
Phil. Trans. R. Soc. B (2008) 363, 4041–4047

doi:10.1098/rstb.2008.0140
The impact of single substitutions on multiple
sequence alignments

Published online 7 October 2008
Steffen Klaere*, Tanja Gesell and Arndt von Haeseler
One con
computa

*Autho
Center for Integrative Bioinformatics Vienna, University of Vienna, Medical University Vienna, Veterinary
University Vienna, Max F. Perutz Laboratories, Dr Bohrgasse 9, 1030 Wien, Austria

We introduce another view of sequence evolution. Contrary to other approaches, we model the
substitution process in two steps. First we assume (arbitrary) scaled branch lengths on a given
phylogenetic tree. Second we allocate a Poisson distributed number of substitutions on the branches.
The probability to place a mutation on a branch is proportional to its relative branch length. More
importantly, the action of a single mutation on an alignment column is described by a doubly
stochastic matrix, the so-called one-step mutation matrix. This matrix leads to analytical formulae for
the posterior probability distribution of the number of substitutions for an alignment column.
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1. INTRODUCTION
Tree reconstruction is nowadays a matter of routinely
applying the available programs, comparing the result-
ing trees and then concluding what might be the best
tree (e.g. Hillis et al. 1996; Felsenstein 2004; Schmidt &
von Haeseler 2008). With the advent of Baysian
approaches, it is possible to model increasingly complex
evolutionary scenarios (Huelsenbeck & Ronquist 2001).
However, a detailed understanding about what can and
cannot be inferred (Baake 1998; Mossel & Steel 2005)
from a sequence alignment is still missing. In recent
years, some theoretical insights were obtained by
studying very simple models of sequence evolutions on
binary sequence data (e.g. Erdös et al. 1999a,b).
Although these models are not realistic in a biological
sense, they have provided some profound insights in the
reconstruction process per se.

Here, we will introduce another description of the
evolutionary process on trees. More precisely, given a
phylogenetic tree and an alignment that evolved along
the tree, we now ask the following question: how does
the alignment change if an additional substitution on
an arbitrary branch of the tree takes place? This rather
abstract question is motivated by the following
biological problem. Consider a collection of morpho-
logical traits that are either in an ancestral (0) or
derived (1) state. Each derived character state charac-
terizes a monophyletic group and represents a cluster in
the tree. For such a data matrix (or alignment), the tree
reconstruction problem is easy. However, stochastic
effects that act somewhere on the branches of the tree
may disturb this signal. This noise is modelled by the
assumption of throwing an arbitrary number of changes
on the tree and measuring their impact on the
otherwise perfect data matrix. To this end, we construct
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a one-step mutation (OSM) matrix. The matrix
description allows a linear algebra view of evolution
and comprises distance methods, maximum parsimony
as well as maximum likelihood. Moreover, the descrip-
tion reveals a surprising connection to Hadamard
matrices that were employed for phylogenetic ques-
tions (Hendy & Penny 1989; Steel et al. 1998). An
immediate application of OSM matrices is the
analytical computation of posterior probabilities that
count the number of evolutionary changes on a tree. So
far, these posterior probabilities have been estimated
using Bayesian simulation (Nielsen 2002; Huelsenbeck
et al. 2003) or by applying the theory of counting
processes (Minin & Suchard 2008).

In the following we refrain from most technicalities
but rather outline the general ideas by discussing
illustrative examples. The technical details and proofs
will appear elsewhere.
2. THE BINARY MODEL ON AN n-TAXON TREE
(a) Notation

We consider a set of n taxa SZ{1, ., n}. With S comes
some information about the common properties and
differences of the taxa, typically displayed in an
alignment. In the following a (sequence) alignment A
is an n![-array with entries either 0 or 1, where [ is the
length of the alignment. Each of the [ columns (sites) aj

of the alignment represents a pattern of n homologous
characters, where aij2{0,1} is the state of character j
in taxon i. For binary character states, 2n patterns
are possible.

