

kD1

Œ1 � PH0.Yj Ck D 1 j Yj D 1/�

!2

: (5)

Next, we extend the approach to both strands by continuing to assume conditional independence for all

hits (Pape et al., 2006) and simplify notation by

k D PH0.Yj Ck D 1 j Yj D 1/;  0
k D PH0.Y

0
j Ck D 1 j Yj D 1/;

where Y 0 refers to the hit random variable on the other strand. Hence, Equation (5) becomes

Q�1 D .1 �  0
0/

`�1
Y

kD1

.1 � k/2.1 �  0
k/2 : (6)

This term contains the probability of two overlapping hits PH0.Yj Ck D 1 j Yj D 1/ for k as given above in

k, and correspondingly in  0
k for the reverse strand. Thus, we need to compute the probability of the score

at position j C k exceeding the threshold given there is a hit at position j : PH0 .Sj Ck � t j Yj D 1/. In

previous work (Pape et al., 2006), we used the nucleotide distribution given by the PFM for the overlapping

part. Unfortunately, the performance of the approximation varies signficiantly between different PFMs.

Therefore, we model the dependencies explicitly.

2.4.3. Probability of two overlapping hits. Here, we compute the exact value for PH0.Sj Ck � t j
Yj D 1/. The event fYj D 1g is equal to the event fSj � tg due to the definition of the indicator random
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variable Yj . We define the set of scores which are assumed to be integers by

S WD
(

s W
`�1
X

�D0

min
�2†

‰�;� � s �
`�1
X

�D0

max
�2†

‰�;�

)

: (7)

Then, the scores greater than or equal to the threshold can be defined by St WD fs 2 S W s � tg. Using

these definitions, we can express PH0 .Yj Ck D 1 j Yj D 1/ in terms of a two-dimensional score distribution

k D PH0 .Yj Ck D 1 j Yj D 1/ D PH0 .Sj Ck � t; Sj � t/

PH0.Sj � t/

D 1

˛

X

s2St

X

s02St

PH0 .Sj Ck D s0; Sj D s/: (8)

The overlapping probabilities  0
k can be computed correspondingly.

Considering the scores as state space, the Sj s become a first-order Markov chain (Fu and Koutras,

1994) because the score only depends on the score of the previous position. Hence, Equation (8) can also

be written in terms of its transition matrix to the kth power. For the sake of simplicity, we focus on the

two-dimensional score distribution for each k. This distribution can be computed by the two-dimensional

convolution of the position specific score distributions. An efficient dynamic programming algorithm is

presented in Section 2.5.

2.4.4. Probability of an i -clump with i > 1. We recursively compute the probability Q�i to have a

clump with exactly i hits for i > 1. Without loss of generality, we assume that we count hits starting

with Y0, Y 0
0 , Y1, Y 0

1 , Y2, and so on. Considering a clump of size two, the first overlapping hit at a clump

position j can either occur in the interval k 2 Œj C 1; j C ` � 1� on the same strand or in the interval

k 2 Œj; j C ` � 1� on the opposite strand. The idea is to cancel the probability in Equation (6) for each

position k and to replace it with the probability of a hit at this position. We denote these extension factors

�k for a hit on the 50-30 strand and � 0
k for a hit on the 30-50 strand. We obtain for a pair of hits for

0 < k < `

PH0.Yj Ck D 1; Y 0
j Ck D 0; Y 0

j D 0; fYj C� D 0; Y 0
j C� D 0g�`<�<kC`;�¤0;kjYj D 1/ � Q̨1 � �k ;

PH0 .Y
0
j Ck D 1; Yj Ck D 0; Y 0

j D 0; fYj C� D 0; Y 0
j C� D 0g�`<�<kC`;�¤k;0jYj D 1/ � Q̨1 � � 0

k ;

PH0.Y
0

j D 1; fYj C� D 0; Y 0
j C� D 0g�`<�<`;�¤0jYj D 1/ � Q̨1 � � 0

0:

For the definitions of �k, � 0
k , and � 0

0, it is important to note that one also has to replace the probability

at the other strand at position k with the probability  0
0 for an exact palindromic hit at position k of the

old hit except the new hit is on the 30-50 strand. In this case (� 0
k), an exact palindromic hit is not possible

(because we would have counted the hit before). We also replace the probabilities for hits at the subsequent

positions given the hit at position j with the probabilities of a hit given the hit at j C k. Lastly, one has to

extend the positions without a hit to the positions covered by the new hit but not by the former hit. Thus,

we obtain the definitions for 0 < k < `

�k WD k

1 � k

� 1 �  0
0

1 �  0
k

�
 

`�k�1
Y

�D1

1 � �

1 � kC�

� 1 �  0
�

1 �  0
kC�

!

