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Models of molecular evolution tend to be overly simplistic caricatures of biology that are prone to
assigning high probabilities to biologically implausible DNA or protein sequences. Here, we explore
how to construct time-reversible evolutionary models that yield stationary distributions of sequences
that match given target distributions. By adopting comparatively realistic target distributions,
evolutionary models can be improved. Instead of focusing on estimating parameters, we concentrate
on the population genetic implications of these models. Specifically, we obtain estimates of the
product of effective population size and relative fitness difference of alleles. The approach is
illustrated with two applications to protein-coding DNA. In the first, a codon-based evolutionary
model yields a stationary distribution of sequences, which, when the sequences are translated,
matches a variable-length Markov model trained on human proteins. In the second, we introduce an
insertion–deletion model that describes selectively neutral evolutionary changes to DNA. We then
show how to modify the neutral model so that its stationary distribution at the amino acid level can
match a profile hidden Markov model, such as the one associated with the Pfam database.
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1. INTRODUCTION
The broad biological theme that has benefitted from the

most experimental interrogation is likely to be the rela-

tionship between genotype and phenotype. This

relationship is not solely a focus of experimental biology.

Diverse computational schemes have been developed

for leveraging experimental results by predicting aspects

of phenotype from genotype. These in silico predic-

tion systems can be harnessed to quantify the influence

of phenotype on the evolution of genotype (Parisi &

Echave 2001; Robinson et al. 2003; Rodrigue et al. 2005;

Yu & Thorne 2006; Choi et al. 2007).

Most phenotypic features cannot yet be accurately

predicted via computational approaches. This greatly

hampers efforts to assess the evolutionary impact of

phenotype. When a genotype–phenotype link has not

been established, it is still desirable to determine what

patterns of evolution could yield observed patterns of

sequence conservation. Implicit information about

genotype–fitness mapping is often available and

would ideally be captured in evolutionary models. For

example, it is widely appreciated that conserved

sequence motifs are likely to be functionally important.

Evolutionary models could be improved by assigning

high stationary probabilities to the sequences that most

consistently match empirical evidence.
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Many models of sequence change have been

proposed and gainfully employed, but few have been

carefully parametrized to assign higher probabilities to

the most biologically plausible sequences. A recent and

notable exception (Lartillot & Philippe 2004) has

learned from data to account for the variation of

preferred amino acid residues among protein sequence

positions. By contrast, many widely used models of

nucleotide substitution or amino acid replacement

allow nucleotide or amino acid types to have different

probabilities, but force these probabilities to be shared

among sequence positions. As a result, the most likely

sequences will typically be homopolymers that consist

of solely the nucleotide or amino acid type with the

highest probability.

Here, we follow Lartillot and Philippe by consider-

ing evolutionary models that assign higher probabilities

to the sequences that are likely to be more biologically

plausible. However, we do not assume that sequence

positions or codons change independently. Although

the assumption of independence has strong compu-

tational advantages, it is less attractive from the

standpoint of studying natural selection. With inde-

pendence, local maxima on the fitness landscape are

also global maxima. A better understanding of how the

evolutionary process traverses the fitness landscape

might be achieved with the more realistic fitness

landscapes that are possible with dependence.

A strategy pioneered by Jensen and Pedersen

(Jensen & Pedersen 2000; Pedersen & Jensen 2001)

exists for performing likelihood-based evolutionary

inference when dependence among changes at different
This journal is q 2008 The Royal Society
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positions makes conventional approaches intractable.
The Jensen–Pedersen and other inference techniques
have been applied when dependence stems from
context-dependent mutation (Hwang & Green 2004;
Siepel & Haussler 2004; Christensen et al. 2005)
and natural selection (Robinson et al. 2003; Rodrigue
et al. 2005; Yu & Thorne 2006). Here, we focus
on dependence due to natural selection but not on
parameter inference. Instead, we consider ways to
construct time-reversible evolutionary models so that
the induced stationary distribution matches a desired
target distribution. A desirable target distribution might
assign the highest probabilities to those sequences
predicted to be the most biologically plausible.

We describe two alternative strategies for construct-
ing evolutionary models with a desired stationary
distribution of sequences. The parametric form of the
first strategy has been employed in earlier studies to
assess the evolutionary impact of phenotype on
sequence change (Robinson et al. 2003; Rodrigue
et al. 2005; Yu & Thorne 2006), but here we stress how
this strategy can match desired stationary distributions.
Although both strategies can be interpreted with
respect to population genetics, the connection to
population genetics is more direct in the second one.