We are interested in the evolution of such patterns
along a (rooted) tree TZ(V, E ) with node set V and
branch set E3V!V (Semple & Steel 2003). The node
set V contains the taxon set S that forms the leaf set.
Avoiding the technical details, each branch is uniquely
encoded by the subsets X of S that originates from the
branch. Such a set X specified by a branch will be called
a cluster. A leaf is a trivial cluster.
This journal is q 2008 The Royal Society
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Figure 1. (a) The rooted phylogenetic tree T4. The branch defined by cluster {A} is highlighted. A substitution on this branch
gives rise to the unique change in patterns depicted in (b) the graph or (c) its corresponding adjacency matrix.
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Finally, we introduce a function l :E/RC, such that
l(e)O0 represents the length of a branch e2E. The tree-
length LT is the sum of the branch lengths. The relative
branch length

pe Z
lðeÞ

LT

ð2:1Þ

denotes the probability that a substitution hits branch e
of the rooted tree T.

(b) The effect of substitutions on an alignment

We now describe how a single mutation on the tree
changes the current character states at the leaves.
Obviously the outcome will depend on the branch
where the substitution occurred. Moreover, each of the
2n possible patterns will be affected differently by such a
substitution. Therefore we introduce a 2n!2n matrix
that describes the action of a substitution on the
patterns for a specific branch.

Figure 1 describes the model on an example tree T4

with four taxa. For instance, a substitution at the
branch defined by cluster {A} changes the pattern 1011
to the pattern 1010 because only the character of taxon
A is affected. Please note that order of taxa is
(D, C, B, A) for each pattern. All possible changes
between the patterns identified by a substitution on
branch eA are depicted in the substitution graph
(figure 1b). The corresponding adjacency matrix sA is
displayed in figure 1c, where a black square stands for
one (the patterns are connected by an edge in the
substitution graph) and a white square represents zero.
The structure of matrix sA constitutes an example of
the so-called permutation matrices with entries equal to
one if the substitution converts one pattern into
another (Bona 2004, p. 75).

For each branch we easily construct the correspond-
ing permutation matrix. Without proof we state that
each matrix is fix point free (a substitution changes
every pattern) and has 2nK1 transpositions (applying a
substitution twice returns the original pattern). Then it
follows that this type of permutation matrix is self-
inverse with respect to matrix multiplication and
that they form an Abelian group if the identity matrix
is included.

We point out that the permutation matrix for a non-
trivial cluster is the product of the permutation
matrices of its elements. In other words the action of
Phil. Trans. R. Soc. B (2008)
one mutation on a branch e can be replaced by any
partition of the cluster associated with e, such that each
set of the partition is represented by a branch in the
tree. For tree T4 we obtain six permutation matrices
sA, sB, sC, sD and sABZsA$sB, sCDZsC$sD.

Because we study symmetric permutation matrices,
it is well known that the eigenvalues are either 1 or K1.
Further, we observe that all those permutation
matrices are diagonalized by the 2n!2n-dimensional
Hadamard matrix H2n (Hendy & Penny 1989; Hendy
2005). The 2!2 Hadamard matrix is defined as

H2 Z
1 1

1 K1

 !
:

The 2n!2n Hadamard matrix is then

H2n ZH25/5H2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n-times

;

where the symbol 5 represents the Kronecker product.
Hence, for the cluster C(e) associated with branch e,

De ZH
K1
2n sCðeÞH2n

is the diagonal matrix of eigenvalues of sCðeÞ.
To take the relative contribution of the branch

lengths into account, we weight each permutation
matrix with pe as described in (2.1). Such matrices are a
special case of the generalized permutation matrices.
Then the so-called OSM matrix of the tree T4 is
simply the following convex sum:

M4 Z pA$sA CpB$sB CpC$sC CpD$sD CpAB$sAB

CpCD$sCD:

Figure 2c shows the result of this computation. The
substitution graph in figure 2b displays the effect of a
substitution on all the branches of the tree on the
patterns. Two patterns are connected by an edge if a
substitution switches between the two patterns.

