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The perils of plenty: what are we going to do
with all these genes?
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This new century’s biology promises more of everything—more genes, more organisms, more species
and, in short, more data. The flood of data challenges us to find better and quicker ways to
summarize and analyse. Here, we present preliminary results and proofs of concept from three of our
research projects that are motivated by our search for solutions to the perils of plenty. First, we
discuss how models of evolution can accommodate change to better reflect the dynamics of sequence
diversity, particularly when it is becoming a lot easier to obtain sequences at different times and across
intervals where the probability of new mutations contributing to this diversity is high. Second, we
describe our work on the use of a single locus for species delimitation; this research targets the new
DNA-barcoding approach that aims to catalogue the entirety of life. We have developed a single-locus
test based on the coalescent that tests the null hypothesis of panmixis. Finally, we discuss new
sequencing technologies, the types of data available and the efficacy of alignment-free methods to
estimate pairwise distances for phylogenetic analyses.
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1. INTRODUCTION
New automated sequencing technologies are capable of
sequencing a bacterial genome in 24 hours and a
human genome in two months (Wheeler et al. 2008).
These times—and the associated costs of sequencing—
are expected to decrease substantially. Additionally, the
ease with which genetic information can now be
obtained means that areas of research once thought
to be beyond our reach are now available. We plan on
cataloguing the entirety of life using a DNA barcode.
Ancient DNA delivers the genetic material of our
ancestors, while environmental metagenomics provides
us with a snapshot of whole communities of organisms
we never knew existed. We are discovering new genes,
new proteins and new organisms. What do we do with
all these genes?

The sensitivity of our methods to amplify and
sequence DNA means that we now have the ability to
obtain sequences from sub-fossil remains. There have
been several high-profile studies with mitochondrial
DNA sequences obtained from the ancient remains of
a whole range of organisms including penguins
(Lambert et al. 2002), bison (Shapiro et al. 2004),
and chickens (Storey et al. 2007), and one study where
portions of the genome of the mammoth were obtained
using short-read sequencing (Poinar et al. 2006).
We, and other researchers, have been involved in the
development of evolutionary and phylogenetic
methods to model the evolution of sequences sampled
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serially over time (e.g. Drummond et al. 2003; Liu &

Fu 2007). The significant fact with serially sampled

sequences is that mutations can emerge over the

sampling intervals, and this means that the dynamics

of mutation play an important role in understanding

sequence diversity. How should one accommodate the

changes in evolutionary dynamics and rates that act

across all lineages over time? In fact, there have recently

been a few studies that have proposed that substitution

rates appear to change as a curvilinear function of time

(Ho et al. 2005, 2007). Here, we show how such

mathematically well-defined changes in substitution

rates may be suitably modelled.

The plan to use a single genetic locus as a unique

DNA identifier for a species is an attractive idea, and is

one which the Consortium for the Barcode of Life

(CBOL; www.barcoding.si.edu) uses as its raison d’etre.
For CBOL, a 684nt region at the 5 0 end of the

cytochrome oxidase 1 gene of the mitochondrial genome

is the region of choice. In large part, this region has been

very successful at uniquely identifying species across a

range of taxonomic groups (Hebert et al. 2003). In some

instances, morphologically identical species from which

several CO1 sequences were obtained have indicated the

presence of several apparently genetically distinct clades

(e.g. Hebert et al. 2004). Are these genetically distinct

but morphologically identical groups, in fact, ‘cryptic’

species? Here, we propose a test of cryptic species

identification based on the coalescent (Kingman

1982a,b) that may be applied to genetic data from a

single locus. The coalescent is a continuous-time

approximation of the times to common ancestry

of individuals and lineages sampled from a single
This journal is q 2008 The Royal Society
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population. Genealogies generated under the coalescent
can frequently look highly structured and, thus, may
mislead researchers to think that cryptic species exist
when, in fact, they do not.

Finally, we look at the new sequencing technologies
themselves. ‘Pyrosequencing’ is a ‘sequencing by
synthesis’ method (Ronaghi et al. 1998; Margulies
et al. 2005) that is capable of providing up to several
million bases of shotgun-fragmented DNA sequences
of lengths from 100 to 300 nucleotides. Other short-
read sequencing technologies, using different chemi-
stries, have since become available, and they provide up
to 109 sequences of less than 50 nucleotides per
fragment in each run (Sundquist et al. 2007).

