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Game theory analyses optimal strategies for multiple decision makers interacting in a social group.
However, the behaviours of individual humans and animals often deviate systematically from the
optimal strategies described by game theory. The behaviours of rhesus monkeys (Macaca mulatta)
in simple zero-sum games showed similar patterns, but their departures from the optimal strategies
were well accounted for by a simple reinforcement-learning algorithm. During a computer-simulated
zero-sum game, neurons in the dorsolateral prefrontal cortex often encoded the previous choices of
the animal and its opponent as well as the animal’s reward history. By contrast, the neurons in the
anterior cingulate cortex predominantly encoded the animal’s reward history. Using simple
competitive games, therefore, we have demonstrated functional specialization between different
areas of the primate frontal cortex involved in outcome monitoring and action selection. Temporally
extended signals related to the animal’s previous choices might facilitate the association between
choices and their delayed outcomes, whereas information about the choices of the opponent might be
used to estimate the reward expected from a particular action. Finally, signals related to the reward
history might be used to monitor the overall success of the animal’s current decision-making strategy.
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1. INTRODUCTION
In Theory of Games and Economic Behaviour published
in 1944, von Neumann & Morgenstern made two
fundamental contributions to economics. First, they
introduced an axiomatic expected utility theory and
provided a set of conditions that are necessary and
sufficient to describe the preference of a decision maker
among arbitrary choices using a set of numbers referred
to as utilities. The theory, for example, assumes that the
preference is transitive. In other words, if A is preferred
to B and B is preferred to C, this implies that A is
preferred to C. It also assumes that the preference
between the two options is unaffected when a third
option is combined with each of the first two options
with the same probability. When these assumptions are
satisfied, the entire preference relationship between all
available options can be summarized by a utility function
so that a particular option is preferred to another option
if and only if the utility of the former is greater than the
utility of the latter. This implies that the act of choosing
a particular option can be characterized as the process
of utility maximization, and therefore such choice
behaviours are considered rational.

Second, having justified the use of utility function,
von Neumann & Morgenstern (1944) then focused on
the question of social decision making and created
game theory. For animals living in a social group, such
as humans and many other non-human primates, the
outcomes of their choices are determined not just by
the individual’s own action, but by the combined
tribution of 10 to a Theme Issue ‘Neuroeconomics’.
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actions of all animals interacting in the same group.
Assuming that each decision maker or player in the
group is rational and hence maximizes the individual’s
own self-interest as expressed by the utility function,
game theory seeks to find an optimal strategy that
would be taken by such a rational player.

In game theory, a game can be defined by a pay-off
matrix that specifies the utility of an outcome for each
player according to the choices of all players in the
group. The complexity of a game would increase, of
course, with the number of players and the number
of choices available to each player. Therefore, the sim-
plest non-trivial game would consist of two players each
with two alternative choices. A game is referred to as
a zero sum, when the sum of the pay-offs given to all
players is zero for all possible outcomes. For example,
the game described by the pay-offs shown in figure 1a,
known as the matching pennies, is a zero-sum game.
In this example, the two players are a monkey and its
computer opponent (Barraclough et al. 2004; Seo &
Lee 2007; Seo et al. 2007). Each row corresponds to a
particular choice available to the monkey, and each
column to a particular choice available to the computer
opponent. A pair of numbers within each cell of this
matrix then specifies the pay-offs given to the two
players. For example, if both players choose the
rightward target, then the monkey will earn the pay-
off of 1 (e.g. one drop of juice) and the computer will
lose the same amount (of virtual juice). In the standard
matching pennies game, both players earn and lose the
same amount of pay-offs for winning and losing,
respectively. To avoid having to extract juice from the
animal, we changed the pay-off matrix so that when
the animal loses, the pay-offs to both players are zero.
This journal is q 2008 The Royal Society
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Figure 1. In (a) Pay-off matrix for the matching pennies game.
The two numbers within each parenthesis corresponds to the
pay-offs to the animal and the computer opponent, respectively.
(b) Spatio-temporal sequence of the matching pennies task.
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A strategy in game theory is defined as a probability

distribution over a set of alternative actions, and an

optimal strategy is the one that gives the maximum

expected pay-off possible. A strategy that assigns a non-

zero probability to only one action and therefore

chooses that action exclusively is referred to as a pure

strategy. Otherwise, a strategy is referred to as mixed.

In games, the pay-off expected from a particular action

for a given player changes according to the choices of

other players. When the choices of all the other players

are fixed, one or more actions that provide the

maximum pay-off to a given player is referred to as a

best response. If we assume that all players are rational

and try to maximize their pay-offs in response to the

actions chosen by all other players, a set of such players

would play according to a set of strategies in which

the strategy of each player is a best response to the

strategies of all other players. This is referred to as Nash

(1950) equilibrium. By definition, it is not possible for

any player to increase his or her pay-off by deviating

individually from a Nash equilibrium. Therefore,

assuming that all players are rational, a strategy can

be considered optimal for a particular player, if it is a

part of a Nash equilibrium. However, such a Nash-

equilibrium strategy may not be optimal once some

players deviate from the Nash equilibrium.

