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We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences
using constrained neighbour joining and non-parametric bootstrapping. We show that this method
performs as well as the more computationally intensive full Bayesian approach in an analysis of
500 insect DNA sequences obtained from GenBank. We also analyse a previously published dataset
of environmental DNA sequences from soil from New Zealand and Siberia, and use these data
to illustrate the fact that statistical approaches to the DNA assignment problem allow for more
appropriate criteria for determining the taxonomic level at which a particular DNA sequence can
be assigned.
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1. INTRODUCTION
DNA barcoding is the use of DNA sequences for

identifying unknown biological specimens. A DNA

sequence is obtained for a particular marker, typically

cytochrome oxidase I in animals, and this sequence is

compared to a DNA database to determine to which

species or other taxonomic unit the specimen belongs.

DNA barcoding is, in one form or another, widely used

in conservation genetics and molecular ecology (e.g.

Duminil et al. 2006; Rubinoff 2006; Ward et al. 2008),

but is also used in a number of other areas including

forensic applications (e.g. Dawnay et al. 2007) and

ancient DNA studies (e.g. Willerslev et al. 2007). It has

often been associated with methods for delineating and

defining species based on DNA evidence (e.g. Floyd

et al. 2002; Hebert et al. 2003; Remigio & Hebert 2003;

Moritz & Cicero 2004). However, in this paper, we will

solely consider the statistical question of how to assign

DNA sequences to a priori defined taxonomical units.

This fundamental statistical problem has been

addressed in a number of studies (e.g. Matz & Nielsen

2005; Meyer & Paulay 2005; Steinke et al. 2005;

Nielsen & Matz 2006; Abdo & Golding 2007; Munch

et al. 2008). We recently proposed a Bayesian approach

based on a combination of automated database

searches, alignment and Bayesian phylogenetic infer-

ence (Munch et al. 2008). The objective of this

approach is to approximate the posterior probability

that the unknown specimen belongs to a specific

species or taxonomic group. This is done by first

obtaining a number of sequences with high homology

to the unknown specimen using database searches,

aligning these sequences to each other and the
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unknown specimen, and then determining the pos-
terior probability of membership of a particular group
using a Markov chain Monte Carlo (MCMC)
approach similar to the one commonly used in
phylogenetic inference (e.g. Yang & Rannala 1997;
Huelsenbeck & Ronquist 2001). Under the assumption
that the sequences in the alignment include all relevant
species, the MCMC output can be directly processed
to give the desired probabilities of taxon membership.
This method was implemented in a computer program
‘Statistical Assignment Package’ (SAP; Munch et al.
2008), and was used in several applications, including
the analysis of hundreds of ancient DNA sequences
from ice cores from the Greenlandic ice (Johnson et al.
2007; Willerslev et al. 2007).

While the method in SAP was found to have good
statistical performance on real and simulated datasets
(Munch et al. 2008), it may not be easily applicable to
large-scale datasets, such as the datasets produced in
metagenomics applications. In such applications,
thousands or hundred of thousands of sequences are
being analysed, rendering MCMC-based approaches
computationally intractable. In this paper, therefore,
we explore the possibility of using the neighbour-
joining algorithm (Saitou & Nei 1987) in combination
with bootstrapping (Felsenstein 1985) as a heuristic
approach to approximate the posterior probabilities.
An alternative approach is to interpret bootstrap
proportions in a frequentist framework to make assign-
ments based on hypothesis testing (e.g. Nielsen & Matz
2006). The Bayesian interpretation of bootstrap
proportions used here has the advantage that it allows
for the possibility of using decision theory to devise
criteria for assignment (Abdo & Golding 2007). We will
show that while there often are large differences
between posterior probabilities and bootstrap pro-
portions, the neighbour joining with bootstrap
approach nonetheless performs quite well as a method
This journal is q 2008 The Royal Society
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for DNA barcoding inference. As with all other
approaches, the inferences are only as good as the
database used. The method does not model species not
represented in the database, and can lead to wrong
inferences if the database is not representative.
2. MATERIAL AND METHODS
SAP implements automatic assignment of sample sequences

to taxa based on the position of the sample sequence in the

phylogeny of life. In the first presentation of SAP (Munch

et al. 2008) a Bayesian approach was taken, using MCMC to

estimate the posterior probabilities that the sample sequence

forms a monophyletic group together with a particular

monophyletic clade.