Preliminary results from the Global Oceanographic
Sampling (GOS; Rusch et al. 2007) of marine bacteria
reveal a wealth of new genes, open reading frames and
putative proteins (Yooseph et al. 2007). Eisen (2007)
has suggested that to rapidly identify environmental
shotgun sequencing (ESS) data, alignment-free
methods may be useful. These types of methods fall
into two broad classes: word-frequency spectral
comparisons and the use of compression algorithms.
More will be said about these methods, but they have
been applied to gene and genome sequences with
varying levels of success (e.g. Blaisdell 1986, 1989;
Höhl et al. 2006; Ferragina et al. 2007). They have not
yet been applied to ESS. How do these methods fare?

The ideas presented here represent preliminary
forays in our search for solutions and are not fully
formed, tried and tested. Some of these ideas, on
further exploration, may prove fruitful, others may not.
2. SERIALLY SAMPLED SEQUENCES AND
VARYING RATES OF EVOLUTION
Over the last decade, more sensitive methods have
meant that relatively large samples of ancient DNA
sequences from sub-fossils may be obtained. Over the
intervals between sub-fossil samples, there is a
significant probability that mutations will emerge, but
the best models to explain the dynamics of mutation
may not be those that rely on the constancy of rate
parameters. Phylogenies of serially sequence samples
permit us to decouple time from substitution rate and,
therefore, measure branch lengths in units of chrono-
logical time (Rambaut 2000). In fact, because these
phylogenies are anchored in time, it has also been
possible to measure the changes in substitution
parameters over time (Drummond & Rodrigo 2000;
Drummond et al. 2001) although, to date, changes in
substitution rates have been modelled as stepwise
functions and, as such, constant over a given interval.
Recent work, however, by Ho et al. (2005, 2007) has
suggested that there is an apparent curvilinearity to
rates estimated over time. Why this is the case (and
whether this is a real phenomenon) is still a question
under discussion. However, in broader terms, we do
expect to find changes in evolutionary processes over
time (e.g. Galtier & Guoy 1998; Lemey et al. 2007).

Assume we have sequences sampled serially from a
single population for which there is exact information
on sampling times and a known phylogeny. The
distance of each terminal node of the tree to the root
Phil. Trans. R. Soc. B (2008)
is no longer required to be equal. The parameters of the
tree are the substitution rate m, the vector of time-
stamps t and the (nK1 for a bifurcating tree) internal
node heights h measured in units of substitutions from
the root of the tree.

For a given phylogeny, I, for which only the
topology is known, we may estimate the joint likelihood
of m and H, the vector of internal node heights on I, as
the conditional probability of obtaining the sequence
data, S, given m, I, H and t, the vector of times, as well
as the model of substitution implied by the instan-
taneous substitution rate matrix, Q,

Lðm;H;QÞZProbðSjm;I;H; t;QÞ: ð2:1Þ

This likelihood is calculated in the standard manner
(Felsenstein 1981; Goldman 1990; Rodriguez et al.
1990) for phylogenetic trees, and is the product of site-
wise likelihoods (which follows from the assumption
that sites are independent and identically distributed).
The addition of m and t enters the calculations as
constraints on the distances of the branch tips from the
root: for serial samples, the distance of each sequence
to the root is proportional to its timestamp.

To calculate Li(m, H, Q), the likelihood at site i of
the alignment, we need to be able to calculate, for
each branch of I with length T, the probability, P(T ),
of moving from nucleotide m to n for all m; n2
A;C;G;T .
(a) Varying substitution rate, m, as a function

of time

It is biologically plausible for population-wide sub-
stitution rates to change over time, perhaps as a
consequence of selection and fixation, longer gener-
ation times or an improvement in nucleotide error
correction and repair. It is natural to start by letting the
substitution rate depend on time, i.e. m0ZmðtÞ;
0% t%T . The only constraint we set on m(t) is that
it is an integrable function.