When the Nash equilibrium for a given game

includes a mixed strategy, such games are referred to

as mixed-strategy games. For example, the matching

pennies game illustrated in figure 1a is a mixed-strategy

game. To understand this, imagine that the monkey

adopts the pure strategy of always choosing the leftward

target. Then, the computer opponent simulating a

rational agent and therefore trying to maximize its own

pay-off would always choose the rightward target,

giving rise to the pay-off of 0 to both players. This

outcome is not optimal for the animal, since it would be
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able to increase its pay-off, for example, by choosing
the leftward and rightward targets each with a 0.5
probability. With this strategy, the animal would receive
the average pay-off of 0.5, not just when the computer
chooses either target exclusively, but for any strategy
that could be chosen by the computer. Indeed, the
strategy to choose the two targets equally often with the
probability of 0.5 is the optimal strategy for the
monkey, and any other strategy can be potentially
exploited by the computer opponent. By the same
token, the optimal strategy for the computer is also to
choose the two targets with equal probabilities, and
these two strategies comprise the Nash equilibrium for
the matching pennies game.

Despite such clear predictions from game theory, the
choice behaviour of human subjects frequently shows
systematic deviations from Nash equilibrium (Camerer
2003). Even for relatively simple two-player mixed-
strategy games, such as the matching pennies, human
subjects do not converge on Nash equilibrium, and
show significant correlation between successive choices,
although such a pattern can be potentially exploited
by their opponents (Budescu & Rapoport 1994;
Mookherjee & Sopher 1994, 1997; Erev & Roth
1998). The results from these studies suggest that
human subjects might use certain learning algorithms to
improve their decision-making strategies and approxi-
mate optimal strategies successively (Lee 2008).

It is possible that the learning algorithms adopted by
human subjects during repeated games might also be
used by other non-human primates. If so, this would
also provide an excellent opportunity to investigate the
neural mechanisms for such learning-related processes
at work for social decision making. Therefore, we
examined whether and how the choice behaviour of
rhesus monkeys (Macaca mulatta) deviates system-
atically from a Nash equilibrium during computer-
simulated zero-sum games. In this paper, we first
summarize the results from these behavioural studies
showing that similar to human subjects, monkeys
showed systematic biases in their choice sequences
that can be accounted for by a relatively simple
reinforcement-learning algorithm (Lee et al. 2004,
2005). We then describe the findings from neurophy-
siological experiments conducted in monkeys perform-
ing the matching pennies task. We found that neurons
in the dorsolateral prefrontal cortex (DLPFC) often
encoded signals related to the previous choices of the
animal and the computer opponent as well as the
animal’s reward history (Barraclough et al. 2004; Seo
et al. 2007). By contrast, neurons in the anterior
cingulate cortex largely encoded the animal’s reward
history (Seo & Lee 2007). Finally, we discuss how these
various signals might be used to approximate optimal
strategies during dynamic decision making in competi-
tive games.
2. REINFORCEMENT LEARNING AND
DECISION MAKING
According to the law of effect (Thorndike 1911), the
behaviours followed by pleasant outcomes are more
likely to recur, whereas the opposite is true for the
behaviours followed by aversive outcomes. This
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suggests that the animal’s behaviour can be understood
as the product of maximizing pleasant outcomes and
minimizing aversive outcomes, as in reinforcement-
learning theory (Sutton & Barto 1998). In reinforce-
ment learning, a value function refers to the animal’s
subjective estimate for the sum of future rewards.
Future rewards are often weighted exponentially
according to their delays, consistent with the obser-
vation that humans and animals often prefer more
immediate rewards than delayed ones (McClure et al.
2004; Kable & Glimcher 2007; Sohn & Lee 2007; Kim
et al. 2008). For the matching pennies task used in our
study (figure 1), the value function for choosing the
leftward and rightward targets in trial t can be denoted
as Qt(L) and Qt(R), respectively. Based on the value
functions, the animal would then choose the rightward
target in trial t with the probability given by the
following softmax function (Sutton & Barto 1998; Lee
et al. 2004):

PtðRÞZ expfbQtðRÞg=½expfbQtðLÞgCexpfbQtðRÞg�;

ð2:1Þ

where b, referred to as the inverse temperature in
analogy to thermodynamics, determines the random-
ness of the animal’s choices. The probability that the
animal would choose the leftward target in the same
trial would be 1KPt(R). Thus, the probability that the
animal would choose the rightward target increases
gradually as the value function for the rightward target
increases relative to the value function for the leftward
target. A large inverse temperature implies that the
animal chooses the target with the higher value
function more or less deterministically, whereas a
small inverse temperature indicates a relatively sto-
chastic choice behaviour. For example, as b approaches
zero, the animal will choose the two targets randomly
with equal probabilities, regardless of the value
functions. The value functions are updated according
to the difference between the reward received by the
agent in trial t, Rt and the reward expected by
the current value functions. In other words

QtC1ðCtÞZQtðCtÞCa½RtKQtðCtÞ�; ð2:2Þ

where Ct (ZL or R) indicates the animal’s choice in
trial t and a corresponds to the learning rate. The value
function was updated only for the target chosen by the
animal in a given trial. This model has two free
parameters, a and b, and they were estimated from
the behavioural data using a maximum-likelihood
procedure (Pawitan 2001; Seo & Lee 2007).

