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Models of amino acid substitution present challenges beyond those often faced with the analysis of
DNA sequences. The alignments of amino acid sequences are often small, whereas the number of
parameters to be estimated is potentially large when compared with the number of free parameters for
nucleotide substitution models. Most approaches to the analysis of amino acid alignments have
focused on the use of fixed amino acid models in which all of the potentially free parameters are fixed
to values estimated from a large number of sequences. Often, these fixed amino acid models are
specific to a gene or taxonomic group (e.g. the Mtmam model, which has parameters that are specific
to mammalian mitochondrial gene sequences). Although the fixed amino acid models succeed in
reducing the number of free parameters to be estimated—indeed, they reduce the number of free
parameters from approximately 200 to 0—it is possible that none of the currently available fixed
amino acid models is appropriate for a specific alignment. Here, we present four approaches to the
analysis of amino acid sequences. First, we explore the use of a general time reversible model of
amino acid substitution using a Dirichlet prior probability distribution on the 190 exchangeability
parameters. Second, we then explore the behaviour of prior probability distributions that are
‘centred’ on the rates specified by the fixed amino acid model. Third, we consider a mixture of fixed
amino acid models. Finally, we consider constraints on the exchangeability parameters as partitions,
similar to how nucleotide substitution models are specified, and place a Dirichlet process prior model
on all the possible partitioning schemes.
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1. INTRODUCTION
The statistical phylogenetic analysis of amino acid data

presents problems that are not associated with nucleo-

tide data. The instantaneous rate matrix is 20!20 in

dimension for amino acid data. For the most general

model of amino acid substitution, a model that may not

be time reversible, there are a total of 20!19Z380

parameters to be estimated. For a general time reversible

(GTR) model of amino acid substitution, isomorphic to

the GTR model used in phylogenetic analysis of

DNA sequences (Tavaré 1986), there would be a total

of 20C190Z210 parameters.1 Unlike the case with

codon models in which many rates between states may

be zero because the changes involve two or more

substitutions in an instant of time, there are no easy

ways to reduce the number of parameters to be

estimated for amino acid data. The most common

approach used for the phylogenetic analysis of amino

acid sequence data is to use a continuous-time Markov

model in which all of the rates are fixed to specific values.

There are a number of such fixed rate matrices that have
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rates based on the analysis of inferred amino acid
changes from various databases. These models include
the Jones (Jones et al. 1992), Dayhoff (Dayhoff et al.
1978), Mtrev (Adachi & Hasegawa 1996), WAG
(Whelan & Goldman 2001), Mtmam (Cao et al. 1998;
Yang et al. 1998), Rtrev (Dimmic et al. 2002), Cprev
(Adachi et al. 2000), Blosum (Henikoff & Henikoff
1992), ECM (Empirical Codon Model; Kosiol et al.
2007) and Vt (Muller & Vingron 2000). The Poisson
model, which is isomorphic to the Jukes & Cantor
(1969) nucleotide substitution model, can also be
considered a member of the family of fixed amino acid
models (Bishop & Friday 1987).

The fixed amino acid models are useful not only
because they reduce the number of parameters to be
estimated in a phylogenetic analysis, but also because
they can be applied to small alignments (datasets
involving a small number of taxa and sites). It is
unlikely that the rates of substitution for an amino acid
model that had the rates of change free to vary could be
reliably estimated for typical (small) amino acid
alignments. However, the use of fixed amino acid
models also complicates matters because, for any
specific alignment of amino acid sequences, it is not
clear which of the many potential models is the most
appropriate. Often, one can make a good guess of
This journal is q 2008 The Royal Society
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which model should be used; for example, if the
alignment is of plastid genes, then the Cprev model
(Adachi et al. 2000) might be appropriate because its
rates are based on a database of plastid genes. Similarly,
the Mtmam model is probably the most appropriate
for an alignment of mammalian mitochondrial genes.
Yet, there is no guarantee that any specific amino acid
model is the most appropriate for a particular
alignment, even in cases where the amino acid model
is based upon a database of genes similar to the one to
be analysed. Another approach is to use the fixed model
that has the maximum likelihood. This is sensible, but
involves optimizing likelihoods under the current
models. Also, this approach does not allow one to
spread one’s bets across amino acid models if several of
the models have similar likelihoods.