To obtain P(T ), break the interval T into N sub-
intervals ti (iZ1, ., N ) of size Dt, and approximate m

over each small sub-interval with m0
iZmðtiÞ. Over each

interval, ti , we therefore assume a constant substitution
rate that changes in a stepwise manner to a new
substitution rate in the next small interval, tiC1.
Consequently, over the interval T, we obtain

PðT Þz
Y
i

PðtiÞZ
Y
i

expðQm0
iDtÞZexp Q

X
i

m0
iDt

 !
:

ð2:2Þ

AsN/N andDt/0,
P

im
0
iDt/

Ð
TmðtÞdt, and we obtain

PðT ÞZexp Q

ðT
0
mðtÞdt

� �
: ð2:3Þ

(b) Varying the instantaneous rate matrix, Q,

as a function of time: the commutable case

A time-dependent m is in fact a special case of the
general case of commutable models of substitution.
Let each element of Q change independently as a
function of time, while holding the substitution rate,
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m, constant, i.e. QðtÞ
� �

mnZmfmnðtÞ, where m; n2A;C;
G;T . If for any i and j, QðtiÞ!QðtjÞZQðtjÞ!QðtiÞ (i.e.
the matrices are commutable), then a similar result to
that described in the previous section can be obtained
as follows. Once again, we partition T into N sub-
intervals ti (iZ1, ., N ) of size Dt, and set the
instantaneous rate of change over the interval ti to Q(ti).

PðT Þz
Y
i

Pðt iÞZ
Y
i

expðQðt iÞDtÞZexp
X
i

Qðt iÞDt

 !
:

ð2:4Þ

The commutability of Q over T makes the last step
possible since eA!eBZeACB is true only when A and
B commute.

Again, as Dt/0,

PðT ÞZ exp
X
i

QðtiÞDt

 !
/exp

ðT
0
QðtiÞdt

� �
; ð2:5Þ

where the integral over Q is to be understood as
an element-by-element integration. As before, this
assumes that the functions that apply to the elements
of Q are integrable. Not all models of evolution
generate instantaneous rate matrices that are commu-
table, but many standard models do. These include
the Jukes–Cantor, Kimura two-parameter (K2P),
Hasegawa–Kishino–Yano and Felsenstein 81 and
84 models.
(c) Varying the instantaneous rate matrix, Q, as

a function of time: the non-commutable case

If Q is not commutable, then
Q

i expðQðtiÞDtÞsexpP
i QðtiÞDt

� �
. To obtain P(T ), we use the expansion

of the matrix exponential, as follows:

PðT Þz
Y
i

Pðt iÞZ
Y
i

expðQðtiÞDtÞ

Z
Y
i

ICQtiDtCOðDt2Þ
� �

: ð2:6Þ

As Dt/0, we discard all terms of O(Dt2). While this is
the simplest approximation available, it has the
advantage of running quickly and it is easy to code. It
is worth noting that this approach also works if Q(t) is a
complex function for which the integral is difficult to
compute analytically.
(d) The challenge

Preliminary simulations indicate that the methods
outlined above work as well as any that are presently
available to estimate substitution rates for serially
sampled sequences (data not shown), but in a sense,
this is irrelevant: the mathematics of the method stands
on its own, and performance will be a consequence of
sampling. And therein lies the first challenge: we do
not yet have a good idea on how we should sample
the data in the first place. To date, only a few studies
have examined the experimental design and power (Seo
et al. 2002; Drummond et al. 2003; Liu & Fu 2007).
Although it is true that the sampling of ancient DNA is
frequently a catch-as-catch-can strategy, there are
many instances when targeted sampling is possible
(e.g. Lambert et al. 2002; Shapiro et al. 2004). In this
Phil. Trans. R. Soc. B (2008)
case, it is not obvious how one should apportion
sampling effort. Should we sample more sequences
per time point and fewer time points, or more time
points with fewer sequences per time point?

Over long time spans, molecular sequences do not
evolve in a homogeneous, time-reversible and station-
ary manner. As more ancient DNA sequences become
available, the second challenge will be to model gene
and genome evolution in biologically realistic ways.
3. TESTING FOR CRYPTIC SPECIES USING A
SINGLE GENETIC LOCUS
In 2004, Hebert et al. published a paper that they
claimed demonstrated the power of DNA barcoding to
clarify the taxonomy of a group of butterflies, Astraptes
fulgerator, that are morphologically similar as adults.
The single partial mtDNA fragment they used—part of
the cytochrome oxidase 1 gene—indicated at least 10
genetically distinct clades on a tree of 466 individuals.
Hebert et al. (2004) argued a case for recognizing these
clades as morphologically cryptic species.