The concepts of value functions in reinforcement-
learning theory and utilities in economics play analo-
gous roles, since both of these quantities dictate the
decision-maker’s choices. Nevertheless, there are some
differences. For example, expected utility theory fo-
cuses on laying axiomatic foundations for the relation-
ship between utility functions and preferences, and
therefore pays little attention to the rules dictating how
the utility functions may change through the decision-
maker’s experience. By contrast, reinforcement-
learning theory assumes that the reward signals can
be easily obtained from the decision-maker’s environ-
ment, and primarily deals with the computational
Phil. Trans. R. Soc. B (2008)
algorithms that can efficiently discover a particular
course of actions to maximize the future rewards
through experience. Therefore, these two approaches
are complementary. If the decision maker has full
knowledge of his or her environment and sufficient
cognitive capacity, formalism provided by the expected
utility theory might provide an accurate description for
the psychological process of decision making. Such
ideal situations, however, may be relatively infrequent
and, therefore, humans and animals may have to resort
frequently to the solutions described by reinforcement-
learning theory.
3. CHOICE BEHAVIOUR OF MONKEYS DURING
COMPETITIVE GAMES
We investigated how the choice behaviour of rhesus
monkeys changes dynamically during the matching
pennies game (Barraclough et al. 2004; Lee et al. 2004).
Three rhesus monkeys (C, E and F) underwent
extensive behavioural testing. At the beginning of
each trial, the animal first fixated a small yellow square
that appeared in the centre of a computer screen
(figure 1b). After a 0.5 s foreperiod, two identical green
peripheral targets were presented along the horizontal
meridian, and the animal was required to maintain its
fixation on the central target until this was extinguished
0.5 s later. Then the animal was required to shift its
gaze towards one of the peripheral targets within 1 s.
The computer opponent chose its target at the
beginning of each trial, and presented a red ring
around its chosen target 0.5 s after the animal shifted
its gaze towards one of the targets. If the animal chose
the same target as the computer, it was rewarded with a
small drop of juice 0.5 s after the onset of the feedback
ring. Otherwise, the animal did not receive any reward
in that trial (figure 1a).

Initially, each animal was tested while the computer
opponent blindly adopted the Nash equilibrium and
chose the two targets randomly and equally frequently.
This condition was referred to as algorithm 0, and was
used to examine the intrinsic bias that might be
displayed by the animal, because in this condition,
the expected pay-offs from the two targets were equal
and independent of the animal’s choice. Not surpris-
ingly, during this period, the probability that the
animal would choose the rightward target varied
idiosyncratically across the animals. Each of the three
monkeys tested with algorithm 0 chose the rightward
target in 70, 90.2 and 33.2 per cent of the trials.
Despite this variability in how often the animals chose
each of the two targets, all of them were rewarded
roughly in 50 per cent of the trials (49.7, 49.9 and
48.9% for monkeys C, E and F, respectively), since the
computer selected its targets randomly regardless of the
animal’s choice behaviours.

In the next stage of the experiment, the computer
opponent analysed the animal’s choices in all the
previous trials of a given session and tested whether
the animal displayed any systematic biases in its choice
sequence. When the computer detected a significant
bias in the animal’s choice history, this bias was
exploited to predict the animal’s choice in the next
trial. This is referred to as algorithm 1. For example, the
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computer tested whether the animal has chosen the two
targets equally frequently, whether the animal tended to
alternate between the two targets in successive trials,
whether the animal tended to switch to the rightward
target after choosing the leftward target in two
successive trials, and so forth. This was accomplished
by testing a series of conditional probabilities that the
animal would choose the rightward or leftward target
given the choices made by the animal in the last n trials
(nZ0–4). The null hypothesis that each of these
conditional probabilities was 0.5 was tested using the
binomial test. If none of these null hypotheses was
rejected at the significance level of 0.05, it was then
assumed that the animal chose the two targets equally
often and independently across successive trials, and the
computer chose each target with the probability of 0.5.
If one or more null hypotheses were rejected, then the
computer biased its target according to the conditional
probability that was significantly different from 0.5 and
deviated maximally from 0.5. If the animal was expected
to choose the rightward target, e.g. with the probability
of 0.8, then the computer chose the leftward target with
the probability of 0.8. Accordingly, in order to maximize
its overall reward, the animal was required to choose the
two targets equally often and independently across
successive trials.

We found that once the computer opponent
switched to algorithm 1, the choices of the animals
were much more evenly distributed between the two
targets, and became more independent across succes-
sive trials. The percentage of trials in which the animal
chose the rightward target was 48.9, 51.1 and 49 in the
three animals, respectively. In addition, the probability
that the animal would choose the same target as in the
previous trial was close to 0.5 (Lee et al. 2004). By
contrast, the animal was more likely to choose the same
target as in the previous trial after it was rewarded and
to switch to the other target otherwise (figure 2). In the
matching pennies game, this so-called win–stay lose–
switch strategy is equivalent to the strategy of choosing
the same target chosen by the computer opponent in
the previous trial, since the animal was rewarded only
when it chose the same target as the computer. Overall,
the three animals tested with algorithm 1 chose their
targets according to the win–stay lose–switch strategy
in 64.6, 73.1 and 63.3 per cent of the trials,
respectively. It should be noted that in algorithm 1,
such a frequent use of the win–stay lose–switch strategy
was not penalized, since the computer did not analyse
the conditional probability of the animal’s choice based
on the animal’s reward history. Therefore, despite the
frequent use of the win–stay lose–switch strategy,
the animal was rewarded in roughly half of the trials
(48.9, 49.1 and 49.5% for monkeys C, E and F,
respectively). Each animal was tested with algorithm 1
for several weeks (36, 63 and 26 days for monkeys C, E
and F, respectively), and the animals performed on
average approximately 1000 trials each day. Interest-
ingly, during the entire period of algorithm 1, the
probability that the animal would choose its target
according to the win–stay lose–switch strategy gradu-
ally increased (figure 2), even though this was not
accompanied by an increase in the reward rate.
Thus, the animals increased the tendency to adopt
Phil. Trans. R. Soc. B (2008)
the win–stay lose–switch strategy spontaneously (Lee

et al. 2004). This suggests that the animals might have
been more explorative and made their choices more

randomly in the initial phase of the task. The fact that

the frequency of such explorative behaviours decreased
without any changes in the reward rate also suggests

that such behaviours might be metabolically costly.