Ideally, all available homologues available in the database

should be included in such analyses. However, due to the

computational complexity of running the MCMC analysis,

a heuristic is instead applied to compile a representative set

of sequence homologues. We use BLAST searches against

GenBank to identify homologues and retrieve sequences and

taxonomic annotation for each one, disregarding homologues

with insufficient annotation. By including only homologues

with a BLAST score of at least half that of the best matching

homologue, we exclude the bulk of sequence homologues

representing taxa whose probability of grouping with the

sample sequence is not appreciably large.

In many cases, however, even this cut-off does not limit the

number of homologues to a set that can be handled practically

by the MCMC approach. In these cases, we use a heuristic to

compile a limited set with the best possible taxonomic

coverage: we include only the best matching sequence

homologue for each species. A maximum of 30 different

species homologues are included in this manner. If allowed by

the BLAST score cut-off, up to 20 homologues providing

further taxonomic diversity are added progressively, includ-

ing up to 10 genera, 6 families, 5 orders, 3 classes and 2 phyla

in the set. If the BLAST score cut-off is reached before 50

homologues have been included in the set, additional

sequences are added for the species already represented in

the set by including homologues previously rejected as

suboptimal representatives for the species.

Based on the alignment of the compiled set of

homologues, phylogenetic trees are then sampled from a

Markov chain with stationary density of trees given by the

posterior probability of trees (e.g. Yang & Rannala 1997;

Huelsenbeck & Ronquist 2001). A backbone topological

constraint is imposed to increase the MCMC convergence

and to provide the method with information regarding

known phylogenetic relationships. The constraints are

generated from the retrieved taxonomic annotation.

The taxonomic annotation is mapped onto each sampled

tree. In this way, each clade in the tree is associated with the

taxon with lowest taxonomic rank, which includes all

sequences in the clade. The sister clade to the sample

sequence is then identified by assuming the rooting implicit

from the taxonomic annotation. In cases where the position of

the root relative to the sample sequence cannot be deduced

from the taxonomic annotation, the entire tree is considered

the sister clade. An estimate of the posterior probability of

assignment to a species or taxonomic group is then obtained

as the fraction of sampled trees where the sister clade is a

member of this species or group.

While this method was found to have desirable statistical

properties, it may be prohibitively slow for large metagenomic

datasets. We here propose a fast heuristic alternative:

sampling of trees using neighbour joining (Saitou & Nei
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1987) and non-parametric bootstrapping (Felsenstein 1985).

We will use a constrained version of the neighbour-joining

algorithm, and in order to discuss properties of this

algorithm, we will first review how the standard neighbour-

joining algorithm works.

Neighbour joining progressively selects taxon pairs from a

set of taxa and constructs a new subtree that joins the pair.

The root of the new subtree replaces the two nodes that are

joined, reducing the taxon set by one. Pairs are selected by

minimizing the following criterion:

Qði; j ÞZ ðLK2Þdði; j ÞK
XL
kZ1

dði; kÞK
XL
kZ1

dð j; kÞ; ð2:1Þ

where L is the number of taxa left to be joined and d(i, j ) is the

distance between sequence i and j, here calculated using

Kimura’s (1980) two-parameter model. If i and j are joined

creating the new node p, then the distances d(i, p) and d( j, p)

are calculated using

dði; pÞZ
1

2
dði; j ÞC

1

2ðLK2Þ

XL
kZ1

dði; kÞK
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kZ1
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When p replaces i and j in the distance matrix, the new

distances, from p to the remaining taxa, are calculated using

dðp; kÞZ
1

2
½dði; kÞKdði; pÞ�C

1

2
½dð j; kÞKdð j; pÞ�: ð2:3Þ

We can interpret the neighbour-joining algorithm as a

greedy optimization algorithm of the balanced minimum

evolution criterion given by

l Z
XL
fi; jg

dði; j Þ

oði; j Þ
; ð2:4Þ

where o(i, j ) is the sum of the number of outgoing branches

from internal nodes on the directed path from i to j (Desper &

Gascuel 2004; Semple & Steel 2004). For a binary tree, o(i, j )

reduces to 2n where n is the number of internal nodes

connecting i and j. Because the neighbour-joining algorithm

does not search the whole space of possible trees, it is not

guaranteed to return the tree maximizing l.

The algorithm is outlined below.

Initialization

— Define T as the set of L leaf nodes.

— Calculate the sequence distances between all pairs in T.

Iteration

— Identify the pair i, j in T for which Q(i, j ) is minimal.

— Define a new node p and compute the distance d( p, k)

to the k other nodes in T using equation (2.3).

— Add p to T and calculate lengths of edges i, p and j, p

using equation (2.2).