We illustrate our modelling strategies with two
applications. In the first application, sequence lengths
are invariant because insertions and deletions are not
permitted. Rates of codon substitution are parame-
trized to produce an evolutionary model with a
stationary distribution of amino acid sequences that
matches the distribution specified by a variable-length
Markov model (VLMM) trained on human protein
sequences. As a consequence, the rate of a particular
codon substitution at a particular sequence position
will be affected by the amino acids specified at codons
that are nearby in the sequence. In the second
application, the stationary distribution of amino acid
sequences follows a profile hidden Markov model
(HMM) trained on a protein family of interest (see
Durbin et al. 1998). This is appealing because variation
in sequence lengths is possible with a profile HMM.
Therefore, the evolutionary model permits insertions
and deletions as well as codon substitutions.

We contrast the VLMM and profile HMM
evolutionary models to those that would result if all
sequence changes were neutral. The contrasts permit
evolutionary rates in the VLMM and profile HMM
models to be decomposed into the product of factors
that represent the mutation rate and the probability
that the mutation is fixed. Following the pioneering
approach of Halpern & Bruno (1998), this decom-
position results in a crude estimate of the product of
effective population size and the difference in relative
fitnesses of the two sequences involved in a change.

(a) Neutral model for codon substitution

Differences between a target distribution and a
stationary distribution for a neutral model of sequence
change can be attributed to natural selection. We first
describe our neutral model of codon substitution. In
subsequent sections, we explain how its comparison
with other evolutionary models can help quantify
natural selection.
Phil. Trans. R. Soc. B (2008)
The Hasegawa–Kishino–Yano (HKY) substitution
model has sequence positions evolved independently
and identically with the rate to a nucleotide type h
(h2 fA;C;G;T g) being proportional to ph (0%ph%1,
pACpCCpGCpTZ1) for transversions and kph for
transitions (Hasegawa et al. 1985). The stationary
distribution of a DNA sequence i of length L for the
HKY model is

PHKYðijp; kÞZ
YL
kZ1

pik
; ð1:1Þ

where ik is the nucleotide at position k of sequence i and
p collectively represents the parameters pA, pC, pG and
pT . If the HKY model is coupled to the assumption that
all mutations are selectively neutral, then the mutation
rate must be proportional to kph for transitions and ph

for transversions. This perspective of the HKY model
can easily be converted to a model for protein-coding
DNA evolution where all point mutations that introduce
stop codons are lethal and all other point mutations are
selectively neutral. This resulting codon-based model
resembles those of Goldman & Yang (1994) and Muse &
Gaut (1994), but it does not differentiate between
synonymous and non-synonymous substitutions. The
stationary probability P0ðijp; kÞ of a protein-coding
DNA sequence i with L(i) codons (and 3L(i) nucleo-
tides) for this simple model is

P0ðijp; kÞZP0ðijpÞZ ð1=Y ÞLðiÞ
YLðiÞ
kZ1

pik1
pik2

pik3
; ð1:2Þ

where ik1, ik2 and ik3, respectively, refer to the
nucleotides at the first, second and third positions of
the kth codon. The (1/Y )L(i ) term arises because
sequences containing premature stop codons are
assumed not to survive. For the universal genetic code,
the stop codons are TAA, TAG andTGA, and this means
that YZ1KpTpApAKpTpApGKpTpGpA.

At the protein level, the stationary probability
P0ðIjp; kÞ of amino acid sequence I for this neutral
model will be the sum of P0ðijp; kÞ over all DNA
sequences i that yield I when translated. Throughout,
lowercase letters denote the nucleotide level and
uppercase letters denote the corresponding amino
acid information. The notation T(i ) represents the
amino acids that result from translating the DNA
sequence i. Henceforth, we will use ik to refer to the k th
codon of DNA sequence i rather than to the k th
position of i. With this notation,

P0ðIjp; kÞZP0ðIjpÞZ
X

i:T ði ÞZI

P0ðijp; kÞ

Z ð1=Y ÞLðI Þ
YLðI Þ
kZ1

X
ik:T ðikÞZIk

pik1
pik2

pik3

 !
: ð1:3Þ

(b) Indirect matching of target and stationary

distributions

In this section, we illustrate how a previously developed
strategy for constructing evolutionary models can
be employed to match a stationary distribution to a
desired target distribution. We (Robinson et al. 2003;
Yu & Thorne 2006) have been investigating the models
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of DNA sequence change that have evolutionary rates