A frequent use of the win–stay lose–switch strategy
can be detrimental to the decision maker during a

competitive game, such as the matching pennies, since

it can be exploited by the opponent. Therefore, to test
whether monkeys are capable of suppressing the win–

stay lose–switch strategy during competitive games, we

modified the algorithm used by the computer opponent
so that the computer could exploit the win–stay lose–

switch and other similar strategies used by the animal.

In this so-called algorithm 2, the computer tested a
series of conditional probabilities that the animal would

choose a particular target given the animal’s choices

and reward outcomes in the last n trials (nZ1–4). The
computer tested the null hypothesis that each of these

conditional probabilities as well as the conditional

probabilities tested in algorithm 1 is all 0.5. Then it
followed the same rule used in algorithm 1 to bias its

choice when this null hypothesis was rejected. We

found that once the computer opponent switched to
algorithm 2 and began penalizing the frequent use of

the win–stay lose–switch strategy, the animal gradually

reduced the probability of using the win–stay lose–
switch strategy (Lee et al. 2004). Overall, three

monkeys tested with algorithm 2 chose their target

according to the win–stay lose–switch strategy in 54.8,
53.5 and 56.5 per cent of the trials. Compared to the

results obtained with algorithm 1, these values were

closer to 50 per cent, but they were still significantly
higher than 50 per cent. As a result, although the

probability that the animal would be rewarded was

relatively close to 0.5 (47.6, 47 and 47.8%, for
monkeys C, E and F, respectively), it was significantly

lower than values obtained for algorithm 1.
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If an animal adjusts its strategy according to a
reinforcement-learning algorithm, the value function
for a given action would increase after the same action
is rewarded, and the probability for adopting the win–
stay lose–switch strategy would be relatively high.
Therefore, a relatively frequent use of the win–stay
lose–switch strategy during the matching pennies game
suggests that the animals might have adjusted their
decision-making strategies according to a reinforce-
ment-learning algorithm. Moreover, the frequency of
using the win–stay lose–switch strategy decreased
dramatically when the computer opponent switched
to algorithm 2. This might be accounted for by some
changes in the parameters of a reinforcement-learning
model. For example, the probability of using the win–
stay lose–switch strategy would increase with the
learning rate, because a small learning rate implies
only small changes in the animal’s strategy after each
trial. Alternatively, the probability of using the win–stay
lose–switch strategy can also increase with the inverse
temperature, since this would reduce the animal’s
random choices. To distinguish between these two
possibilities, we applied the reinforcement-learning
model described above separately to the behavioural
data obtained from each session. The results showed
that the inverse temperature was significantly smaller
for algorithm 2 than for algorithm 1 in two animals
(monkeys E and F; paired t-test, p!0.01; figure 3).
The difference in the learning rate was more robust,
and became significantly smaller during the sessions
tested with algorithm 2 in all three animals (paired
t-test, p!0.01). Overall, these results suggest that
depending on the strategies used by the computer
opponent, the learning rate in the reinforcement
learning and in some cases the inverse temperature
that controlled the randomness of the animal’s choices
were adjusted. This might be driven by the process of
meta-learning and controlled by long-term changes in
the animal’s reward probability (Schweighofer & Doya
2003; Soltani et al. 2006).
4. ENCODING OF VALUE FUNCTIONS IN THE
FRONTAL CORTEX
A large proportion of the brain is devoted to the
problem of decision making. In particular, numerous
studies have identified signals related to various aspects
of reward in many different brain regions. In many
cases, such signals appear during the time when the
animal is choosing between multiple alternative actions
and planning a chosen action, and therefore might
correspond to the expected utility or value function for
the reward anticipated by the animal (Lee 2006). For
example, neurons in the posterior parietal cortex often
modulate their activity according to the likelihood that
the animal would receive reward following an eye
movement directed towards the neuron’s receptive field
(Platt & Glimcher 1999; Dorris & Glimcher 2004;
Sugrue et al. 2004; Yang & Shadlen 2007). Similarly,
neurons in the basal ganglia as well as the prefrontal
cortex and the cingulate cortex often change their activity
according to the magnitude, probability and immediacy
of expected reward (Watanabe 1996; Hollerman et al.
1998; Kawagoe et al. 1998; Leon & Shadlen 1999;
Phil. Trans. R. Soc. B (2008)
Kobayashi et al. 2002; Shidara & Richmond 2002;
Roesch & Olson 2003; McCoy & Platt 2005; Samejima
et al. 2005; Sohn & Lee 2007). These results suggest that
the signals related to the expected utility and value
function for the reward anticipated by the animal might
be encoded in multiple areas of the brain. How these
different areas contribute to specific aspects of decision
making is currently an active area of research (Lee et al.
2007). For example, an important function of the medial
frontal cortex, including the dorsal anterior cingulate
cortex (ACCd) and supplementary motor area, might be
to integrate the information about the costs and benefits
of particular behaviours (Shidara & Richmond 2002;
Sohn & Lee 2007; Rushworth et al. 2007). In addition, it
has been proposed that the ACCd might play a more
important role in selecting an action voluntarily and
monitoring its outcomes (Walton et al. 2004; Kennerley
et al. 2006; Matsumoto et al. 2007; Quilodran et al.
2008), whereas the orbitofrontal cortex might be more
involved in encoding the subjective value of reward
expected from the animal’s behaviours (Padoa-
Schioppa & Assad 2006; Rushworth & Behrens 2008).