However, a collection of sequences sampled ran-
domly from a population in which individuals can inter-
breed freely (i.e. a panmictic population) can frequently
appear to have a degree of cladistic structure. Even if
the individuals are morphologically identical and there
is no a priori reason to believe that the group can be
divided further, it is still possible to encounter a cladistic
pattern and within- and between-clade genetic distances
that appear to reinforce the view that the group is an
assemblage of genetically distinct ‘species’. How then
can we distinguish between a sound hypothesis of
cryptic speciation and a spurious one?

Obviously, one approach is to obtain sequences
from other, unlinked, loci: if phylogenies are congruent
across loci, and this congruence is unlikely to be due
to chance, then the hypothesis that cryptic species are
present will be warranted. However, it is useful to know,
given a single locus, whether it is worth further time
and effort to test the hypothesis of cryptic speciation.

Here, we propose a simple, single-locus test that is
based on the coalescent. The coalescent is a math-
ematical description of the genealogy of a sample of
sequences from a Wright–Fisher population. Kingman
(1982a,b) showed that the times to common ancestry
of pairs of lineages, measured from present to past, can
be approximated by exponential random variables with
the expected time proportional to 2N/i(iK1), where N
is the effective size of the population and i is the number
of lineages that have yet to coalesce as we move from
the tips to the root of the tree. The method we have
developed tests the null hypothesis that the apparent
‘distinctiveness’ of any specified clade is a consequence
of the coalescent process acting on a single, panmictic
population of constant size. More formally, for any
given node on a genealogy that defines a putative
(cryptic) species or other taxonomic unit, we calculate
the ratio, M, of the sum of the intervals spanning the
node to the tips and the sum of intervals between the
node and the root (or its most recent ancestor; figure 1),
and we compute the probability of obtaining that value
of M under a standard coalescent model. This statistic
represents an intuitive measure of what people believe
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Figure 1. Neighbour-joining tree of 466 mtDNA partial cytochrome oxidase 1 sequences with maximum-likelihood branch
lengths optimized assuming a molecular clock. Putative ‘species’ groups are labelled with names assigned by Hebert et al. (2004)
and distances from the tips to their respective ‘species-defining’ nodes. Dashed lines indicate coalescent intervals, along with
interval lengths in substitution units.
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is an indication of taxonomic distinctiveness—indeed,
those who advocate the use of DNA barcoding set such
a threshold to assign sequences to species and higher
taxonomic units (Ratnasingham & Hebert 2007).
(a) The probability density function of M

To compute the distribution of M, we need the
probability density function (PDF) of the sum, sk, of
k independent exponential random variables, each with
a unique mean liflislj ; c i; j 2kg, and this is given
Phil. Trans. R. Soc. B (2008)
by (Khuong & Kong 2006)

f ðskÞZ
Xk
iZ1

Eili expðKli skÞ; where Ei Z
Yk
jsi

jZ1

lj

ljKli
:

ð3:1Þ

M is the ratio of two sums, representing the distances of
the ‘species-defining’ node, x, to the tips of the tree
(st), and to its ancestor, a (sa). Note that under the
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coalescent, we assume that time can be measured
according to the ticking of the molecular clock;
consequently, under the null hypothesis of a single
panmictic, constant-sized population, these distances
are composed of (nK1Ka) and a exponential random
variables, respectively, where n is the number of
sequences in the sample. Each of these intervals
has an expected time (in substitutions) equal to
Q=ðiðiK1ÞÞ, where Qf2Nm (m is the mutation
rate, and the proportionality constant depends on
whether the population is haploid or diploid) and i is
the number of lineages that have yet to coalesce. The
probability of having a value of MZst/sa less than
the observed value, m, is

pðM%mÞZpðst%samÞZ

ðN
0

ðsam
0

f ðsaÞ f ðstÞ dstdsa;

pðM%mÞZ
YaCt

iZaC1

li

" #

Xx
jZaC1

Xn
hZxC1

!
m

ljðlhmCljÞ
Qx

kZaC1

ksj

ðlkKljÞ
Qn

qZxC1

qsh

ðlqKlhÞ

;

ð3:2Þ

where lrZ ðrðrK1ÞÞ=Q. In fact, p(M%m) is invariant
under Q because the terms of Q in the numerator
cancel the terms in the denominator. Hence, we can
rewrite lrZr(rK1).