— Remove i and j from T.

Termination

— When T consists of two leaves i and j, add the remaining

edge between them with length d(i, j ).

Each iteration step requires only the recalculation of one

row in the Q matrix leaving the initial calculation of sequence

distances and the identification of the minimal entry in Q the

only operations with O(L2) complexity.

The constrained version of the algorithm is simply

implemented by replacing the first operation in the iteration by

— Identify the pair i, j among all pairs in T not violating the

backbone constraint, for which Q(i, j ) is minimal.
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We immediately note that this constrained algorithm

preserves some of the desirable properties of neighbour

joining. Firstly, the interpretation of the neighbour-joining

algorithm as a greedy optimization algorithm of the minimum

evolution criterion in equation (2.4) is preserved—but now

subject to the backbone constraint. The constraints do not

affect the calculations of distances. Secondly, and quite

trivially, if the backbone constraint imposed is correct, the

usual arguments for statistical consistency of the neighbour-

joining method (e.g. Gascuel 1997) are also preserved.

However, the use of topological constraints does not

necessarily ensure high support for the correct assignment

in cases where the constraints are not themselves supported

by the sequence data.

With a fully specified constraint the computational

complexity of identifying the pair to join is now linear in L.
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Figure 2. Estimated probabilities of assignment to the correct
species using neighbour joining are plotted against the
estimate obtained using MCMC.

deviation in estimated probability

Figure 1. Histogram showing the difference in probabilities of
assignment to the correct species estimated using the
neighbour joining and MCMC.
3. RESULTS
(a) Benchmark analysis

To compare the neighbour-joining approach with the
already implemented MCMC approach, we used a
benchmark set by selecting at random 500 sequences
annotated as Insecta from GenBank disregarding sole
representatives of a species. These sequences were
assigned using the MCMC and neighbour-joining
approach, disregarding the homologue itself when
found in GenBank.

To examine the correspondence between the boot-
strap proportions and the posterior probabilities,
we examined the correlation between the highest
estimated posterior probability using MCMC with
the one using bootstrapped neighbour joining. We
used 1000 bootstrap samples and 1 000 000 iterations
of the MCMC approach to estimate bootstrap
proportions and posterior probabilities, respectively.
For further description of models and parameter
settings used in the MCMC approach, see Munch
et al. (2008).

The average difference between the assignment
scores estimated by the two approaches is 5 per cent.
As shown in figure 1, the estimated values are in good
agreement when the estimated probabilities are large.
For estimated probabilities between 0.8 and 1.0, the
average deviation between the two is only 2.6 per cent.
For the lower values, however, the correlation is not
good, as illustrated in figure 2.

Posterior probabilities and bootstrap proportions
are not expected to match closely, because they
measure different quantities (e.g. Alfaro et al. 2003;
Douady et al. 2003; Huelsenbeck & Rannala 2004). In
addition, they use different models of nucleotide
substitution in the two approaches, and the high
variance in the estimates due to a relatively small
number of bootstrap replicates and a relatively small
number of MCMC iterations may also contribute
to the discrepancy. However, it is clear that, for high
posterior probabilities, the neighbour-joining approach
can be interpreted as a fast heuristic approximation
of the Bayesian approach.

Given a specified measure of confidence, assign-
ments can be accepted or rejected based on a criterion
of minimal required assignment probability/bootstrap
proportion. The performance of the two approaches
can be compared in a receiver operating characteristic
Phil. Trans. R. Soc. B (2008)
(ROC) plot, where sensitivity is plotted against
specificity for the range of most to least stringent
assignment criterion. As shown in figure 3, the
two approaches show only insignificant differences
in performance.

Posterior probabilities estimated by bootstrap pro-
portions are often found to be conservative compared
to probabilities computed using MCMC (e.g. Alfaro
et al. 2003; Douady et al. 2003; Huelsenbeck &
Rannala 2004). In the cases examined here, the
specificity of the neighbour-joining approach for the
0.8 cut-off, above which the estimates correlate well, is
0.98. The sensitivity is 0.86, which is not a drastic
reduction from the maximum of 0.91 when accepting
all assignments irrespective of assignment probability.