We investigated whether the neurons in the DLPFC
and the ACCd modulate their activity according to the
value functions during the matching pennies game.
Activity was recorded extracellularly from 322 neurons
in the DLPFC (Seo et al. 2007) and 154 neurons in the
ACCd (Seo & Lee 2007). We then tested whether
neuronal activity was related to the sum of the value
functions associated with the two alternative targets or
their difference, using the following regression model:

StZa0Ca1CtCa2fQtðLÞCQtðRÞgCa3fQtðLÞKQtðRÞg;

ð4:1Þ

where St denotes the spike rate in a particular analysis
window of trial t; Ct the animal’s choice in trial t; Qt(L)
and Qt(R) the value functions for the leftward and
rightward targets, respectively, that were estimated on a
trial-by-trial basis using the reinforcement-learning
model described above; and a0wa3 the regression
coefficients. If the reinforcement-learning model des-
cribed the animal’s choice behaviour well, the learning
rate (a) should be between 0 and 1 and the inverse
temperature (b) should be larger than 0. Therefore,
neurons were excluded from this analysis, if a!0, aO1
or b!0 for the behavioural data that were collected
concurrently. As a result, 291 neurons in the DLPFC
and 148 neurons in the ACCd were included in this
analysis. The sum of value functions would provide the
information about the overall reward rate, whereas
the difference in the value functions would indicate
which choice would be more desirable. Therefore, these
two quantities were used in this regression model, rather
than the value functions of individual targets (Seo & Lee
2007). For example, if the activity of a given neuron
increases similarly with the value functions of both
targets, this would largely influence the regression
coefficient for the sum of the value functions, but not
for the difference in the value functions. In addition,
the difference in the value functions would be cor-
related with the animal’s choice, and therefore, we
included the animal’s choice as a dummy variable in this
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Error bars, s.e.m.
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regression in order to control for the neural activity

directly related to the animal’s choice.

We evaluated the statistical significance for each of

the regression coefficients included in the above model

using two different methods. First, we used a t-test to

determine the p-value for each regression coefficient.

Although this is the standard method to evaluate the

statistical significance for regression coefficients, it may

not be appropriate in the present application, because

the value functions estimated for successive trials are

not independent but correlated. Since this violates the

independence assumption in the regression analysis,

the statistical significance determined by a t-test is

likely to be inflated. Second, to address this concern,

we also performed a permutation test. In this method,

we randomly shuffled the order of trials and recal-

culated the value functions according to the shuffled

sequences of the animal’s choices and rewards. We then

recalculated the regression coefficients for the same

regression model. This procedure was repeated 1000

times, and the p-value for each regression coefficient

was given by the frequency of shuffles in which the

magnitude of the original regression coefficient was

exceeded by that of the regression coefficients obtained

after shuffling.

A substantial proportion of the neurons in both the

DLPFC and ACCd significantly modulated their

activity according to the sum of the value functions,

while others modulated their activity according to

the difference of the value functions. For example, the

DLPFC neuron shown in figure 4a modulated their

activity according to the difference in the value fun-

ctions, whereas the ACCd neuron shown in figure 4b
changed their activity significantly according to the
Phil. Trans. R. Soc. B (2008)
sum of the value functions. When the statistical

significance was evaluated with the t-test, 33 and 34.5

per cent of the neurons in the DLPFC and ACCd, res-

pectively, showed significant changes in their activity

related to the sum of the value functions during the

delay period. However, this percentage decreased

significantly when the permutation test was used.

Results from the permutation test showed that during

the delay period, the percentage of neurons significantly

modulating their activity according to the sum of the

value function was 18.9 and 23.7 per cent for the

DLPFC and ACCd, respectively (figure 5, SQ, black

bars). This suggests that the neural activity related to

the sum of value functions might be overestimated

when it is tested with the t-test, presumably because the

value functions for a given target in successive trials are

correlated. The proportion of the neurons showing

significant modulations related to the sum of the value

functions was not significantly different for the DLPFC

and ACCd (c2-test, pO0.05).

In both the DLPFC and ACCd, the proportion of

neurons that modulated their activity according to the

difference in the value functions for the two targets was

lower than that for the sum of the value functions. For

example, when examined with the t-test, 25.4 and 14.9

per cent of the neurons in the DLPFC and ACCd,

respectively, showed significant modulations in their

activity during the delay period according to the

difference in the value functions. When examined

with the permutation test, 13.1 per cent of the neurons
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Figure 5. Fraction of neurons in the (a) DLPFC (NZ291)
and (b) ACCd (NZ148) that significantly modulated their
activity according to the animal’s choice, the sum of the
value functions for the two targets (SQ) and the difference in
the value functions (DQ) during the delay period in the
matching pennies task. The statistical significance of each
regression coefficient was determined by a permutation
test. Different colours correspond to the results obtained
from different regression models. Base model includes only
the animal’s choice and the linear combinations (sum and
difference) of the value functions. Filled circles above the
bars indicate that the corresponding fraction is significantly
larger than the significance level used ( pZ0.05; binomial
test, p!0.05), whereas open circles indicate that
the difference between the DLPFC and ACCd was signifi-
cant (c2-test, p!0.05). Black, base (equation (4.1)); green,
base CC (equation (4.2)); brown, base C P (equation (4.3));
red, base C R (equation (4.4)); blue, base CCCPCR, where
C, P and R indicate the animal’s choice, the computer’s
choice, and reward in the previous trial, respectively, in the
regression model.
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in the DLPFC showed significant changes in their

activity related to the difference in the value functions

(figure 5, DQ, black bars), and this was still significantly

higher than expected by chance given the significance

level used ( pZ0.05). By contrast, the proportion of the

neurons showing the significant effect of the difference

in the value function in the ACCd (5.4%) was not

significantly higher than expected by chance. There-

fore, there was little evidence for the signals related to

the difference in the value functions in the ACCd. In

addition, the proportion of neurons showing significant

modulations in their activity related to the difference in

the value functions was significantly higher in the

DLPFC than in the ACCd (c2-test, p!0.05).