Ri;j Z
uphe

ðEði ÞKEð j ÞÞf transversion

uphkeðEði ÞKEð j ÞÞf transition;

(
ð1:4Þ

when sequences i and j differ at exactly one site, where
j has nucleotide type h. Rates of other changes are set
to 0. The values of E(i ) and E( j ) can represent scores
of phenotypes encoded by i and j, whereas the
parameter f can convert the phenotypic effects induced
by a change from i to j into an effect on evolutionary
rate. These models are time reversible and yield a
stationary distribution for a protein-coding DNA
sequence i that we write where

P�ðijp; kÞZP�ðijpÞZ
eK2 f EðiÞP0ðijpÞP
ke

K2fEðkÞP0ðkjpÞ
: ð1:5Þ

Because the models that we have been investigating do
not permit insertions and deletions, the sum in the
denominator is over all sequences k with the same
length as i. The stationary distribution for the neutral
case of equation (1.2) results when fE(k) is identical
among all DNA sequences k.

To represent the probability of amino acid sequence
I for the desired target distribution, we write P(I ).
The stationary distribution of equation (1.5) matches
P(I ) when

f Eði ÞZK
1

2
log

PðIÞ

P0ðIjpÞ
: ð1:6Þ

By incorporating equation (1.6) and treating synon-
ymous changes as selectively neutral, equation (1.4)
can be rewritten as

Ri;j Z

uph synonymous transversion

uphk synonymous transition

uph
ffiffiffiffiffiffiffi
tI J

p
non-synonymous transversion

uphk
ffiffiffiffiffiffiffi
tI J

p
non-synonymous transition

8>>>><
>>>>:

where

tI J Z
Pð J Þ=P0ð JjpÞ

PðIÞ=P0ðIjpÞ
: ð1:7Þ

Let the relative fitness of allele (sequence) i be wi.
When convenient, we use allele i as a reference allele and
set wiZ1 so that the relative fitness of any other allele k
can be written wkZ1Csk. We assume multiplicative
fitnesses so that the fitness of a genotype is the product
of the fitnesses of the alleles that constitute it. Following
Halpern & Bruno (1998) and others (Nielsen & Yang
2003; Berg et al. 2004; Knudsen & Miyamoto 2005;
Sella & Hirsh 2005), we showed for a low mutation
rate and a constant effective population size of diploid
organisms that an approximation of 2NðwjKwiÞZ2Nsj
is 2Nsj^f ðEði ÞKEð j ÞÞ (Thorne et al. 2007). This
means that the departure between the target distri-
bution and the neutral model can be used to assess
natural selection,

2Nsj^
1

2
logðtIJÞ: ð1:8Þ

A weakness of this approximation is that it is justified
only when 2Nsj is relatively close to 0. In §1c, we describe
Phil. Trans. R. Soc. B (2008)
a modelling strategy with a closer connection to
population genetics, but that is more difficult to employ
for evolutionary inference. Interestingly, the strategies
presented in both this and the next sections have the
stationary distribution form of equation (1.5) and
the 2Nsj approximation of equation (1.8).

(c) More direct matching of target and stationary

distributions

In §1b, existing modelling strategies were retrofitted to
population genetic interpretations. To more directly
relate models of sequence change and population
genetics, we modify our neutral model of codon
substitution to reflect the insights of Halpern &
Bruno (1998) that an interspecific rate should be
proportional to the product of mutation rate and
fixation probability. We have

Ri;j Z
uph!2N!Pr ðZijÞ transversion

uphk!2N!Pr ðZijÞ transition;

(
ð1:9Þ

where Zij is the event that a new mutant allele j
eventually gets fixed in a population that otherwise
consists of 2NK1 alleles of type i. The fixation
probability approximation of Sella & Hirsh (2005),

Pr ðZijÞ^
1KeK2 logð1Csj Þ

1KeK4N logð1Csj Þ
; ð1:10Þ

then yields a stationary distribution (Thorne et al. 2007)

P�ð jjpÞZ
e2ð2NK1Þ log ð1Csj ÞP0ð jjpÞP
k e2ð2NK1Þ log ð1CskÞP0ðkjpÞ

Z
e2ð2NK1Þ log ðwj =wi ÞP0ð jjpÞP
k e2ð2NK1Þ log ðwk =wi ÞP0ðkjpÞ

: ð1:11Þ

We can force P�ð jjpÞ to match our target distribution
P( J ) for all J by choosing suitable selection coefficients,
as described by the following equation:

log tIJ Z 2ð2NK1Þ log ðwj =wiÞ

Z 2ð2NK1Þ log ð1C sjÞ: ð1:12Þ

If the selection coefficients are chosen in this way, the
fixation probability becomes