To further analyse the correspondence between
results from the two approaches, we examined the
rank orders of species in the assignment of each sample
sequence. The histogram in figure 4 shows the
frequencies of average deviation in rank order from
the one obtained from the MCMC approach. For
comparison, the histogram also plots this measure for
rankings obtained from a BLAST search. The ordering
of species obtained using neighbour joining deviates
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Figure 3. ROC curves summarizing the trade-off between
sensitivity and specificity in the range of most to least
stringent assignment criteria used. Sensitivity is the fraction
of all sequences that are correctly assigned and specificity is
the fraction of assignments that are correct. Vertical bars
represent confidence intervals of the sensitivity statistic.
Triangles, NJ; circles, MCMC.
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Figure 4. Histogram illustrating the agreement in terms of
rank order obtained by sorting the set of homologues by the
assignment probability associated obtained neighbour joining
with bootstrapping and maximum likelihood and MCMC.
The histograms show the average difference in rank order
for neighbour joining and BLAST from the one obtained
using MCMC.
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only slightly from that obtained with MCMC.
By contrast, the ranking from BLAST shows a much
poorer correlation.
(b) Re-analysis of ancient DNA environmental

samples

To illustrate the use of our method, we re-analysed
environmental ancient DNA data from a previously
published analysis of permafrost and temperate
sediments from Siberia and New Zealand (Willerslev
et al. 2007). This study established that genetic records
of palaeocommunities may be preserved in sediments
formed in the Holocene and Pleistocene. The Siberian
permafrost samples were obtained from cores drilled in
former western Beringia. The New Zealand samples
included dry sediments from a subalpine cave in the
Clutha Valley, Otago, and sand from the interior and
exterior of a bone of an extinct moa, Euryapteryx
curtus, collected in situ from a coastal dune deposit in
Phil. Trans. R. Soc. B (2008)
Northland. DNA was extracted and 130 bp fragments
of the chloroplast rbcL gene and 100–280 bp frag-
ments of the vertebrate mitochondrial 16S, 18S,
cytochrome b and control region genes were obtained
using PCR.

As a method for statistical assignment was not
available at the time of publication these data were
analysed using BLAST searches against GenBank,
assigning each sample sequence to the taxon rep-
resented by the highest scoring hit or the taxonomic
rank shared by multiple equally good hits. For putative
vertebrate sequences, the assignments were further
supported by consensus neighbour-joining phylogenies
of the sample sequences and their best BLAST hits
in GenBank.

This analysis probably represents the approach to
sequence identification, or DNA barcoding assign-
ment, most commonly used up to now. Assignment
using BLAST, however, is associated with a number of
problems. BLAST searches the database for similar
sequences using a local alignment heuristic. This
means that the ranking of the identified homologues
is based on local and not a global alignment to the
sample sequence. Most importantly, however, assign-
ments using BLAST are not associated with any
measure of confidence in assignment. Since the
E-values only state the probability of retrieving a
similarly good hit by chance from the database, the
relative size of these offers no information about the
reliability of assignment to the species or other
taxonomic group represented by the best BLAST hit.

Using bootstrap consensus phylogenies may often
yield conservative results. In some cases, the sample
sequence may group equally well with multiple
individual species from the same genus, while each
specific topology has low bootstrap support. Even
though the sample sequence in each case groups with a
member of the genus, the consensus tree will not show
high support for any particular monophyletic group
containing only the sample sequence and members of
the genus. This problem will be particularly severe if
monophyly for the genus is not strongly supported by
the data. However, by calculating bootstrap pro-
portions as described in §2, the support for the different
topologies may add together to provide strong support
for an assignment at the genus level.

The sequences from the original analysis were
retrieved from GenBank and statistical assignment
was performed disregarding sequences from the
dataset when found in GenBank. Assignments were
accepted at a significance level of 0.8. Six of the 11
animal species originally identified by Willerslev et al.
(2003) were also found in our analyses (Mammuthus
primigenius (woolly mammoth), Bison spp. (bison),
Ovibos moschatus (muskox), Rangifer tarandus
(reindeer), Pachyornis elephantopus (heavy footed moa)
and Megalapteryx didinus (upland moa)). One of the 11
species, Cyanoramphus novaezelandiae (New Zealand
parakeet) could not be tested in this analysis, as the
C. novaezelandiae sequence used in the original
phylogeny still remains unpublished. At the genus
level, additional three of the original animal taxa were
found: Equus (horse), Euryapteryx (incl. E. curtus
(costal moa)) and Lepus (hare). The remaining species
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Lemmus lemmus (Norway lemming) originally assigned
to the genus Neotoma (wood rats)—a group no longer
present in Beringia but found during Pleistocene
times—obtained only a significant assignment prob-
ability at the level of order.