The regression model used in the above analysis

provides useful insight into the nature of signals

encoded in the activity of individual neurons in the

DLPFC and ACCd. However, these results do not test

directly the possibility that the neural activity in these

two cortical areas encode the value functions only

indirectly. In other words, the correlation between
Phil. Trans. R. Soc. B (2008)
neural activity and value functions might be spurious
and mediated by some other factors. For example, the
value function for a given target is gradually adjusted
according to the reward prediction errors (equation
(2.2)), so their values in successive trials tend to be
correlated. As a result, if the value function for the
rightward target is larger than the value function for
the leftward target in a given trial, the same is likely
to be true in the next trial. The difference in the value
functions for the two targets in a given trial may
therefore be related to the animal’s choice not only in
the same trial but also in the previous trial. To test
whether the neural activity related to the difference in
the value functions might be due to the effect of the
animal’s previous choice, we included the animal’s
choice in the previous trial as an additional dummy
variable in the regression model described above
(equation (4.1)). In other words,

St Z a0 Ca1Ct Ca2fQtðLÞCQtðRÞg

Ca3fQtðLÞKQtðRÞgCa4CtK1: ð4:2Þ

The results showed that the proportion of neurons that
showed significant modulations in their activity related
to the sum of the value functions and their difference
was little affected by this change (figure 5, green bars).
Therefore, the animal’s choice in the previous trial did
not have any major effect on the activity related to the
difference in the value functions.

During the matching pennies game, the probability
that the opponent would choose a particular target
determines the pay-off expected from the same target.
For example, if the computer frequently chooses the
rightward target, this would increase the value function
for the rightward target relative to the leftward target.
Therefore, activity of neurons that change their activity
according to the choice of the computer opponent
may show significant correlation between its activity
and the difference in the value functions for the two
targets. This was tested by adding to the regression
model a dummy variable corresponding to the choice
of the computer opponent in the previous trial.

St Z a0 Ca1Ct Ca2fQtðLÞCQtðRÞg

Ca3fQtðLÞKQtðRÞgCa4PtK1; ð4:3Þ

where Pt denotes the computer’s choice in trial t. When
the permutation test was used to evaluate the statistical
significance for the regression coefficients in this
model, 18.2 and 23 per cent of the neurons in the
DLPFC and ACCd, respectively, showed significant
modulations in their activity according to the sum of
the value functions, whereas the corresponding percen-
tages for the difference in the value functions were 11.3
and 4.7 per cent, respectively (figure 5, brown bars).
Therefore, similar to the results from the model that
included the animal’s previous choice, adding the
computer’s previous choice did not have a major influ-
ence on the proportion of neurons encoding signals
related to the value functions. This indicates that the
activity related to the value functions in the DLPFC
and ACCd did not result entirely from the choice of
the computer opponent in the previous trial.
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When the animal is rewarded during the matching
pennies game, this produces a positive reward predic-
tion error and therefore increases the value function for
the target chosen by the animal. The value function of
the unchosen target remains unchanged. Therefore,
following a rewarded (unrewarded) trial, the sum of the
value function would increase (decrease). Therefore, if
a particular neuron tended to increase (decrease) its
activity in a given trial after the animal was rewarded in
the previous trial, then the activity of this neuron might
be positively (negatively) correlated with the sum of the
value functions. This raises the possibility that at least a
part of the signals related to the sum of the value
functions might arise from the signals related to the
animal’s reward in the previous trial. To test this, we
included the animal’s reward in the previous trial, RtK1,
in the regression model. Namely,

St Z a0 Ca1Ct Ca2fQtðLÞCQtðRÞg

Ca3fQtðLÞKQtðRÞgCa4RtK1: ð4:4Þ

As expected, the proportion of the neurons modulating
their activity according to the sum of the value
functions decreased significantly when the animal’s
reward in the last trial was included in the regression
model. This was true for both the DLPFC and ACCd
(c2-test, p!0.005; figure 5, red bars). When the
permutation test was used to evaluate the statistical
significance, the proportion of such neurons in the
DLPFC and ACCd was 7.2 and 12.8 per cent,
respectively. This was still significantly higher than
expected by chance for both areas (binomial test,
p!0.05). However, it suggests that the neural activity
in the DLPFC related to the sum of the value functions
was largely due to the effect of the previous reward,
whereas in the ACCd it might result from the animal’s
reward history extending beyond the last trial. Finally,
we have also tested a regression model that includes the
animal’s choice, the choice of the computer opponent
and the reward in the previous trial. The results from
this model were similar to those obtained from the
model that included only the reward in the previous
trial in addition to the animal’s choice and value
functions in the current trial (figure 5, blue bars).
5. ENCODING OF CHOICES AND OUTCOMES IN
THE FRONTAL CORTEX
The results described in §4 showed that the activity in
the DLPFC and ACCd encodes the sum of the value
functions, and that the difference in the value functions
might be encoded by some neurons in the DLPFC. In
addition, activity in both areas was still correlated with
the sum of the value functions, even when the effect of
the animal’s reward in the previous trial was factored
out. Since the sum of the value functions is estimated
from the animal’s reward history, this suggests that the
activity in these cortical areas might be influenced by
the reward received by the animal more than a trial
before the current trial. The proportion of neurons in
the DLPFC modulating their activity according to the
difference in the value function was significantly higher
than expected by chance and only weakly influenced
when all the behavioural variables in the previous trial
Phil. Trans. R. Soc. B (2008)
were included in the regression model. This suggests
that neurons in the DLPFC might encode signals
related to the animal’s choice and reward for multiple
trials in the past. To test this, and to further investigate
the nature of signals encoded in the DLPFC and ACCd
while avoiding the problems related to the serial
correlation in the value functions, we applied a regres-
sion analysis in which the behavioural variables in the
current and previous three trials were included as
dummy variables. In other words,