For an arbitrary phylogenetic tree T on n taxa, the
OSM matrix is obtained by

MT Z
X
e2E

pesCðeÞ; ð2:2Þ

where C(e) is the cluster identified by branch e2E.
Owing to its construction, MT is also diagonalized by
the Hadamard matrix.
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Figure 2. (a) Substitutions on different branches of T4 give rise to branches of (b) the graph, and (c) the corresponding entries in
the OSM matrix. Corresponding components are identified by common shades of grey.
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The entry MT(i, j ) is positive if the tree T contains a
cluster where a substitution on the corresponding
branch implies that pattern i is changed to j. Hence,
each row and each column has 2nK2 non-zero entries,
one entry for each branch in the tree. Thus, the OSM
matrix belongs to the class of doubly stochastic Markov
transition matrices, where the relative branch lengths
are represented exactly once in each row and each
column. Consequently, the k-th power Mk

T provides the
probabilities to move from one pattern to another in k
substitutions. Thus, the repeated application of MT

describes a random walk on the state space of the 2n

patterns. This random walk is very different from the
standard random walk on the hypercube (Eigen et al.
1989). If k is large, then Mk

T will lose the phylogenetic
information of the original alignment and will approxi-
mate the uniform distribution, that is each pattern
occurs at the same frequency.
(c) Poisson weights

Our setting does not yet assume a probability
distribution for the number of substitutions on the
tree. In molecular evolution, one typically assumes
that the number of substitutions is Poisson distributed
with parameter LT (Uzzell & Corbin 1971). Under
this assumption we can compute the average OSM
matrix by

MT Z
XN
kZ0

expðKLTÞL
k
T

k!
Mk

T; ð2:3Þ

which is equivalent to

MT Z expðKLTÞ$exp½LTMT�:

The exponential of the matrix LTMT is easy to
compute, because MT is a sum of generalized
permutation matrices (2.2), which commute with
respect to matrix multiplication. Thus, we obtain

MT Z expðKLTÞ$exp
P

e2E lðeÞ$sCðeÞ
� �

;

Z expðKLTÞ$
Q

e2E exp½lðeÞ$sCðeÞ�;

Z expðKLTÞ$
Q

e2E H
K1
2n $exp½lðeÞDe�$H2n ;

Z expðKLTÞ$H
K1
2n $exp

P
e2E lðeÞDe

� �
$H2n :

ð2:4Þ
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3. RELATION TO TREE RECONSTRUCTION
The OSM matrix leads to a very general description of
character-based phylogenetic inference techniques.
Moreover, the explicit model assumptions in maximum
likelihood and the implicit assumptions in maximum
parsimony are directly comparable.

The OSM matrix and its powers describe the
substitution process between arbitrary patterns.
However, in classical phylogeny the starting point of a
substitution process is ancestral states on trees.
In particular, one assumes a stationary distribution
pZ(p0, p1) of character states at the root, and the
characters evolve along the tree according to a Markov
transition matrix (Tavaré 1986). In our framework, this
is equivalent to starting in the constant patterns
0Z(0, ., 0) or 1Z(1, ., 1) and letting it evolve
according to the OSM matrix. This process has a
non-stationary pattern distribution pk

T which starts at
p0

TZ ðp0;0;.; 0;p1Þ, i.e. with zero substitutions only
constant patterns exist, and in each step the pattern
distribution is given by pk

TZMk
Tp

0
T. If the number of

substitutions is not weighted as in equation (2.3), then
pk

T will approach the uniform distribution as k goes to
infinity. To overcome the loss of phylogenetic signal,
we assume in the following that the number of
substitutions on a tree is Poisson distributed with
parameter LT. Moreover, we assume that the sub-
stitution process is described by the symmetric
Cavender–Farris–Neyman mutation model (CFN,
Neyman 1971; Farris 1973; Cavender 1978). Under
these assumptions, the probability of observing pattern
a when starting in a constant pattern is then calculated
employing (2.3)

P½ajf0; 1g�Zp0MTð0;aÞCp1MTð1;aÞ; ð3:1Þ

where p0 and p1 are taken from the stationary
distribution of character states. The resulting prob-
ability distribution for all possible patterns is then
identical to the standard way of computing the
probabilities of pattern (Felsenstein 2004).
(a) Distance approaches