�
 

`�1
Y

�D`�k

.1 � �/.1 �  0
�/

!

; (9a)

� 0
k WD  0

k

1 �  0
k

�
 

`�k�1
Y

�D1

1 � �

1 � kC�

� 1 �  0
�

1 �  0
kC�

!

�
 

`�1
Y

�D`�k

.1 � �/.1 �  0
�/

!

: (9b)
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FIG. 3. X and the black arrow indicate the given hit, while 0s indicate where no hit is allowed, 1 denotes the

possibility of an overlapping hit (marked by grey arrows), and ? is a hit or no hit. The letters a, b, and c label the

three different type of hits: type (a) is a hit on the same strand, type (b) hits on the complementary strand but not

palindromic, and type (c) is the palindromic hit.

For the other strand, we must not replace the exact palindromic hit because the hit is already on that

strand. We have an overlapping hit if any of these encoded events occur. Thus, we can sum up the terms

(Fig. 3)

� WD
`�1
X

kD1

�k ; � 0 WD
`�1
X

kD1

� 0
k ; � 0

0 WD  0
0

1 �  0
0

: (10)

We split up the different types of hits into a, b, and c because they differ with respect to which hit

can follow (see Fig. 4). Type (a) encodes a hit on the 50-30 strand. The hit can be followed by a hit on

the same strand (a), a hit on the complementary strand (b), or an exact palindromic hit (c). Type (b) is

a hit on the 30-50 strand excluding an exact palindromic hit. After it, types (a) and (b) can follow. An

exact palindromic hit is not possible as the hit itself is on the 30-50 strand. Type (c) stands for the exact

palindromic hit. Everything but another exact palindromic hit can follow.

Thus, an additional hit of type (a) can be preceded by a hit of type (a), (b), or (c). For (b) the same

logic applies. In contrast, a palindromic hit (c) can only occur after a hit of type (a). Without these

considerations, we would allow more than two hits at the same position. This gives us a linear system of

recurrences to compute an approximation of E� . Again, assuming that conditional independence holds, we

FIG. 4. The figure shows the three different types of hits (a), (b), and (c) in a situation of two previous hits.

Furthermore, for each type of hit, the possible subsequent type of hit is indicated by the corresponding identifier (a, b,

or c). While (a) and (b) can occur after each type of hit, (c) can only occur after type (a).



554 PAPE ET AL.

have Q�iC1 WD Q�1.ai C bi C ci/, where

a1 WD �; aiC1 WD .ai C bi C ci/�; (11a)

b1 WD � 0; biC1 WD .ai C bi C ci/�
0; (11b)

c1 WD � 0
0; ciC1 WD ai �

0
0: (11c)

2.4.5. Closed formula. Although the above formulas suffice to compute an approximation for E� , the

reformulation as a closed formula and its further analysis reveals interesting insights. At the end, we obtain

two characteristic values which describe the self-overlap of the PFM.

We can write the recursive formulas (11a) to (11c) by matrix notation for i > 0

0

B

B

@

aiC1

biC1

ciC1

1

C

C

A

D

0

B

B

@

� � �

� 0 � 0 � 0

� 0
0 0 0

1

C

C

A

�

0

B

B

@

ai

bi

ci

1

C

C

A

DW A �

0

B

B

@

ai

bi

ci

1

C

C

A

:

Thus, we get the closed formula for i � 0 with E� D .�; � 0; � 0
0/

T

0

B

B

@

aiC1

biC1

ciC1

1

C

C

A

D Ai E�:

Furthermore, we obtain Q�iC1 using the recurrence formula for i > 0

Q�iC1 D .1; 1; 1/ � Ai � E� � Q�1:

We decompose A D B�1 ƒ B where B contains the eigenvectors of A and the diagonal matrix ƒ the

corresponding eigenvalues �1, �2, �3 given by

�1;2 D � C � 0

2
˙ 1

2

p
w; �3 D 0;

with w D .� C � 0/2 C 4� � 0
0. Hence, we can denote Q�iC1 in terms of the eigenvalues

Q�iC1 D .1 1 1/ B�1 ƒi B E� Q�1 D .u�i
1 C v�i

2/ Q�1 (12)

where u and v are computed by solving the linear system

0

@

1 1

�1 �2

1

A

 

u

v

!

Q�1 D
 Q�1

Q�2

!

;

whereby Q�2 D .� C � 0 C � 0
0/

Q�1 using the recursive formula. Finally, we obtain the solution

u; v D w ˙ .� C � 0 C 2� 0
0/

p
w

2w
:

In addition to the benefits of a closed formula, the expression in Equation (12) shows that the asymptotics

of the clump size only depend on the first two eigenvalues �1; �2. Obviously, the following inequalities

hold: �2 � 0 and �1 > ��2. Hence, the series Q�i converges to zero, limi!1
Q�i D 0, if �1 < 1. This

condition holds if most of the words of length ` do not exceed the threshold which is in practice always

true. In most cases, we can also assume �1 < 1 since for �1 > 1 we can transform the PSSM and the

threshold to its complement which yields �1 < 1 and correspondingly use the complementary statistics.
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2.4.6. Two characteristic values for PFMs. The eigenvalues can be used as descriptive values for the

PFM: We call a PFM a palindrome if it allows two hits at the same position on both strands. Considering

a PFM which is not a palindrome, we have  0
0 > 0, thus, � 0

0 D 0. Hence, matrix A has only rank 1 and

we only obtain one non-zero eigenvalue �1 and u D 1. Therefore, Q�iC1 D �i
1

Q�1 decreases exponentially.

Higher values of �1 decelerate convergence. Since Q�1 is the probability of a clump of size one, which means

that no overlap occurs, and �1 corresponds to the probability of an overlap, obviously Q�1 D 1 � �1 holds.

Hence, the clump size has a shifted geometric distribution. This case is similar to the compound Poisson

model for one word considering only one strand described by Robin (2002). Discarding the complementary

strand always leads to �2 D 0 and then both models are equivalent.

A palindromic PFM has �2 < 0 since � 0
0 > 0. If � 0

0 dominates the eigenvalues we obtain �2 � ��1.

In addition, it follows that v � �u. Thus, Q�iC1 � uŒ1 C .�1/i ��i
1

Q�1. This leads to Q�i � 0 for odd i .

It indicates that the probability of an odd clump size is approximately equal to zero. As we assumed a

palindromic PFM with a very high probability of a palindromic hit, one almost always detects a hit on both

or neither strands. In summary, �1 describes the speed of convergence of Q�i to zero and ��2 correlates

with the tendency of palindromic hits.

2.4.7. The p-value for number of hits. Now, we can compute the approximations of the probability

vector E� and the rate parameter r using Equation (1). Using the approximations for the parameters, we

can compute the distribution for the number of hits x � 0. Since the number of hits X is distributed as

CP.r; E�/ we can apply formulas for the compound Poisson distribution (Kemp, 1967):

PH0 .X D 0/ D exp.�r/;

PH0 .X D x C 1/ D r

x C 1

x
X

x0D0

.x C 1 � x0/�xC1�x0 PH0.X D x0/:

The p-value for the occurrence of x � 0 hits is computed by:

p D PH0.X � x/ D 1 �
x�1
X

x0D0

PH0 .X D x0/:

2.4.8. The p-value for number of clumps. The underlying Poisson process for the count statistic is

given by N � P.r/. Since N is the number of clumps, one can use P.r/ to compute p-values p0 for clumps

as the count entity. In this case, we only need to compute the rate r . Equation (1) can be approximated by

Qr D 2˛.n � ` C 1/
P

i>0 i Q�i

:

Next, we show how to compute Qr efficiently by substituting the sum under the assumption �1 < �2 �
0 � �1 < 1. Using the expression in Equation (12), we obtain

X

i>0

i Q�i D
X

i>0

i.u�i�1
1 C v�i�1

2 / � Q�1

D
 

u

�1

X

i>0

i�i
1 C v

�2

X

i>0

i�i
2

!