Pr ðZijÞZ
t

1=ð2NK1Þ
IJ K1

t
1=ð2NK1Þ
IJ K 1

tIJ

: ð1:13Þ

Substituting this formula into equation (1.9), the
resulting evolutionary rates depend on N as well as the
target distribution P( J ). This dependence could
complicate inference, but can be neglected when
ð2NK1Þlogð1C sjÞ is well approximated by 2Nsj. With
this approximation, we again have the result of equation
(1.8) that 2Nsj^ð1=2Þ!logðtIJÞ, and we reproduce in
different notation the Halpern & Bruno (1998) approxi-
mation (see also Yang & Nielsen 2008) that
2N!Pr ðZijÞ^logðtIJ Þ=ð1K1=tIJ Þ.
2. VARIABLE-LENGTH MARKOV MODELS
In this section, we use equation (1.8) to obtain 2Nsj
estimates from an evolutionary model with a stationary
distribution of sequences that matches a VLMM
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trained on human proteins. Let L(i ) and L(I ),
respectively, represent the number of codons in
protein-coding sequence i and the number of amino
acids in protein sequence I. The k th amino acid will be
denoted Ik whereas the subsequence consisting of the
first k residues will be I k. Taking liberty with
conventional probabilistic notation by not distinguish-
ing between random variables and their values, a
zeroth-order discrete-state discrete-time Markov
model for protein sequence organization has PðIÞZ
PðILðIÞÞZ

QLðIÞ
kZ1 PðIkÞ, whereas a Markov model of

order rR1 has PðIÞZPðIrÞ
QLðIÞ

kZrC1 PðIkjIkK1;.; IkKrÞ.
Well-developed statistical techniques are available for
the analysis of data generated according to discrete-
state discrete-time Markov chains of fixed order (e.g.
see Guttorp 1995).

The VLMMs offer a parametrization advantage over
models of fixed order, and their value for association
mapping has been demonstrated (Browning 2006).
Consider the transition probability PðIkjIkK1;.; IkKrÞ

that is associated with a Markov model of fixed order r
and with a subsequence matching IkK1;.; IkKr. If this
subsequence is rare in the training data, estimates of
PðIkjIkK1;.; IkKrÞ are apt to be unreliable. In such a
situation, one may instead desire to find the biggest
integer l satisfying l!r for which PðIkjIkK1;.; IkKlÞ can
be well estimated for all Ik. Likewise, if subsequences
matching IkK1;.; IkKr are abundant in the training
data, then one may want to find the largest integer lOr
for which PðIkjIkK1;.; IkKlÞ can be well estimated for
all Ik. The key insights of VLMMs are to realize that
PðIÞZPðI1Þ

QLð I Þ
kZ2 PðIkjI

kK1Þ and that PðIkjI
kK1Þ can be

approximated by a transition probability PðIkjIkK1;
.; IkKlÞ, where the value of l will vary among possible
subsequences that immediately precede Ik. Choosing
a value of l for each subsequence is a somewhat
subjective endeavour but a sensible software
implementation for training VLMMs from protein
sequence data is available (Bejerano & Yona 2001;
Bejerano 2004). Our goal here is not to provide
alternative techniques for training VLMMs from
protein sequence data. Instead, we are motivated by
the potentially realistic descriptions of protein
sequences by trained VLMMs. We focus on construct-
ing evolutionary models of protein-coding DNA so that
they yield a stationary distribution of protein sequences
that matches a trained VLMM. We can then apply
equation (1.8) to approximate 2Nsj for a change from
sequence i to j.

We downloaded all annotated human protein
sequences from NCBI human genome build 36.1
(ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/). We used
these sequences to train a VLMM with software that
incorporates probabilistic suffix trees (Bejerano & Yona
2001; see also Bejerano 2004). Using the notation
employed by this software, we elected to train with the
settings of LZ9, PminZ0.00005, rZ1.5, gminZ
0.0000001 and aZ0.