Although the findings from the two analyses
overlap, the re-analysis shows that identifications
based on consensus neighbour-joining phylogenies
that include only the GenBank sequences showing
the highest scores in a BLAST search may falsely
inflate confidence in assignment to taxa represented
by these sequences.

The plant rbcL chloroplast sequences that were
originally identified to order and family levels through
the consensus taxa from GenBank, based on those
sequences with the highest BLAST scores, showed less
consistent results. Of the 28 families and 23 orders
originally identified, we could identify only 11 of the
families and 14 of the orders at the 0.8 significance
level. Additionally, we identified six new families not
found in the original paper (Mniaceae, Oleaceae,
Scapaniaceae, Apiaceae, Plantaginaceae and Santala-
ceae). Of these, the first three are cosmopolitan and
the remaining are found in New Zealand among other
places. Thus, our results suggest that a simple BLAST
search provides only poorly supported sequence
identifications.

One of the plant sequences analysed could be
identified to species level, Mida salicifolia—a species
indigenous to New Zealand. Additionally, two plant
genera could be identified: Nothofagus (southern
beeches)—a genus of approximately 35 species of trees
and shrubs native to the temperate oceanic to tropical
Southern Hemisphere, including New Zealand, and
Plantago, a genus of approximately 200 species of
small inconspicuous plants commonly called plantains
of which most are herbaceous. Plantago is found all over
the world, especially in wet areas such as seepages
or bogs, or in alpine and semi-alpine or coastal
areas, including Asia and New Zealand. Thus, our
method provides in some cases identifications to lower
taxonomic levels such as genus and species, even for
short pieces (120 bp) of the fairly conservative trnL
chloroplast region.

In summary, the re-analysis emphasizes the value of
a measure of confidence in assignment whereby
insufficiently supported assignments can be rejected.
It also shows that a statistical assignment approach
allows for a greater sensitivity and resolution in
describing the original community than does a
conservative approach accounting for some of the
uncertainties related to assignment using BLAST.
4. DISCUSSION
In this paper, we present a heuristic approach for DNA
assignment based on neighbour joining and boot-
strapping. The method may be interpreted as a rough
and fast approximation to a full Bayesian approach. In
fact, in the empirical study of insect sequences retrieved
from GenBank, we found that the method performed
as well or better than the full Bayesian approach,
although it is possible that analyses of other examples
might have led to different results. In our evaluation, it
Phil. Trans. R. Soc. B (2008)
is possible that the Bayesian approach in some
individual cases may have been challenged by poor
MCMC convergence. A distinct disadvantage of the
Bayesian approach is that it has to rely on automated
convergence diagnostics, when large amounts of
datasets have to be analysed. There is, therefore, always
a possibility that the analysis of a few datasets will fail
due to improperly assessed convergence. For this and
other computational reasons, the neighbour-joining-
based methods appear to be an attractive alternative in
the analysis of very large datasets.

There are a number of caveats to DNA barcoding.
The first, and most important, is errors associated with
incomplete databases. A DNA barcoding inference is
only as good as the database on which it is based. In
theory, one could statistically correct for the possibility
of unobserved species; however, this would require
modelling of the distribution of unsampled species.
Also, the inferences made here are based on purely
phylogenetic criteria, and they largely ignore inter-
specific variation and the possibility of incomplete
lineage sorting. In cases where assignment is made to
one of several closely related species, it may be more
desirable to use methods that explicitly model popu-
lation genetic variation (e.g. Matz & Nielsen 2005;
Nielsen & Matz 2006; Abdo & Golding 2007).

In the approach to tree sampling taken here, the
most time-consuming task is the calculation of the
distance matrix. For many databases, however, such as
the Barcoding of Life Database, all the database
sequences are pre-aligned and distances between
these may thus be locally precomputed. The sample
sequence can then be aligned to the database alignment
using a profile-hidden Markov model, leaving only the
distances between the sample sequence and the
database sequences to be calculated. This potentially
allows thousands or even millions of homologues to be
included in the analysis.

We used the new method on previously published
datasets of ancient DNA sequences. Assignment of
such sequences is particularly difficult because ancient
DNA sequences often are fragmented and, therefore,
very short. The advantage of statistical approaches,
such as the one presented here, is that they allow the
calculation of measures of statistical confidence in
the assignment. This allows us to determine to which
taxonomic level a specific sequence can be assigned.
In our automated method, users will be provided
with such assignment confidence measures based
on previously published taxonomies and DNA
sequences available in public databases. The program
for doing this is available at http://fisher.berkeley.edu/
cteg/software/munch.

This work was funded by the Lundbeck Foundation.
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