� Q�1

D
�

u

.1 � �1/2
C v

.1 � �2/2

�

� Q�1:

Again, this equation has an interpretation in terms of the self-overlap of the PFM. In case of a non-

palindromic PFM, the second term is equal to zero since �2 D 0 and, therefore, v D 0. From �2 D 0, it

also follows that w D .� C � 0/2 , hence, u D 1. Since a non self-overlapping PFM has �1 near to zero,

the above equation is equal to 1. Thus, the expected value of the clump size is equal to 1 and the rate for
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clumps is Qr D 2˛.n� `C 1/. Furthermore, Q�1 D 1 contains all the weights of the probability vector. Then,

CP.Qr; .1; 0; : : : // � P.Qr/. Hence, applying the derived statistic to a non self-overlapping PFM leads to a

Poisson process with rate Qr .

2.5. An efficient algorithm for computing overlap probabilities

In Equation (8), we have to compute the joint event of two scores greater than or equal to the threshold.

Given a position j and a shift k, the two scores induce a two dimensional distribution. The first component

is the score s of the PSSM starting at position j . The second component is the score s0 of the PSSM

beginning at position j C k. As an example, consider a PSSM which only accepts ‘CC’. In the case of

a shift k D 1, the score s0 can only exceed the threshold if s is above the threshold. Thus, both scores

are not independent for 0 � k < `. Since scores are the sum of the position specific scores ‰i;� we can

decompose the score into each pair of positions j C i and j C i C k which point to the same sequence

position, and, thus, to the same nucleotide. Then, pairs of scores are independent. Hence, we can use a

dynamic programming algorithm.

The dynamic programming approach is often used for the computation of the one dimensional score

distribution (Staden, 1989; Claverie and Audic, 1996; Wu et al., 2000; Rahmann, 2003; Rahmann et al.,

2003; Beckstette et al., 2006). We extend this approach to two dimensions. Let Q
.k/
i .s; s0/ denote the

probability for a score s at the first i C 1 positions of the PSSM and a score s0 at the first i C 1 � k

positions of the PSSM shifted by k positions. We compute this value by summing over the probabilities

of the last step i � 1 which yield a score s and s0 after observing any nucleotide with its respective score

at step i . With ‰�;� WD 0 for � < 0 or � � `, we obtain for 0 � k < ` and 0 � i < ` C k

Q
.k/

�1.s; s0/ WD
(

undefined if s ¤ 0 or s0 ¤ 0;

1 else;

Q
.k/
i .s; s0/ WD

X

�2†

Q
.k/

i�1.s � ‰i;� ; s0 � ‰i�k;�/ � �� :

After the last step, Q
.k/

`Ck�1
.s; s0/ contains the probability to observe score s starting at position j and

score s0 starting at position j C k. Therefore, PH0 .Sj Ck D s0; Sj D s/ D Q
.k/

`Ck�1.s; s0/ and, hence, we

can solve Equation (8).

2.5.1. Speed improvement. The practical running time of the algorithm can be improved significantly

by some modifications. The last k steps do not modifiy the scores starting at position j since ‰�;� D 0 for

� � `. Hence, instead of the k two-dimensional convolutions, we can obtain Q
.k/

`Ck�1 in one step by using

the one dimensional convolution of the last k positions (Fig. 5). Since Equation (8) sums over all scores

FIG. 5. The left part of the figure shows the sequence with two overlapping hits at position j and j C k. The score

of the overlapping part of the second hit is given by s0. The score of the non-overlapping part is a random variable

whose distribution is the convolution of the position-specific scores of the remaining positions of the PFM gk . The

right part of the figure visualizes this distribution and the probability of the second hit 1 � Gk.t � s0/.
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s starting at position j , we can do the summation before adding the remaining scores:

R.k/.s0/ D
X

s2St

Q
.k/

`�1.s; s0/:

Let f� denote the position specific score distribution at position � of the PSSM and gk denotes the score

distribution for the non-overlapping part for a shift k:

gk WD f`�k � � � � � f`�1:

Using the recursion gkC1 D gk � f`�k�1, we can use a dynamic programming approach for computing the

convolution. Denoting the cumulative distribution for gk with Gk , we can rewrite Equation (8) by:

k D PH0.Yj Ck D 1 j Yj D 1/ D 1

˛

X

s02St

Œ1 � Gk.t � s0/�R.k/.s0/:

We can further improve the speed by removing scores in each step of the calculation of Q which are

too small to reach the threshold (see Beckstette et al. [2006] for the one-dimensional case). Hence, we

define intermediate thresholds ti by

ti WD t �
`�1
X

�DiC1

max
�2†

‰�;� : (13)

In each step i , we can remove scores s < ti and s0 < ti�k . In addition, one can merge scores which will

exceed the threshold t for sure. The corresponding intermediate thresholds t 0
i are defined analogously to

Equation (13) by substituting min with max. Then, in each step i , scores s � t 0
i and s0 � t 0

i�k
can be

merged.

We can further speed up the algorithm by enhancing the effect of these improvements (see Beckstette

et al. [2006] for a similar idea). Processing positions of the PFM with high information content first,

discards many scores which can’t exceed the threshold at all in the first steps. In addition, indefinite

positions (processed at the end) often do not change the score significantly such that either the score has

already been discarded or the score surely exceeds the threshold. This reduces the size of Q significantly.

In summary, the algorithm takes advantage from both a high and a low threshold t : On the one hand,

the higher the threshold, the more scores can be removed in the beginning steps because scores will not

be able to exceed the threshold at all. On the other hand, a low threshold yields many scores which surely

exceed the threshold. As those scores can be merged, the number of different scores (size of Q) stays low.

2.5.2. Time complexity. The complexity of the algorithm for the computation of Q depends on the

length of the PFM `, the size of the set S of all scores, and the alphabet size j†j: O.`2jSj2j†j/. The

length of the PFM ` and the alphabet size j†j are primitives and, therefore, cannot be reduced any further.

In contrast, jSj is a constructed set, hence, we have to analyze its complexity. It is important to note

that the size of S is independent of the threshold and, therefore, of the number of compatible words.

Furthermore, jSj does not grow exponentially with increasing length of the PFM because the scores of a

new column are only added to the overall scores. This only increases the size of S linearly with increasing

PFM length.

3. COMPUTATIONAL RESULTS

3.1. Data

3.1.1. Sequences. To compare the new statistic with previous approaches, we use a simulation study.

We simulate 100,000 sequences of length 10,000 with an arbitrarily selected GC content of 40% using

an i.i.d. model. These sequences are annotated by binding sites of artificially constructed and real PFMs

(see next paragraph). Counting the number of hits/clumps per sequence and computing the frequency for
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each count, one retrieves a simulated count distribution for each PFM. Comparing the simulated count

distribution with the theoretically approximated distributions, we can easily assess the accuracy of the

approximations, as well, as comparing the approximations between themselves.

3.1.2. PFMs. We artificially construct four PFMs, each of them carrying a certain characteristic

regarding self-overlap (Crooks et al., 2004) (Fig. 6):

� Nothing: a PFM without any self-overlaps
� Palindrome: a PFM with a likely hit on the complementary strand
� Repeat: a PFM where the suffix matches the prefix such that one expects overlapping hits in a chain
� Repeatpalindrome: a combination of the palindrome and the repeat.

Furthermore, we arbitrarily pick one real PFM from TransFac (Matys et al., 2003) with a self-overlapping

structure to show that the gain in accuracy is relevant in practice. We select the palindromic PFM M00950

corresponding to the binding site of the MADS domain protein AGAMOUS-like 15 (AGL15) (Tang and

Perry, 2003).

In a pre-processing step, we regularize the PFMs to ensure strictly positive frequencies. Thus, we add

pseudocounts to the position specific distributions according to the information content of the position

(Rahmann, 2003). In fact, positions with low information content are shifted towards the background

distribution. For positions with high information content, the difference to the background distributions is

enforced. Then, we compute PSSMs from the regularized PFMs by taking the log-likelihood ratio of the

nucleotide frequencies of the binding site and the background model.