We also needed estimates of the nucleotide compo-
sition parameters p. If DNA experiences solely neutral
evolution according to the HKY model, then station-
ary distributions of sequences obey equation (1.1) and
p can be estimated by the proportions of nucleotide
types found in the DNA. The vast majority of the
Phil. Trans. R. Soc. B (2008)
human genome consists of DNA with no known
biological function (International Human Genome
Sequencing Consortium 2001) and, for the sake of
this analysis, we assume that nucleotide frequencies in
the human genome can produce reasonable estim-
ates of p. Approximately 41 per cent of the genome
consists of GC base pairs and the remaining 59 per cent
consists of AT base pairs (International Human
Genome Sequencing Consortium 2001). We therefore
set p to pAZpTZ0:59=2Z0:295 and pCZpGZ0:41
=2Z 0:205. Treatment of p could be improved by
allowing values to vary among genes so as to
incorporate regional and strand differences in mutation
patterns, but this is not pursued here.

By combining the VLMM trained from human data
with these p estimates, we can calculate tIJ of equation
(1.7) because the VLMM specifies P(I ) and P( J ) and
the p values determine the neutral model probabilities
P0ðIjpÞ and P0ðJjpÞ. With the resulting value for tIJ, we
can apply equation (1.8) to estimate the value of 2Nsj
for a non-synonymous change from a sequence i that is
in the human genome to a possible sequence j. From
the NCBI human genome build 36.1, we downloaded
25 925 human messenger RNA sequences. For each
possible non-synonymous change to these sequences,
we estimated 2Nsj (figure 1a). The mean and standard
deviation of these 2Nsj estimates are K0.211 and
0.796, respectively. Among the 89 486 730 possible
non-synonymous mutations, 33 317 376 (37.2%)
yielded a positive 2Nsj value. We also found the average
2Nsj estimate for each of the 25 925 protein-coding
genes and investigated how these vary (figure 1b). The
mean and standard deviation of these average 2Nsj
values are K0.148 and 0.102, respectively, and none of
the averages were positive.
3. PROFILE HIDDEN MARKOV MODELS
Evolutionary inference with proper handling of inser-
tion and deletion events can be challenging, but
progress is being made (Fleissner et al. 2005; Lunter
et al. 2005; Redelings & Suchard 2005, 2007). In this
section, we first describe a model with codon
substitutions and insertions and deletions that rep-
resent a neutral process of sequence change. We then
explain how the neutral process can be modified to
yield a stationary distribution of protein sequences that
matches the probability distribution specified by a
profile HMM. As with the VLMM case, we interpret
departures from the neutral stationary distribution as
being attributable to natural selection.
(a) Neutral model for insertions and deletions

To represent neutral sequence changes due to inser-
tions and deletions, we consider a modification of the
TKF92 insertion–deletion model (Thorne et al. 1992).
This model was not originally framed at the codon
level, but we present it at the codon level here. We make
the convenient but restrictive assumption that inser-
tions and deletions can only insert or delete entire
codons and that insertions can occur only between
codon boundaries. This prevents stop codons and
frameshift mutations. More general and realistic

ftp://ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
ftp://ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
ftp://ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
ftp://ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
ftp://ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/
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Figure 1. Estimates of 2Nsj from the VLMM trained by human protein sequences. (a) Distribution of 2Nsj estimates among
possible non-synonymous changes in the human genome. (b) Distribution of the mean 2Nsj estimate per gene among human genes.
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insertion–deletion processes could also be considered
but we reserve this for the future.

The TKF92 model has the insertion–deletion process
operating independently of the substitution process.
It describes the birth and death of entities termed
‘links’ and considers a type of link termed ‘immortal’
and another termed ‘normal’. Each normal link is
associated with one or more consecutive codons. The
normal link and its associated codons are referred to as a
fragment. The death rate per normal link is m. When a
normal link dies, the entire fragment with which it is
associated is deleted from the sequence. At the extreme
50-end of each DNA sequence is the immortal link. The
immortal link is not associated with any codons and is
not subject to death. Both kinds of links can become
parents of normal links and each experiences births at
rate l. A newborn link and its associated fragment are
assumed to be inserted directly to the right (i.e. 30-end)
of the parental fragment. Conditional upon the length of
a newly inserted subsequence, the inserted residues
are sampled from the stationary distribution of the
substitution process (equation (1.2)).