St Z a0 CAC ½CtCtK1CtK2CtK3�
0 CAP ½PtPtK1PtK2PtK3�

0

CAR½RtRtK1RtK2RtK3�
0; ð5:1Þ

where Ct, Pt and Rt refer to the computer’s choice, the
choice of the computer opponent and the animal’s
reward in trial t, and AC, AP and AR are row vectors
including the corresponding regression coefficients.

Neurons in both the DLPFC and ACCd often
modulated their activity according to the animal’s
choice, the choice of the computer opponent and the
animal’s reward in current and previous trials (figure 6).
The signals related to the animal’s choice in the
DLPFC gradually increased during the foreperiod
and delay period before the animal shifted the gaze
towards its chosen target. During the delay period, 19.9
per cent of the neurons in the DLPFC showed
significant modulations in their activity according to
the animal’s upcoming choice (figure 6a, trial lagZ0).
During the same period, many more neurons (39.8%)
modulated their activity according to the animal’s
choice in the previous trial (figure 6a, trial lagZ1), and
11.2 per cent of the neurons changed their activity
according to the animal’s choice two trials before the
current trial (figure 6a, trial lagZ2). During the
foreperiod and delay periods, the activity of many
DLPFC neurons was also affected by the choice of the
computer opponent in the previous trial (figure 6b) as
well as whether the animal was rewarded in the
previous trial or not (figure 6c). During the delay
period, 18 and 32.9 per cent of the neurons in the
DLPFC showed significant modulations in their
activity according to the computer’s choice and reward
in the previous trial, respectively. A significant pro-
portion of neurons in the DLPFC changed their
activity in relation to the reward received by the animal
even two (10.9%) or three (7.1%) trials before the
current trial.

Many neurons in the DLPFC modulated their
activity according to more than one of these variables.
An example neuron in the DLPFC showing the effect of
multiple variables is shown in figure 7. This neuron
increased its activity during the eye movement period
after fixation target offset when the animal chose the
rightward target more than when the animal chose
the leftward target. In addition, the activity of this
neuron during the delay period increased more when
the animal chose the rightward target in the previous
trial (figure 7a, trial lagZ1) and showed a slight but
significant decrease when the animal had chosen the
rightward target two trials before the current trial
(figure 7a, trial lagZ2). The same neuron also increased
its activity more when the computer opponent chose the
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rightward target compared to when the computer chose
the leftward target, and this difference was maintained
throughout the next trial (figure 7b, trial lagZ1). Finally,
the activity of this neuron was reduced when the animal
was rewarded in a given trial (figure 7c, trial lagZ0).
When analysed with the regression model that included
the linear combinations of value functions for the two
targets, this neuron also showed a significant modulation
in its activity according to the difference in the value
functions for the two targets (figure 4a).

Compared to the DLPFC, neurons in the ACCd
modulated their activity more frequently according
to the reward received by the animal in the current
or previous trials. An example neuron in the ACCd
that showed the effect of rewards in previous trials is
shown in figure 8. By contrast, activity in the ACCd
was less frequently affected by the animal’s choice or
the choice of the computer opponent (figure 6). During
the delay period, only 18.2 and 7.8 per cent of the
ACCd neurons modulated their activity according to
the animal’s choice and the computer’s choice in the
previous trial, respectively. The proportion of neurons
that changed their activity according to the animal’s
choice or the computer’s choice two trials before
the current trial was not significantly higher than the
significance level used ( pZ0.05). By contrast, during
the delay period, 45.5, 18.2 and 11 per cent of the
ACCd neurons changed their activity significantly
according to whether the animal was rewarded or
not in each of the last three trials, respectively. In
addition, the proportion of the neurons that changed
their activity during the feedback period according
to whether the animal was rewarded or not in the
same trial was significantly higher in the ACCd
(81.8%) than in the DLPFC (68.90%; c2-test, p!
0.05). Therefore, although the signals related to the
animal’s choice and the computer’s choice were more
weakly represented in the ACCd than in the DLPFC,
ACCd neurons showed more robust modulations in
their activity according to the reward in the current
and previous trials.