We set the threshold for each PFM according to Pape et al. (2006) ensuring that the probability ˛500 for

at least one false positive in a sequence of length 500 for any higher threshold is 10% at maximum. Thus,

in the case that one cannot balance ˛500 and ˇ, we obtain ˛500 � 0:1. Furthermore, in case of a balanced

threshold, ˛500 and ˇ will not be exactly equal due to the discrete nature of the score and, thus, of ˛500

and ˇ. Applying this procedure, the number of compatible words for PFM “nothing” using a threshold

t D 136 with ˛500 D 0:013 and ˇ D 0:01 is 1,142 only containing unique words. PFM “palindrome”

(t D 99, ˛500 D 0:129 and ˇ D 0:325) encodes 48 words based on 24 unique words while PFM “repeat”

(t D 128, ˛500 D 0:118 and ˇ D 0:553) has 702 words without any non-unique words and, finally,

“repeatpalindrome” (t D 125, ˛500 D 0:157 and ˇ D 0:649) yields 50 words from which 25 are unique.

Thus, the compatible set of both PFMs with a palindromic structure contain each word twice (for each

strand once). The Transfac PFM ‘M00950’ (t D 118, ˛500 D 0:0785 and ˇ D 0:0747) has 846,976 words

with 429,812 unique words.

3.2. Standard count statistics

In this section, we present the previous count statistics that we compare our approach with. They are

applied on the set of compatible words after removing redundant words such that the assumptions are met.

3.2.1. Binomial and Poisson approximation. A simple approach to compute the p-value for the number

of hits is the assumption of independence between hits. Then, the number of hits have a binomial

distribution. We obtain the p-value pB D 1�B.xI 2n; ˛/ where B.�/ is the cumulative binomial distribution

with parameters x for the number of successes, 2n the number of trials and ˛ the probability of success.

The number of successes corresponds to the number of detected hits. As we consider hits on both strands

and assume independence, the number of trials is twice the length of the sequence.

A statistic for the number of clumps can also be derived. A clump is defined such that it does not overlap

with a previous clump. Hence, the probability ˛0 of a clump can be calcuated by

˛0 D 2.1 � ˛/2`�1˛ C .1 � ˛/2`�2 � ˛2:

The term .1 � ˛/2`�1 is the probability of no hit on the ` � 1 positions before the hit on both strands

plus no hit on the complementary strand at the current position. As a hit can occur on both strands, we

multiply by the factor 2. The last term corresponds to a clump starting with a palindrome. The p-value is

computed by p0
B D 1 � B.xI n; ˛0/.

Both binomial distributions can also be approximated by a Poisson distribution with parameter rP �
2.n � ` C 1/˛ for hits and r 0

P � .n � ` C 1/˛0 for clumps.
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FIG. 6. Sequence Logos from left to right and top to bottom: “nothing,” “palindrome,” “repeat,” “repeatpalindrome,”

and “M00950.”
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3.2.2. Chen-Stein Poisson approximation. Reinert and Schbath (1999) present a Chen-Stein Poisson

approximation for the occurrences of multiple words. We can transform the PFM hit statistic to a word

counting problem using the set of compatible words W. Then, we can use the Chen-Stein approach to

compute the Poisson approximation. There are several problems using this approach: First, enumeration of

all words in W is not possible for longer PFMs. Second, the number of words in W might be fairly high

which leads to large bounds on the total variation distance. Third, incorporation of the complementary

strand can only be achieved by extending W by all reverse complementary words. This almost always

breaks the necessary assumption for the approximation that no word is a substring of any overlap of any

two other words. Therefore, we only use the approximation for the clump statistics because there only the

weaker assumption that no word is a substring of any other word has to be fulfilled. This is indeed the

case except for a palindrome.

In Roquain and Schbath (2007), an improved compound Poisson approximation is proposed. Since this

approach only requires that no word is a substring of any other word for both the clump and the hit

distribution, we also include this approach in the comparison. Still, the main drawback to enumerate all

the compatible words remains. Furthermore, the approach involves multiple matrix multiplications where

the two dimensions of the matrices are equal to the number of compatible words. This leads to numerical

instabilities for large sets of compatible words.