Now, we briefly illustrate how to derive distance
corrections from the OSM matrix. To this end, we
consider the rooted tree with two leaves A, B and
branch lengths lA and lB. Then the corresponding
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OSM matrix M2 has the following structure:

M2 Z

0 pA pB 0

pA 0 0 pB

pB 0 0 pA

0 pB pA 0

0
BBBB@

1
CCCCA;

where pA and pB are computed according to (2.1).
From (2.4) it is straightforward to compute M 2

using (*).
The first and the last row of M 2 yield the

probabilities to observe one of the four patterns. If
evolution starts with character state 0 or 1 at the root of
the tree and the character states are in equilibrium
(p0Zp1), then we quickly compute

P 0; 1ð ÞZ
1

2
1CexpðK2LÞ
� �

as the probability to observe a constant pattern in an
alignment. Similarly we compute the probability to
observe different character states between taxa A and
B. From this it is straightforward to get the distance
correction of the CFN model.

(b) Maximum likelihood

The maximum-likelihood principle for an alignment A
and a tree T is easily formulated in terms of the OSM
matrix. We introduce as parameter vector q the branch
lengths of T. Then the probability of A is given by

LðAjTÞZ
Y[
iZ1

P½aijf0; 1g�; ð3:2Þ

where the factors on the right-hand side are defined by
equation (3.1). The parameter vector q enters the
equation via the OSM and LZ

P
qi in the obvious way.

As usual, we want to find parameter assignments such
that (3.2) is maximized.

(c) Maximum parsimony

We associate the adjacency matrix AOSM (e.g. Cormen
et al. 2001, §22.1), or simply A, with the OSM matrix.
A is obtained as the unweighted sum of the
permutation matrices sCðeÞ. Hence, an entry Aij is
equal to one when there is a branch in the tree which
changes pattern i into pattern j, and is zero otherwise.
Finally, we note that Ak(i, j ) describes the number of
paths of length k between pattern i and j. Each path
specifies a series of branches in the tree where a
substitution occurred.

Now, fix a column ai in alignment A, and a tree T. We
ask for the minimal number kmin such that Akmin ðai ; 0Þ or
Phil. Trans. R. Soc. B (2008)
Akmin ðai ; 1Þ is greater than zero. In other words, for an
alignment column ai, the minimal number of mutations
on Tequals

MPðaiÞZminfk2NjAkðai ; 0ÞO0 or Akðai ; 1ÞO0g:

Thus the minimal number of mutations for an alignment
AZ ða1;.;a[ Þ equals

MPðTÞZ
X[
iZ1

MPðaiÞ: ð3:3Þ

This is anotherdescriptionof themaximum-parsimony
principle.
4. MAPPING SUBSTITUTIONS
From the computation of the powers of the OSM
matrix, it is possible to derive the (posterior) prob-
ability distribution ppdf(kjx) of the number of
mutations that generated an observed pattern x,
when the process started in pattern 0 or 1. The
posterior probabilities have been estimated before,
employing Bayesian simulation methods (Nielsen
2002; Huelsenbeck et al. 2003; Minin & Suchard
2008), but an analytic approach has not previously
been attempted.

In general, the posterior probabilities ppdf(kja) for
a pattern a are calculated in the following way
using (3.1):

ppdf ðkjaÞZ
eKLTLk

Tðp0M
k
Tð0;aÞCp1M

k
Tð1;aÞÞ

k!P½ajf0; 1g�
i.e. we compute for pattern a the proportion of its
occurrence after k substitutions.