Even the best-fitting fixed amino acid model,
however, may not be particularly suitable for the data
at hand. It is interesting to note that biologists who
adopt the approach of using fixed amino acid substi-
tution models are, in a sense, adopting a Bayesian
perspective, even if they do not use Bayesian method-
ology to estimate the parameters of the phylogenetic
model. The fixed amino acid model that is assumed in
the analysis can be considered a prior probability
distribution on the rates of amino acid substitution for
the data at hand. In fact, by using a model of amino
acid substitution in which all of the rates are fixed to
specific values, the biologist has adopted the strongest
form of a prior that can be imagined; a fixed amino acid
model places a point mass probability on the rates
specified by the model, but zero probability on other
rate combinations, even those rates that are slightly
different from the fixed rates. An intermediate solution,
in which the assumptions of the fixed amino acid model
are tempered, might be more appropriate.

In this paper, several Bayesian approaches to the
analysis of amino acid models are developed. We
consider (i) inference of amino acid rates under a
GTR model, (ii) inference of amino acid data when the
rates of substitution have been ‘centred’ on a fixed
amino acid model, but which still allow rates to vary,
(iii) a model averaging approach, in which the results of
a phylogenetic analysis are averaged over a candidate
set of fixed amino acid models, and (iv) a model
averaging approach in which all possible partitions of
the exchangeability/rate parameters are considered.
2. MATERIAL AND METHODS
(a) Specifying a ‘centred’ prior distribution for amino

acid substitution rates

We adopt a Bayesian perspective to statistical estimation, in

which inferences are based on the posterior probability

distribution of a parameter, which can be calculated using

Bayes’ theorem as

PðParameterjDataÞZ
PðDatajParameterÞPðParameterÞ

PðDataÞ
;

where PðParameterjDataÞ is the posterior probability distri-

bution of the parameter; PðDatajParameterÞ is the likelihood;

PðParameterÞ is the prior probability distribution of the

parameter; and PðDataÞ is the marginal likelihood, obtained

by summing and/or integrating over all possible combinations

of the model parameters. We consider the observations to be
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an alignment of s amino acid sequences each n in length,

denoted X. (We ignore the possibility that the amino acid

sequences might be misaligned.) For a phylogenetic model,

the parameters include a tree, with branch lengths specified in

terms of expected number of substitutions per site, and a

continuous-time Markov model describing how the char-

acters, in our case amino acid sequences, change over time.

We will forgo a thorough treatment of the phylogenetic model

which would include a description of how the likelihood is

calculated; suffice it to say that we use standard methods for

calculating the likelihood (Felsenstein 1981) and use Markov

chain Monte Carlo (MCMC) to numerically calculate the

posterior probability distribution of the parameters (e.g.

Larget & Simon 1999). Moreover, we accommodate among-

site rate variation by assuming that the rate at a particular

amino acid site (column in the alignment) is a random

variable drawn from a mean-one gamma distribution with

parameter g ( Yang 1993, 1994).

We assume that amino acid substitutions occur according

to a continuous-time Markov model with instantaneous rates

of change described by the following rate matrix

QZfqijg

Z

K qARpR qANpN / qAWpW qAYpY qAVpV

qARpA K qRNpN / qRWpW qRYpY qRVpV

qANpA qRNpR K / qNWpW qNYpY qNVpV

« « « 1 « « «

qAWpA qRWpR qNWpN / K qWYpY qWVpV

qAYpA qRYpR qNYpN / qYWpW K qYVpV

qAVpA qRVpR qNVpN / qWVpW qYVpY K

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
m;

which corresponds to a GTR model of amino acid

substitution. (The dots represent rows and columns that are

not shown because the rate matrix is too large to be printed in

its entirety.) The amino acid substitution model has 20 states,

corresponding to the 20 possible amino acids: SZðA;R;N;

D;C;Q;E;G;H;I;L;K;M;F;P;S;T;W;Y;VÞ (which are the

IUPAC codes for the amino acids; Cornish-Bowden 1985).

The diagonal elements of the rate matrix are specified such

that each row sums to 0. The GTR model of amino acid

substitution has a total of 210 parameters. Twenty of the

parameters are the stationary frequencies of the amino acids.

Similar to other phylogenetic models, the stationary

frequencies of the process are parameters of the model,

specified as components of the rate matrix. The other 190

parameters are rate parameters, sometimes referred to as

exchangeability parameters; the exchangeability parameters

are the rate factors qAR, qAN, qAD, ., qYV.

The 20 amino acid frequencies, pZ(pA, pR, pN, ., pV)

are, of course, constrained to sum to one. The 190

exchangeability parameters, qZ(qAR, qAN, qAD, ., qYV), on

the other hand, are ideally measured in terms of the expected

number of substitutions per unit time, and would not have any

constraint (other than the common-sense one that the rates be

positive). However, without any reference to time on a tree, the

values of the rate parameters cannot be estimated; only

divergence—the product of substitution rate and time—can

be measured on a phylogenetic tree in the absence of a

calibration. Because only divergence on a tree can be

estimated, only the relative substitution rates can be estimated.