For a specifiednode, equation (3.2) gives a closed-form
solution to the probability, under the coalescent, of
observing a ratio of node-to-tip distance to node-
to-ancestor distance smaller than m. If this probability
is sufficiently high (say, greater than 0.05), one would
provisionally accept the null hypothesis that the
observed ratio is a consequence of the conditions of the
Wright–Fisher population model, these conditions being
panmixis, and the absence of selection, changes in
population size or population subdivision. In other
words, the hypothesis that the specified node identifies a
cryptic species would not be statistically significant. There
is a technical issue with the computation of equation (3.2)
that relates to computational precision. We have found,
using several programming languages (e.g. CCC, JAVA

and VISUALBASIC.NET), that the value of p(M%m) cannot
be calculated reliably when aCtO45. With the matrix
computing language MATLAB, it is possible to calculate
p(M%m) for higher values, using its ‘variable precision
arithmetic’ function, but there is a significant increase in
computational time. However, since p(M%m) decreases
monotonically as aCt increases, we have taken the
approach that if p(M%m)!a at aCtZ40, we say that
the M ratio is significantly different from that expected
under the coalescent.

A reasonable objection to this test is that it relies on
only one of many possible coalescent models. For
instance, one can imagine a different model of a single
panmictic species with a population size that has
decreased from some time in the past. The genealogical
consequence of this type of dynamic is a tree with
short coalescent intervals towards the tips and long
coalescent intervals closer to the root. This pattern is
likely to show up as statistically significant with the test
Phil. Trans. R. Soc. B (2008)
we propose here, and one would be fooled into thinking
that cryptic species are present when, in fact, they are
not. Similarly, since most hypotheses of cryptic species
are proposed after the tree is constructed, there needs
to be some a posteriori correction of the level of
significance. An uncorrected p-value will be too liberal.
Our response to both of these criticisms is to admit that
the test is liberal. However, it means that if we cannot
reject the null hypothesis, then it makes it even harder
to believe that cryptic species are present based on the
phylogeny alone.

(b) Application to the data of Hebert et al. (2004)
We applied our test to the 466 sequences obtained
by Hebert et al. (2004). We began by building a
neighbour-joining tree in PAUP� (Swofford 1999)
using K2P distances. We next optimized the branch
lengths of the tree using a clock-constrained maximum-
likelihood procedure, also with PAUP�. A molecular
clock allows us to recover the order of the coalescent
nodes on the tree. For each putative cryptic species
within A. fulgerator (labelled using the nomenclature of
Hebert et al. (2004)), we measured M as the ratio of the
distance between the putative species-defining node
and the tips of the tree to the distance between that
node and its most recent common ancestor. For
example, for the clade SENNOV, the species-defining
node is the fourteenth coalescent node from the base of
the tree, and the ancestral node is the fifth coalescent
node from the base of the tree (figure 1). The results
(table 1) indicate that of the 12 groups proposed by
Hebert et al., TRIGO, FABOV and INGCUP have
p-values greater than 5 per cent (although the last is
right on the cusp of statistical significance and, given
the problem with precision noted above, should
probably be considered a statistically supported
group). MYST, NUMTand BYTTNER have identical
sequences and they return a p-value equal to 0,
although one would be justifiably cautious in quoting
this value. This leaves 6 of the 12 species for which the
null hypothesis has been conclusively rejected.

It is important to understand what it means when we
reject the null hypothesis constructed here. Each test is
an independent test of a specified clade. The ratio of
intra- and extra-clade distances is compared against a
null distribution of ratios that is not conditioned on the
existing coalescent intervals of the reconstructed phylo-
geny. This p-value is simply the probability of obtaining
the observed ratio from the space of all possible
topologies and all possible coalescent intervals (under a
constant-sized Wright–Fisher population model).

One could argue that such a test is inappropriate
because significant results for some clades necessarily
change the form of the null hypothesis as it is applied to
other clades. In our example, for instance, both
HIHAMP and YESSEN have rejected the null
hypothesis of panmixis. This should mean that,
logically, FABOV should also be treated as a separate
species, but it does not reject the null hypothesis.
Similarly, if all species except one closer to the tips are
not significantly supported by our test, then this surely
means that the taxonomic validity of the significant
clade is at least logically in doubt. These are problems
that we have yet to solve.