For the two-taxon case, we observe that

P½00j0�Z expðKLÞ cosh lA cosh lB;

P½00j1�Z expðKLÞ sinh lA sinh lB:

Thus, applying hyperbolic identities, we end up with

P½00j0; 1�Z
1

2
expðKLÞ cosh L:

Taylor expansion of cosh(x) around xZ0 then leads to
the posterior probability

ppdf ð2kj00ÞZ
L2k

ð2kÞ!$cosh L
:

For the remaining patterns, we obtain the following
ppdf:

ppdf ð2kj11ÞZ ppdf ð2kj00Þ;

ppdf ð2kC1j01ÞZ ppdf ð2kC1j10Þ

Z
L2kC1

ð2kC1Þ!$sinh L
:
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Figure 3. Posterior probabilities for representative patterns of the four-taxon tree T4 with branch lengths
lAZlBZlCZlDZ0:2 and lABZlCDZ0:1, and character distribution p0Zp1Z1/2. The selected patterns (a) 0000, (b) 0001,
(c) 0011 and (d ) 0101 represent constant, parsimonious uninformative, compatible and incompatible patterns, respectively.
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Thus, on a two-taxon tree, an even number of
substitutions leads to a constant pattern when starting
in a constant pattern; whereas an odd number of
substitutions will be reflected by the non-constant
pattern 01 or 10.

Now, it is an easy calculation to obtain closed formulae
for the posterior mean number m(a) of substitutions for
pattern a by the following calculations:

mð00ÞZmð11ÞZ
XN
kZ0

2kL2k

ð2kÞ!cosh L
ZL tanh L;

mð01ÞZmð10ÞZ
XN
kZ0

ð2kC1ÞL2kC1

ð2kC1Þ!sinh L
ZL coth L:

Only if L is large, then the posterior mean number of
substitutions will approach the expected number of
substitutions per site L. For a constant pattern the
posterior mean is always smaller than L, and for non-
constant patterns the posterior mean is larger than L.

Similarly we extend the calculations to a four-taxon
tree. For instance, consider the four-taxon tree T4

(figure 1a). This tree has two non-trivial clusters {A, B}
and {C, D}. We want to compute the posterior
probability of the number of substitutions if the
constant pattern 0000 is observed. Let us assume that
the two character states occur with uniform probability;
then we can compute:

P½0000jf0; 1g�Z
1

16eL
ðexpðlAK lB ClCK lDK lXÞ

CexpðlAK lBK lC ClDK lXÞ

CexpðKlA ClBK lC ClDK lXÞ

CexpðlA ClBK lCK lD ClXÞ

CexpðKlAK lB ClC ClD ClXÞ

CexpðKlAK lBK lCK lD ClXÞ

CexpðKlA ClB ClCK lDK lXÞ

CexpðlA ClB ClC ClD ClXÞÞ;

where lXZlABClCD is the sum of the lengths of the
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interior branches. Now Taylor expansion leads to the
desired posterior probability distribution.

Figure 3 shows the resulting posterior probability
distributions for the 16 possible patterns, assuming
branch lengths lAZlBZlCZlDZ0:2 and lABZ
lCDZ0:1. The symmetries in the CFN model are
reflected in the symmetries of the posterior distri-
butions. Complementary patterns (i.e. 0000 and 1111)
show the same distribution. Because the tree is clock-
like, the parsimonious uninformative patterns (0001,
0010, 0100, 1000) and their complements show
identical distributions, as do the patterns that need at
least two substitutions (0101, 0110, 1010, 1001) on
T4. Posterior probabilities may be used to compute, for
instance, the number of unvaried sites (Fitch & Ayala
1994), which is exactly the proportion of the constant
patterns with zero substitutions. In our example we
expect approximately 42 per cent constant patterns of
which approximately 90 per cent are unvaried. This is
only one application for posterior probabilities of the
number of substitutions.

As in the two taxon case, we compute the posterior
mean of substitutions for pattern a as

mðaÞZ
XN
kZ0

k$ppdf ðkjaÞ:

Figure 4a shows the posterior mean number of sub-
stitutions for the topology of T4 with branch probabili-
ties pAZpBZpCZpDZ0:2 and pABZpCDZ0:1 for a
constant pattern (0000), a pattern compatible with an
interior branch (0011) and a pattern incompatible with
the tree (0110). The difference between posterior mean
and tree lengths is smaller than 0.01 if the tree lengths
exceed 10 substitutions per site.