In summary, during the matching pennies game,
neurons in the lateral (DLPFC) and medial (ACCd)
frontal cortex represent at least three different types of
signals that are related to the animal’s choice and its
outcome (i.e. reward) in addition to the choice of the
computer opponent. In the DLPFC, signals related to
the animal’s choice and reward were both strongly
represented, whereas in the ACCd, reward-related
signals were dominant. In both areas, some neurons
also encoded signals related to the choice of the com-
puter opponent, but this was relatively weak. All of
these signals decayed gradually over the course of two
to four trials.
6. FUNCTIONAL SIGNIFICANCE OF SIGNALS
RELATED TO CHOICE AND OUTCOME
The results described above indicate that signals
related to the animal’s choice, the computer’s choice
and reward persisted across several trials in the primate
frontal cortex. Therefore, they might contribute to the
process of monitoring the outcomes from previous
choices and updating the animal’s decision-making
Phil. Trans. R. Soc. B (2008)
strategies accordingly. For example, the signals related
to the animal’s previous choices might be necessary to
link the animal’s particular action to its outcome, if the
outcome of a particular choice is revealed only after a
certain delay. Such memory signals are referred to as
eligibility trace (Sutton & Barto 1998), and might be
essential for determining how the value functions
should be adjusted (Kim et al. 2007; Lau & Glimcher
2007; Seo et al. 2007). In this study, we have
considered a relatively simple reinforcement-learning
model in which only the value function for the action
chosen in the current trial was updated according to its
outcome. It remains to be seen whether the animal’s
choice behaviour during various decision-making tasks
can be better accounted for by the model endowed with
eligibility traces. Although the anatomical locus or loci
in which the value functions are updated are not
known, this requires a convergence of signals related to
the value functions and reward prediction errors. This
may occur in the DLPFC, since a significant number of
neurons in the DLPFC encoded the value functions of
alternative actions differentially. In addition, dopamine
neurons that encode reward prediction errors (Schultz
1998) project to the DLPFC (Brown et al. 1979; Lewis
et al. 2001). The presence of eligibility trace in the
DLPFC raises the possibility that this might be used
during the process of updating value functions in the
DLPFC. Interestingly, the neural signals related to
the animal’s previous choices have been observed in
the striatum even when the animal was required to
choose its action according to a sensory stimulus
(Kim et al. 2007; Lau & Glimcher 2007). In addition,
striatal neurons receive dense projections from the
dopamine neurons (Reynolds & Wickens 2002) and
also encode the value functions for specific actions
(Samejima et al. 2005). Therefore, it is possible that
the striatum might also play a role in updating the
value functions.

Compared to the ACCd, neurons in the DLPFC
were more likely to encode the signals related to the
computer’s previous choices. These signals might play
an important role in updating the animal’s decision-
making strategies when the task involves competitive
interactions with other decision makers. For example,
during the matching pennies game, the probability that
the animal would be rewarded for choosing a particular
target is equivalent to the probability that the same
target would be chosen by the computer opponent.
Therefore, the signals related to the previous choices of
the opponent might be used to update the value
functions of alternative actions. Finally, neurons in
the DLPFC and ACCd commonly displayed modu-
lations in their activity according to the animal’s reward
history. Signals related to the animal’s previous rewards
can provide some information about the local rate of
reward, namely, how often the animal has been
rewarded recently. This information can be then used
as a reference point against which the desirability of
reward in a particular trial is evaluated (Helson 1948;
Flaherty 1982; Sutton & Barto 1998; Frederick &
Loewenstein 1999). For example, the same reward
might be considered more desirable and influences the
animal’s future behaviour more strongly when it was
preceded by a number of unrewarded trials. Indeed,
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reward-related signals in the ACCd were quite
heterogeneous (Seo & Lee 2007), and this might
reflect the processes of computing average reward rate
and evaluating how the outcome of a particular choice
deviates from this reference point. For example, ACCd
neurons that increase (or decrease) their activity
consistently according to the reward in the current
and previous trials might encode the average reward
rate. By contrast, some neurons in the ACC modulated
their activity antagonistically in response to the reward
in the current trial and those in the previous trials. Such
neurons might signal the extent to which the reward in
the current trial deviates from the local reward rate
(Seo & Lee 2007; Matsumoto et al. 2007).
7. CONCLUSIONS
In the past several years, remarkable progress has
been made in our understanding of neural substrates
responsible for monitoring the consequences of volun-
tary actions and incorporating this information to
update decision-making strategies. This progress was
facilitated by the use of formal frameworks imported
from such diverse disciplines as economics, psychology
and machine learning. These frameworks provide the
tools necessary to estimate the hidden variables, such as
utility and value functions, that mediate the process of
decision making (Corrado & Doya 2007). They also
Phil. Trans. R. Soc. B (2008)
provide useful insights into the design of behavioural
tasks necessary to identify specific neural substrates
of decision making. In particular, a large number of
experiments guided by game theory have probed the
underlying neural processes involved in socially inter-
active decision making (Sanfey 2007; Fehr & Camerer
2007; Lee 2008). Some of these experiments focused on
the neural correlates of altruistic preferences and
cooperation (Rilling et al. 2002; Moll et al. 2006;
Harbaugh et al. 2007), whereas others have found that
some brain areas, such as the anterior paracingulate
cortex, might be specialized in analysing the mental
states of other decision makers (McCabe et al. 2001;
Gallagher et al. 2002; Rilling et al. 2004a). When a group
of decision makers have the opportunity to interact
repeatedly, their strategies can be influenced by their
previous experience. During this process, the neural
circuitry involved in reinforcement learning plays an
important role (Lee 2008). For example, the activity in
the striatum reflects the outcomes of social decision
making during the Prisoner’s Dilemma game (Rilling
et al. 2004b) and trust game (King-Casas et al. 2005).

We have investigated the behavioural choices of
rhesus monkeys during a computer-simulated competi-
tive game. Consistent with the findings from behavioural
studies in humans, the animals used a relatively simple
reinforcement-learning algorithm to arrive at a nearly
optimal strategy during this task. In addition, we also
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found that the activity of neurons in the lateral prefrontal

cortex and the ACCd can be selectively linked to specific
subprocesses of reinforcement learning. How complex

decision-making tasks encountered in our daily lives can
be efficiently solved by the brain, however, is still largely

unknown, and this will require more intimate inter-
actions across multiple disciplines.

All the procedures used in this study were approved by the
University of Rochester Committee on Animal Research,
and conformed to the US Public Health and Service Policy
on Humane Care and Use of Laboratory Animals and the
Guide for the care and use of laboratory animals (Academic
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