Table 1. M ratios and associated p-values for the different putative species suggested by Hebert et al. (2004).

name

distance to
putative
species node

number of
species nodea

distance between
species node and
ancestral node

number of
ancestral nodeb M pc

TRIGO 0.0014 18 0.0353 1 0.0413 !0.58
SENNOVd 0.0021 14 0.0139 5 0.1438 !0.05
BYTTNER 0.0000 25e 0.0115 8e 0.0000 –
LONCHO 0.0013 19 0.0100 8e 0.1275 !0.05
LOHAMP 0.0005 21 0.0100 9 0.0500 !0.05
YESSEN 0.0026 12 0.0079 9 0.3291 !0.05
NUMT 0.0000 25e 0.0067 10e 0.0000 –
CELT 0.0023 13 0.0023 10e 0.5227 !0.05
FABOV 0.0019 15 0.0007 11 2.7143 !0.74
HIHAMP 0.0002 22 0.0016 17e 0.1250 !0.05
INGCUP 0.0010 20 0.0008 17e 1.2500 !0.06
MYST 0.0000 25e 0.0018 0.0018 0.0000 –

aSee figure 1 for the numbers of the nodes corresponding to each putative species. These numbers represent coalescent events counting from the
root towards the tips, with the root node specified as ‘1’.
b This is the first ancestral node of the ‘species’ node.
cCalculation of p-values encounters precision problems and can only be reliably obtained for n!45. Consequently, all p-values are obtained with
an nZ40.
d This putative species group, SENNOV, ignores the two singleton species that appear as outliers to the main clade.
eOn the phylogenetic tree, these are multifurcating nodes. Under the coalescent, no two coalescent events can occur simultaneously.
Consequently, we have labelled these nodes with identical coalescent ranks, equal to the highest coalescent node possible given the number of
bifurcations that can be resolved from the reconstructed multifurcation.
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Hebert et al. (2004) provided other evidence for the
presence of several cryptic species within the group,
including the colour variation in caterpillars, and the
different preferences for food plants. The question that
needs to be asked is whether such corroborative
evidence is obtained after the groups are ‘identified’,
in which case there is cause to wonder how easy it
would be to obtain equally corroborative evidence for
any random grouping of individuals. It is difficult to
know how to design appropriate a posteriori corrections
for corroborative evidence.

(c) The challenge

There are several issues that we believe make the
identification of cryptic species a particularly difficult
problem. First, as with any hypothesis test, failure to
reject the null hypothesis does not mean that the
alternative is false, only that there is insufficient evidence
of its truth. As we accumulate more genetic information,
we are likely to see more genetic variation among
morphologically identical individuals. Similarly, we
need to work out how corroborating evidence (collected
after the genetic analyses) should be handled. The
challenge is to develop a suite of methods that tests the
hypothesis of cryptic speciation rigorously and critically.
Rosenberg (2007) has developed a statistical method to
test whether the observedmonophylyof a specified group
could have occurred by chance. The test takes account of
the number of sequences in the specified group. Pons
et al. (2006) have developed an explicit model that
combines a Yule branching process to describe a species
tree and the coalescent for intraspecific genealogies to
locate the ‘switch points’ on a phylogeny that correspond
to the transitions from Yule to coalescent processes.
Fontaneto et al. (2007), building on the analysis by Pons
et al. (2006), designed a test to compare the likelihoods of
a phylogeny fitted assuming a coalescent process against
that fitted with an estimated number of independently
Phil. Trans. R. Soc. B (2008)
evolving clusters. Together with the method outlined
here, we may have a near-complete toolbox of such tests.

A second challenge is to determine the best
approach to deal with the false discovery rate (FDR)
that is inherent in any procedure that constructs a
hypothesis (in this case, of cryptic species) a posteriori.
A good FDR correction recovers the frequency with
which patterns that fool us into thinking they are
biologically significant emerge by chance alone. How
are we to do this with the identification of cryptic
species? The test we have developed here is, strictly
speaking, an a priori test applied to an a posteriori
diagnosis. We apply the test assuming that the
particular group we are testing is one we had intended
to test all along—it is only with this assumption that we
are able to test each node in isolation. However, in
reality, we test nodes that appear after the phylogeny
has been constructed.