With this model, the stationary distribution of the
number of links in a sequence is geometric (Thorne et al.
1991) and the stationary distribution for the number of
codons per sequence depends on the probability
distribution of the number of codons per fragment. It
is computationally convenient to have the number of
codons per fragment to be geometrically distributed so
that the probability that a fragment has k codons is
(1Kr)r kK1, where k is greater than or equal to 1. The
resulting stationary distribution for the number of
codons in a sequence i is (Thorne et al. 1992)

P0ðLði Þjl;mÞZP0ðLðIÞjl;mÞ

Z

1K
l

m
Lði ÞZ0

1K
l

m

0
@

1
A l

m
ð1KrÞ Lði ÞZ1

1K
l

m

0
@

1
A l

m
ð1KrÞ

l

m
ð1KrÞCr

0
@

1
ALði ÞK1

Lði ÞO1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3:1Þ
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A flaw of the TKF92 model is that fragment
boundaries cannot change over time. If two consecutive
codons are inserted together, then neither can later be
deleted unless both are deleted. Here, we consider a
variant that rectifies the flaw of unchanging fragment
boundaries. Our variant differs from the TKF92 model
because it does not consider fixed fragment boundaries.
A more general improvement upon the TKF92 model
has been outlined by Miklós et al. (2004).

Let D0(i, c, q) be the rate at which sequence i
experiences a deletion that begins at the cth codon and
removes from i the subsequence q that has a
total of L(q) codons (i.e. the deletion eliminates the
codons in positions c; cC1;.; cCLðqÞK1). Obviously,
D0(i, c, q)Z0 if cCLðqÞK1OLðiÞ or if the subsequence
beginning at codon c and having length L(q) codons
does not actually match subsequence q. The TKF92
deletion rate corresponding toD0(i, c, q) is 0 unless there
is a fragment that begins at codon c and ends at codon
cCLðqÞK1. When fragment boundaries permit a
particular deletion, the TKF92 model has the rate of
that deletion as m.

Let I0(i, c, q) be the rate at which i experiences
an insertion between the codons at positions c and
cC1 (if 0%c!L(i )) or, in the case of cZL(i ), that
begins at the 3 0-end of the codon at position L(i ).
The TKF92 insertion rate corresponding to I0

(i, c, q) is 0 unless the fragment boundaries of i are
such that an insertion is possible. If an insertion is
possible, the TKF92 model has the insertion rate
lð1KrÞrLðqÞK1P0ðqjLðqÞ;pÞ.

Owing to the multiple ways by which sequences can
be fragmented, different sequences of the same length
that all evolve according to the TKF92 model may
experience different overall insertion and deletion rates
and also different insertion and deletion rates at
individual sequence locations. Our variant is much
the same as the TKF92 model, except that all
sequences of a particular length experience the same
insertion and deletion rates as each other. Specifically,
the insertion rates I0(i, c, q) and deletion rates
D0(i, c, q) for this variant model are obtained by
averaging the TKF92 rates over all possible fragmenta-
tions of a sequence of length L(i ). We note that the
probability of observing a fragment boundary between
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any two codons is ððl=mÞð1KrÞÞ=ððl=mÞð1KrÞC rÞ. Some
algebra shows that the rates are

I0ði;c;qÞ

Z

lð1KrÞr L ð q ÞK1P0ðqjLðqÞ;pÞ cZ0 or cZLði Þ

lð1KrÞr L ð qÞK1

l

m
ð1KrÞ

l

m
ð1KrÞCr

P0ðqjLðqÞ;pÞ 1%c%LðiÞK1

8>>>>>>>><
>>>>>>>>:

ð3:2Þ

and, assuming that a subsequence q begins at codon
position c in sequence i,

D0ði;c;qÞ

Z

r L ð q ÞK1

l

m
ð1KrÞCr

0
@

1
AL ðqÞK1

m cZ1 and LðqÞZLði Þ

l

m
ð1KrÞrLðqÞK1

l

m
ð1KrÞCr

0
@

1
AL ðqÞ

m ðcZ1 and LðqÞ!Lði ÞÞ

or ðcZLði ÞKLðqÞC1 and cO1Þ

�
l

m

�2

ð1KrÞ2r LðqÞK1

l

m
ð1KrÞCr

0
@

1
AL ðqÞC1

m 1!c!Lði ÞKLðqÞC1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:3Þ

These rates specify a time-reversible insertion–deletion
model with a stationary distribution of sequence
lengths that is identical to equation (3.1). A nice
feature of the TKF92 model is the availability of
explicit transition probabilities for transforming one
sequence into another. Our modification does not
share these transition probabilities, but our purposes
here do not require explicit transition probabilities.
(b) The profile HMM rate matrix

If codon substitutions and insertion and deletion events
are exclusively neutral, then the stationary probability
of i would be P0ði jp; l;mÞZP0ðijp;Lði ÞÞP0ðLði Þjl;mÞ.
We want to consider departures due to natural selection
from these neutral probabilities. For a change from
sequence i to j, the rate Ri, j with natural selection will

again be assumed to be eðEði ÞKE ð j ÞÞf multiplied by the
neutral rate. This means that the rates of point
mutations are given by equation (1.4), and the
insertion and deletion rates are, respectively,