3.2.3. Normal approximation. We can use another multiple word occurrence approach for the number

of hits. Waterman (2000) shows how to compute the limiting covariance matrix as well as the limiting

mean value. These values can be used as parameters for a normal distribution. Again, we need the set of

all compatible words W for the computation.

3.3. Comparison of the different approaches using simulated data

We compare the approaches based on the p-values since the statistic will mainly be used to retrieve

p-values for observed number of hits/clumps. We present them after taking the logarithm to base ten.

Therefore, the p-p plots show log-p-values. The x-axis always refers to the simulated distribution while

the y-axis corresponds to the approximated distribution. The more points are located on the diagonal, the

better the approximation. Furthermore, points below the diagonal correspond to underestimation of the

p-values while points above the diagonal are conservative approximations.

3.3.1. Artificial PFMs. Figure 7A shows the p-p plots of the “nothing” PFM. Most of the points lie

on the diagonal. Furthermore, there is no big difference between the binomial and Poisson approximations,

as well, as the the approach from Roquain and Schbath (2007) and the new approach. Only for very small

p-values, there is a subtle difference between the approximations: The binomial and Poisson approaches

seem to slightly outperform the others. However, the very small p-values are based on very few sequences

because such high numbers of hits/clumps do not occur very often. Therefore, we ignore these points

for interpretation. Only the normal approximation underestimates the p-values systematically. As the

Poisson approximation works better, obviously, the rare word assumption is fullfilled instead of the normal

approximation assuming often-occurring words. The results for clumps do not differ. As there are no

overlaps, both the hit and the clump statistics are similar. Obviously, the new approach captures this

non-self-overlap.

Figure 7B contains the results for the PFM “palindrome.” The single distribution lying on the diagonal

corresponds to our new approach. The binomial, Poisson, the normal and the Roquain and Schbath (2007)

approach substantially underestimate the p-values. For the binomial and Poisson approximation, this is

due to the fact that the number of hits is higher since the PFM tends to hit on both strands the same

time. Furthermore, there are always pairs of points very close to each other. This is due to the hit on the

complementary sequence which always occurs with a hit on the 50-30 strand: Having one hit on one strand

implies a second hit on the other strand. Obviously, only the new approach can deal with this. In contrast,

the Roquain and Schbath (2007) approach does not lead to a reasonable approximation. Since the set of

compatible words contains each word twice but the approach can only deal with a set of unique words, the

weak approximation is not surprising. For statistics of clumps, the Roquain and Schbath (2007) and the new



A
P

P
R

O
X

IM
A

T
IN

G
P

F
M

C
O

U
N

T
S

5
6

1

FIG. 7. Comparison of the simulated p-values (x-axis) with the approximated p-values (y-axis) in a log-scale p-p plot.



562 PAPE ET AL.

approach lie fairly on the diagonal, as well, as the Chen-Stein approximation. Here, the approximations for

the Roquain and Schbath (2007) and the Chen-Stein approach work because for clumps redundant words

in the set of compatible words have no influence.

Figure 7C compares the approximations for the “repeat” PFM. Binomial, Poisson, and normal approx-

imations look very similar. Neither these nor the other two approaches lie on the diagonal, although the

Roquain and Schbath and the new approach are more similar to the diagonal. In general, the Roquain and

Schbath estimates are lower than the ones from the new approach and fit better to the diagonal. In addition,

both approaches are conservative in contrast to the others which significantly underestimate the p-values.

The approximations for the clump statistic are similar except that the new approach slightly underestimates

the p-values for small number of clumps and overestimates them for higher number of clumps. In general,

while the Roquain and Schbath approach obtains higher estimates leading to a more accurate approximation

for small number of clumps but a slightly weaker approximation for higher number of clumps. The other

approaches overestimate the p-values significantly. Here, the Chen-Stein approximation performs as bad as

the binomial/Poisson approximation since the assumption that no word is a substring of the concatenation

of any other two words is extensively violated.