Biologists use both cladistic (i.e. monophyly) and
phenetic (i.e. ‘genetic distinctiveness’) criteria to
identify the taxa hidden within the trees. To correct
for the FDR, it would seem that we need to merge
Rosenberg’s (2007) test and the test we have developed
here. Alternatively, the tests by Pons et al. and
Fontaneto et al. have the advantage of treating all
clades simultaneously, and so may be less prone to
false discovery.
4. NEXT GENERATION SEQUENCING
AND PHYLOGENETIC ANALYSES
Next generation sequencing (NGS) involves the
parallel sequencing of hundreds of thousands of
short fragments of DNA varying in lengths from 30
nucleotides to 250 nucleotides depending on the
particular technology. The total amount of DNA
sequenced per run may be as much as 109 nucleotides,
and each run typically takes less than a week
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Figure 2. Plots of pairwise distances of 35 bacterial 16S rDNA sequences obtained using the (a) best compression or
(b) word-frequency methods ( y-axis) against ML distances obtained using PAUP� and MODELTEST. (a) GZIP was the best-
performing algorithm, as measured by the Robinson–Foulds distance (Robinson & Foulds 1979) between the reconstructed
NJ tree using GZIP distances and the NJ tree using ML distances. (b) Euclidean distances with six-word vectors were the
best, as judged by the Robinson–Foulds distance between the reconstructed NJ tree using these distances and the NJ tree
using ML distances.
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including preparation time. NGS works very well for
resequencing genomes that have already been
sequenced by traditional methods, and less well for the
de novo assembly of previously unsequenced genomes.
If this continues to be the case, an obvious challenge
presents itself: is there a rapid way of determining
the evolutionary relatedness of genomes (or other
fragments) sequenced using NGS without the need
for time-consuming, and potentially inaccurate,
assembly methods?

One approach that has been suggested by Eisen
(2007) involves the use of compression or word-
frequency algorithms. These methods are useful
because no alignment is necessary to obtain pairwise
distances between sequence datasets. The use of
lossless compression algorithms to measure the shared
information content between two molecular sequences
and establish evolutionary relatedness has received
increasing attention in the literature over the last few
years. Word-frequency methods that measure the
distance between frequency spectra of all possible
k-words of two molecular sequences date back to
Blaisdell (1989). Recently, Höhl et al. (2006) examined
the performance of several methods to accurately
reconstruct evolutionary distances of complete mole-
cular sequences and showed that some performed
relatively well. Here, we look at how these methods
perform with short-read sequences.
(a) Simulations

We applied word-frequency and compression algo-
rithms to datasets consisting of:

(i) 16S complete rDNA sequences of 35 bacteria
spanning a wide range of phyla and with a range
of GC contents from the Ribosomal Database
Project (Maidak et al. 1997),

(ii) the same 16S rDNA sequences, cut into random
short fragments of length 250 (G50) each with 3!
coverage, using the program READSIM (Schmid &
Huson 2007; http://www-ab.informatik.uni-tue-
bingen.de/software/readsim/welcome.html) with
Phil. Trans. R. Soc. B (2008)
a relatively high error rate of approximately
4 per cent, and

(iii) full genomes of the same bacteria as in (i).

We began with a simple word-counting algorithm as
presented in Höhl et al. (2006). We created vectors of
the frequencies with which all possible words of length
k(4%k%8) occur in each sequence. We calculated the
pairwise distances between vectors using either the
squared Euclidean distance or the Manhattan distance.

We used 22 compression algorithms listed by
Ferragina et al. (2007) in their paper describing the
use of these methods in sequence classification. As a
measure to build the distance matrix, we used the
Universal Compression Dissimilarity (UCD) distance
(Ferragina et al. 2007),

UCDðx; yÞZ
maxfjcðxyÞjKjcðxÞj; jcðxyÞjKjcðyÞjg

maxfjcðyÞj; jcðxÞjg
;

ð4:1Þ

where jc(xy)j signifies the size of the compressed file
containing sequences (or sequence sets) x and y;
and jc(x)j is the size of the compressed file containing
only sequence x. The pairwise distances were esti-
mated using the software developed by Ferragina et al.
(source: http://www.math.unipa.it/wraffaele/kolmo-
gorov/).

To visualize the results, we plotted the pairwise
distances obtained using either the word-frequency or
compression algorithms against distances obtained by
PAUP� (Swofford 1999) using models of substitution
identified by MODELTEST (Posada & Crandall 1998).
If a method performs well, then we expect that there
will be a monotonic relationship between the
estimated distances and the evolutionary distances
obtained using standard phylogenetic algorithms. We
do not expect to see a linear relationship, of course,
because there is no correction for multiple sub-
stitutions, but a simple transform will suffice to
straighten any simple curvilinear trend, should one
be obtained.