I ði; c; qÞZ eðEði ÞKEð j ÞÞfI0ði; c; qÞ ð3:4Þ

and

Dði; c; qÞZ eðEði ÞKEð j ÞÞ fD0ði; c; qÞ: ð3:5Þ
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With insertions and deletions, sequence lengths are not
fixed and equation (1.5) needs to be modified,

P�ðijp; l;mÞZ
eK2 f Eði ÞP0ðijp; l;mÞP
k eK2 f EðkÞP0ðkjp; l;mÞ

; ð3:6Þ

where the sum is now over all possible sequences of all
possible lengths.

In order to fit our model to a profile HMM, we
match equation (3.6) to the probability PHMM(I ) of
amino acid sequence I according to a profile HMM. To
do this, we set

f Eði ÞZK
1

2
log

PHMMðIÞ

P0ðIjp; l;mÞ
: ð3:7Þ

If we again assume that the relative fitnesses of i and j
are 1 and 1Csj, we obtain the result of equation (1.8)
rewritten to emphasize the relevance of the lengths of I
and J,

2Nsj^f ðEði ÞKEðj ÞÞ

Z
1

2
log

PHMMðJ ÞP0ðLðIÞjl;mÞP0ðIjp;LðIÞÞ

PHMMðIÞP0ðLðJ Þjl;mÞP0ðJjp;Lð J ÞÞ
:

ð3:8Þ

In the above equation, the terms P0ðLðI Þjl;mÞ and
P0ðLðJ Þjl;mÞ depend on l and m. Instead of estimating l

and m, we reason that protein sequences tend to be long
relative to insertion and deletion lengths. This means
the ratio of P0ðLðI Þjl;mÞ and P0ðLðJÞjl;mÞ should be
close to 1 if the lengths of I and J are not too different.
The approximation to 2Nsj then becomes

2Nsj^
1

2
log

PHMMðJÞP0ðIjp;LðIÞÞ

PHMMðI ÞP0ðJjp;LðJÞÞ
: ð3:9Þ

Although the insertion and deletion rates in equations
(3.4) and (3.5) parallel the substitution rate form of
equation (1.4), an alternative form of the insertion and
deletion rates parallels the substitution rates defined by
equation (1.9) and the fixation probability of equation
(1.13). This alternative also yields the stationary
distribution of equation (3.6) and the 2Nsj estimate of
equation (3.9).

(c) Profile HMM example

We used a profile HMM from the Pfam database
(Sonnhammer et al. 1997) that was trained from
members of the tumour protein p53 family. We
obtained a protein-coding DNA sequence from
humans (GenBank accession NM_000546) that
belongs to this family. By applying equation (3.9)
with the nucleotide frequencies used for the VLMM
analyses (i.e. pAZpTZ0.295, pCZpGZ0.205), we
estimated 2Nsj value for possible mutations to the
human p53 gene.

The mean and standard deviation of the 2Nsj for the
1280 possible non-synonymous point mutations were,
respectively, K1.27 and 0.79 with only 72 (approx.
5.6%) yielding a positive estimate of 2Nsj. For the
195 possible single-codon deletions to this human
p53-coding sequence, the mean and standard deviation
of the 2Nsj estimates were K3.60 and 0.78, respect-
ively, and none of the estimates were positive. For the
(195C1)!61Z11 956 possible single-codon
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Figure 2. Estimates of 2Nsj for possible mutations to the human p53 gene. (a) Non-synonymous mutations, (b) single-codon
deletions, (c) single-codon insertions, (d ) deletions of 10 consecutive codons and (e) insertions of 10 consecutive codons.
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insertions that could affect the p53 gene according to
our insertion–deletion process, the mean 2Nsj estimate
was K2.43 with a standard deviation of 0.68. There
were 247 single-codon insertions (approx. 2.1%) with a
positive 2Nsj value. We also examined the 186 possible
deletions of 10 consecutive codons that could affect the
human p53 sequence. The mean and standard
deviation for these deletions were K16.30 and 1.90,
respectively, with none exceeding 0. Finally, we
randomly generated 100 insertions of 10 consecutive
codons for each of the 196 possible insertion locations.
The inserted subsequences were simulated in a
simplistic fashion. For each of the 30 positions in the
10-codon insertions, the four nucleotides were equally
likely to occupy the position except that subsequences
containing a stop codon were discarded. The mean and
standard deviation for the 19 600 insertions of 10
Phil. Trans. R. Soc. B (2008)
codons were, respectively, K6.074 and 1.37 with 121
(approx. 0.6%) exceeding 0. Histograms representing
the 2Nsj estimates for the human p53 sequence are
shown in figure 2.
4. DISCUSSION
Our 2Nsj estimates are undeniably flawed. For example,
some non-synonymous changes are lethal or extremely
deleterious and should yield 2Nsj estimates that are much
farther below 0 than any estimates that we obtained. This
shortcoming is a reflection of the inadequacies of the
VLMM and profile HMM target distributions and our
assumption that these probability distributions fully
reflect the relationship between sequence and fitness.
For the profile HMM, improved handling of phyloge-
netic correlations among sequences in the training data
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might yield improved target distributions. The emission
and transition probabilities of the profile HMMs can be
viewed as being inferred in a Bayesian framework (e.g.
see Durbin et al. 1998). Our 2Nsj estimates are apt to be
sensitive to the prior distributions that are employed in
training the Pfam models.