In Figure 7D, the comparisons for the “repeatpalindrome” PFM is shown. In general, the approximations

are similar to the ones of the “palindrome” PFM with some influence of the “repeat” PFM. This shows that

the new approach can deal with both types of similarity at the same time in contrast to all other approaches.

Only the new approach leads to a reasonable approximation of p-values for the number of hits.

3.3.2. PFM M00950. The results for the Transfac PFM M00950 are shown in Figure 7E. Using the

balanced threshold to obtain a probability of a false positive in a region of 500 bp equal to 7.6%, the number

of unique compatible words is equal to 429,812. Therefore, comparison with the Chen-Stein approximation,

the normal approximation, and the Roquain and Schbath approach is not possible because these statistics

could not be computed in a feasible amount of time. The comparison with the simulated p-values shows

that the new approach fits very well. In contrast, the binomial/Poisson approximations show the typical

significant deviation we have already seen for the artificial PFMs. Hence, in such a realistic framework,

the new approach is the only possiblity to compute the count statistic without simulations.

3.4. Characteristic values

Table 1 shows the characteristic values for each PFM. The “nothing” PFM has a low first eigenvalue

while the second eigenvalue is equal to zero. Since the PFM has no self-overlap, these two characteristic

values confirm the analysis given in the method section. For the “palindrome” PFM the equation �1 � ��2

holds because the only self-overlap is given by the the palindromic property of the PFM. The “repeat” PFM

has a much higher first eigenvalue than the “nothing” PFM since it has a strong repeat-structure. Since

there is no palindromic feature within the PFM, we obtain �2 D 0. In constrast, the “repeatpalindrome”

PFM contains both self-overlaps, thus, �2 < 0 but �1 ¤ ��2. Finally, the PFM “M00950” has also a

clear palindromic self-overlap. All these observations are confirmed by the sequence logos (Fig. 6) and

the resulting count statistics (Fig. 7). Thus, the characteristic values describe the self-overlapping features

well. In the given cases, the self-overlap is clear for illustration purposes but in more difficult cases they

shed light on the self-overlapping structure.

TABLE 1. THE TWO CHARACTERISTIC VALUES GIVEN BY THE

EIGENVALUES OF MATRIX A FOR EACH PFM

�1 �2 Comment

Nothing 0.0123 0.0000 �1 small, �2 D 0

Palindrome 0.0016 �0.0016 �1 small, �2 D ��1

Repeat 0.2599 0.0000 �1 large, �2 D 0

Repeatpalindrome 0.1792 �0.1526 �1 large, �2 � ��1

M00950 0.0455 �0.0435 �2 � ��1
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4. DISCUSSION

We have proposed a new approximation for the count statistic of PFMs. In contrast to most previous

works, we incorporate the complementary strand, which introduces further dependencies of overlapping

hits. Due to explicit modeling of these dependencies, as well as dependencies between overlapping hits

on the same strand, we are able to compute precise p-values for any PFM. Furthermore, we have shown

how to compute two characteristic values describing the tendency of overlaps and palindromic hits of a

given PFM with the same algorithm. The time complexity neither depends on the sequence length nor on

the number of compatible words. Therefore, the algorithm is very efficient. It might be further improved

using the Fourier transform with the convolution theorem (Press et al., 1992; Keich, 2005).

Comparison with other approaches shows that our approach has highest accuracy. Furthermore, most of

the competing approaches enumerate all compatible words W. Since jWj grows exponentially with the

length of the PFM the overall-running time is exponential. Hence, the normal approximation (Waterman,

2000), the Chen-Stein approach (Reinert and Schbath, 1999), as well as the Roquain and Schbath (2007)

approach, and the exact approach (Zhang et al., 2007) cannot generally be applied in practice (see

Supplementary Material for a comparison of the running time at http://mosta.molgen.mpg.de).

A major drawback of the new approach is the restricted background model. So far, we only use a

symmetric i.i.d. model defined by the GC content. Therefore, the statistics are symmetric between both

strands. Further studies will show whether more complicated background models which conserve the

symmetry can be used as well.

The count statistic can be used for the upstream annotation of genes as well as mapping of PFMs to

certain genome regions. An extension of the approach to two or more PFMs yield many more applications

like p-values for co-occurrences and similarity between PFMs (Pape et al., 2008).
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