Figure 4b displays the posterior means for a tree with
branch probabilities pAZpDZ0:47, pBZpCZ0:02 and
pABZpCDZ0.01. The proportion of pA and pD is so
large that the incompatible pattern 0110 will be
observed more often than the pattern 0011, which is
compatible with a branch of the tree. Thus, this tree is
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an instance where maximum parsimony will reconstruct
the wrong tree (Felsenstein 1978). The figure also
shows that the compatible pattern 0011 has a lower
posterior mean number of substitutions than 0110 for
short tree lengths. However, if the tree length exceeds
1.64 substitutions per site, then the situation is reversed.
The posterior mean of the incompatible pattern quickly
approaches the tree length, whereas the mean posterior
substitutions of the compatible pattern are only close to
the tree length if LR54 substitutions per site. In other
words, if we observe a compatible pattern, then this
pattern has typically experienced more substitutions
than the incompatible pattern.
5. SUMMARY AND DISCUSSION
Here, we have presented an alternative description of
how to model sequence evolution on a tree. Our
approach lifts the commonly used stochastic models of
sequence evolution that act on nucleotides to the set of
all possible patterns for n taxa.

We have shown that available tree reconstruction
principles are included in our description of the
process. Moreover, the definition of the OSM matrix
leads to analytical formulae to compute the posterior
probability distribution of the number of substitutions
for each pattern. From this distribution it is then
straightforward to compute the posterior mean of the
substitutions. The formulation of the substitution
process as an OSM matrix leads to the introduction
of the Hadamard matrix that allows an easy compu-
tation of matrix powers. Recently, Bryant (submitted)
has presented a continuous version of the OSM
approach and showed its connection to the Hadamard
matrix (Hendy 2005).

While we have outlined only the simplest model of
sequence evolution, several extensions are easily
possible. The OSM approach can be augmented to
the Kimura 3st model (Kimura 1981); see figure 5a for
an illustration. In this framework every substitution
class (transition, transversion 1 and transversion 2)
uniquely generates a fix-point free 4n!4n-dimensional
permutation matrix for each branch in a tree. Let
Phil. Trans. R. Soc. B (2008)
a1Ca2Ca3Z1 denote the probabilities for the three
substitution classes, then the OSM matrix for the
Kimura 3st model is defined as

MT Z
X3

kZ1

ak

X
e2E

pe$s
k
CðeÞ ð5:1Þ

i.e. we look at the sum of generalized permutation
matrices. Figure 5a shows an OSM Kimura matrix on a
rooted triplet tree. Each row and each column contain
12Z(number of branches)!(number of substitution
classes) non-zero entries, where each entry is the
product of a mutation class parameter ai and a branch
probability pe (equation (5.1)). All the results for binary
character state models can be expanded to the Kimura
3st model. If one wants to abandon the assumption that
evolution proceeds along a tree, then this is also
possible within the OSM framework. Consider a set
of rooted trees that give rise to a collection C of possibly
conflicting clusters. The associated OSM matrix is then
given by

MC Z
X
C2C

pCsC;

where pC is the normalized sum of branch lengths of
those trees in which the branch depicting C is existent.
Here issues such as the meaning of the overall length of
the cluster set or the meaning of a root in such sets need
to be discussed. This extension bears some similarity to
a maximum-likelihood reconstruction of networks
(von Haeseler & Churchill 1993).

Another question concerns the Poisson weights for
the number substitutions. Generally, the argument is
that the process of distributing substitutions along a
tree is memoryless and therefore the number of
substitutions is Poisson distributed. Our framework
permits a different probability distribution to be
assigned to the substitution process. One possible
weighting scheme could be a contagious distribution,
which has been used to evaluate accident data (Kemp
1967). This approach might provide an alternative
description of the evolutionary history of an alignment.

In summary, the OSM description offers a variety of
potential applications in molecular systematics, which
will be explored in the near future.

We are grateful to a number of colleagues who helped to
increase our understanding of the model by asking the small
questions necessary to get that kind of understanding.
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