Our current approach also has other departures from
rigorous statistical technique. For example, we treated
the VLMM and profile HMM target distributions as if
they were known rather than estimated, thus ignoring
uncertainty in the estimates. Also, the sequences that
yielded the 2Nsj estimates were not independent of those
from which the target distributions were inferred.

Weaknesses of our population genetic interpre-
tations include the assumption of low mutation rate
and constant population size. These limitations need to
be addressed, but we believe making them explicit is a
good start. If population size varies during evolution,
then the balance between mutation and selection will
also vary. A consequence would be non-homogeneity
and loss of stationarity in the process of sequence
change. Although there are exceptions (e.g. Galtier &
Gouy 1998; Blanquart & Lartillot 2006, 2008), the
models of sequence change that are widely used in
phylogenetics assume stationarity. These models can
be viewed as implicitly relying upon the assumption
that effective population sizes are constant.

An advantage of explicitly connecting population
genetics to interspecific evolutionary models is that
biological criteria can be more easily brought to bear
on model selection. The general time-reversible model of
nucleotide substitution (Tavaré 1986) has the four
nucleotide types as possible states and many special
cases exist. A general time-reversible model that uses
each possible DNA sequence as a possible state has many
more special cases. Even when the stationary distribution
of such a model is constrained to match a desired target
distribution, the number of ways to design the model
could be enormous. Employing solely statistical criteria
for selecting among the possible modelling strategies
would be daunting and potentially ill-advised. A superior
approach might favour the modelling strategies with
clear population genetic interpretations.

A shortcoming of most models of sequence
evolution is that they can inappropriately assign much
probability to selectively deleterious sequences.
Computational biologists have devised a variety of
useful probabilistic descriptions of molecular
sequences for the purpose of organizing and classifying
molecular sequence data. They have had substantial
motivation to create descriptions that assign high
probability to the sequences that seem most biologi-
cally plausible. VLMMs and profile HMMs are
prominent examples of such descriptions. Natural
selection and mutation shape molecular sequences;
however, the connections between these forces and the
computational biology techniques for analysing
sequence data are often weak (but see Berg et al.
2004). Our goal here has been to help lay the
groundwork for establishing such connections. Recon-
ciliation of the VLMM and profile HMM descriptions
of sequence data with their population genetic
implications seems to us to be a desirable endeavour.
Other sorts of probabilistic descriptions of sequences
Phil. Trans. R. Soc. B (2008)
(e.g. Bussemaker et al. 2000) could be matched to
evolutionary models in a similar fashion.

The 2Nsj values that are depicted in figures 1 and 2
represent predicted distributions of fitness effects of
new mutations. These distributions are central to
evolutionary theory and diverse attempts to charac-
terize them have been made (e.g. see Eyre-Walker &
Keightley 2007). Although our approach for inferring
2Nsj values has the aforementioned flaws, worthwhile
improvements seem feasible.

In the future, inference techniques that use these or
other target distributions could be developed for
analysing sets of homologous DNA sequences. Infer-
ence with the VLMM model could be performed via
relatively straightforward modifications of previously
published statistical techniques (e.g. see Robinson et al.
2003; Rodrigue et al. 2005). Inference with the profile
HMM model would be more difficult due to the
possibility of insertion and deletion events and this is a
challenge that we are currently considering.
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work. We thank R. Cartwright, A. Griffing, K. Lamm,
Z. Yang and an anonymous reviewer for their comments.
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