When we applied the algorithms to full-length 16S
rDNA sequences, we obtained reasonably good

http://www-ab.informatik.uni-tuebingen.de/software/readsim/welcome.html
http://www-ab.informatik.uni-tuebingen.de/software/readsim/welcome.html
http://www.math.unipa.it/~raffaele/kolmogorov/
http://www.math.unipa.it/~raffaele/kolmogorov/
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Figure 3. A comparison between word-frequency distances using (a) simulated short reads of 16S rDNA sequences and
(b) whole genomes of the same species. Note the dramatic difference in the estimated distances. Graphs (i)–(x) show
distances using either the Manhattan or the Euclidean metric with different word lengths as follows: (i) Manhattan word
length 4, (ii) Euclidean word length 4, (iii) Euclidean word length 6, (iv) Manhattan word length 6, (v) Manhattan word length
8, (vi) Euclidean word length 8, (vii) Manhattan word length 7, (viii) Euclidean word length 5, (ix) Manhattan word length 5,
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estimates of distances for most of the methods

(figure 2). With simulated short-read fragments from

16S rDNA sequences, there was considerably more

scatter to the distance plots, but again, a definite

monotonicity between compression/word-frequency

distances and evolutionary distances (see figure 3a for

word-frequency graphs; compression algorithms have

similar distributions).

By contrast, when we used genomic DNA as our

input for compression or word-frequency algorithms,

the distances obtained did not fit well with the 16S

rDNA evolutionary distances that were used as the

benchmark (see figure 3b for word-frequency graphs;

compression algorithms have similar distributions).

There may be several reasons for this—differences in

GC content across the genomes, stretches of nucleotide

repeats and lateral gene transfer. We have not identified

which of these possible factors challenge the ability of

these methods to work well.
(b) The challenge

Our analyses suggest that the use of alignment-free

compression and word-frequency algorithms to con-

struct pairwise distances between sets of short-read

sequences is quite feasible (but see Höhl & Ragan 2007

for caveats). However, we have only shown that this is

possible with a single locus. Our results indicate that

when we try to apply these methods to whole genomes,

they fail. We have suggested that this may be owing to

the different evolutionary dynamics across genomes.

Clearly, this suggestion needs to be tested.

A further challenge involves the use of short-read

sequencing in metagenomic studies and ESS. If only a

single gene region is obtained from ESS (e.g. the 16S

rDNA region), then it may be possible to compare

communities using alignment-free methods.
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5. DISCUSSION
In this paper, we first looked at how our models of

evolution can incorporate change as a fundamental

evolutionary process, as we accumulate more and

different types of data. Next, given the impetus to

develop a single marker of species identity, we looked at

how to avoid the dangers of falsely assuming that

observed cladistic structure is indicative of real

biological separation. Finally, we looked directly at

one of the benefactors of all this genetic largesse. New

sequencing technologies deliver large numbers of short

fragments that may be difficult to assemble and align.

We explore the use of alignment-free methods and

show that their use holds some promise.

With large collections of data, the emergence of

patterns by chance alone becomes more probable.

Sound and rigorous tests of the significance of

emergent patterns are going to be required over the

next few years. Additionally, the seductive appeal of

large amounts of data seems to rest on a relatively

contemporary belief that biological understanding

emerges only when we have a handle on the

componentry and mechanics of the organisms we

study. And yet, if the last 200 years has taught us

anything, it is that much insight emerges when we view

the world at a sufficiently high level. Evolution,

Mendelian genetics and the structure of DNA—the

foundations on which modern biological science are

built—emerged without the luxury of the vast quan-

tities of data we now have. Consequently, we believe

that the firmest challenge for twenty-first century

biology is to work out what information we need to

keep, what we need to ignore and how to summarize

effectively and appropriately.

We thank Howard Ross, Alexei Drummond, David Bryant
and other staff and students at the Bioinformatics Institute
and the Allan Wilson Centre for Molecular Ecology and



The perils of plenty A. Rodrigo et al. 3901
Evolution for contributing to many fruitful discussions that
touched on the ideas in this manuscript.
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