For example, the relative substitution rates qARZ1, qANZ3,

qADZ2, . are equivalent to qARZ2, qANZ6, qADZ4, . In

this study, we impose the constraint that the 190 rate

parameters sum to one. The rate matrix is scaled by a factor
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m to ensure that the mean rate of substitution is one. Branch

lengths of the tree, then, are interpreted as the expected

number of amino acid substitutions per site. The scaling factor

is equal to mZK1=
P

Spsqss, where S 2 ðA;R;N;.;W;Y;VÞ.

We assume that both the amino acid frequency par-

ameters, p, and the exchangeability parameters, q, follow

different Dirichlet prior probability distributions. The use of a

Dirichlet prior probability distribution for the exchangeability

parameters of the GTR model of DNA substitution was first

described by Zwickl & Holder (2004). Let XZ(X1,

X2, ., XK) be K random variables that are constrained to

sum to one. The Dirichlet probability density is

f ðxjaÞZ
1

bðaÞ

YK
iZ1

x
aiK1
i ;

where aZ(a1, a2, ., aK) are the parameters of the

distribution and the constant of integration is a well-known

ratio of gamma functions given by

bðaÞZ

QK
iZ1

GðaiÞ

Gða0Þ
:

ða0Z
PK

iZ1 aiÞ.The marginal probability distribution of the

ith Dirichlet random variable is a beta distribution with

parameters ai and a0Kai. The expected value for the ith

Dirichlet random variable is EðXiÞZai =a0 and the variance is

varðXiÞZ ðaiða0KaiÞ=a
2
0ða0C1ÞÞ.

We assume that the amino acid frequencies follow a flat

Dirichlet prior distribution in which a1Za2Z/Za20Z1

(KZ20). We consider several different prior distributions for

the exchangeability parameters, q. In general, the exchange-

ability parameters have the following Dirichlet probability

distribution:

f ðqjcnÞZ
1

bðcnÞ

Y
i!j2S

q
cnijK1

ij ;

where S is the set of ordered amino acid states. The constant of

integration is, again, a ratio of gamma functions. The

parameters nij are constrained to sum to one. We interpret

the parameter c as a concentration parameter that controls

the variance of the Dirichlet prior distribution. The expec-

tation and variance of the exchangeability parameters are

E(qij)Znij and varðqijÞZ ðnijð1K nijÞ=cC1Þ, respectively. Note

that the maximum variance allowed is nij(1Knij) that occurs at

the improper prior cZ0 and is the variance associated with a

single draw from a binomial with proportion nij. One can also

show that covðqij ; qmnÞZKðnijnmn=cC1Þ; qij and qmn will be

most correlated when cZ0 which corresponds to the

covariance associated with a single draw from a multinomial

ðnij ; nmn; 1K nijK nmnÞ.

We consider Dirichlet prior distributions for the exchange-

ability parameters that are centred on different values. To

centre the prior distribution on a particular fixed amino acid

rate matrix, we set the nij such that they are equal to the scaled

entries of the fixed rate matrix. (A similar approach of using

an informative Dirichlet prior was described by Zwickl &

Holder 2004.) Consider, for example, the following fixed rate

matrix with only three states

Q Z

K 1:0p1 1:2p2

1:0p0 K 1:4p2

1:2p0 1:4p1 K

0
B@

1
CAm:

A Dirichlet prior distribution centred on this rate matrix

would have n01Z1:0=ð1:0C1:2C1:4ÞZ0:278, n02Z1:2=

ð1:0C1:2C1:4ÞZ0:333 and n12Z1:4=ð1:0C1:2C1:4ÞZ
0:389. The concentration parameter, c, specifies how the
Phil. Trans. R. Soc. B (2008)
probability density is spread around the centred rate value.

When c is small, the prior probability, while still centred on

the values of the fixed rate matrix, has more prior density on

values that are quite different from those specified by the rate

matrix. On the other hand, large values of c put very little

prior probability density on rates that are different from those

specified by the fixed model. Note, in fact, that as c/N, the

variance decreases to zero; the centred model becomes

equivalent to the fixed model, with no probability density

on rate values even slightly different from the fixed rates. The

small example given here involves only three rates. However,

the reader should see that the 3-state model is isomorphic

with a 20-state amino acid model, but with

20

2

 !
Z 190;

centred rates instead of

3

2

 !
Z3;

centred rates.

Our parametrization of the Dirichlet prior for the

exchangeability parameters allows us to explore a large

number of prior models on the rates. For example, we can

specify the GTR model, with a flat prior, by setting all

nijZ1/190 and cZ190. Similarly, we can explore the

sensitivity of rate parameter estimates centred on fixed

amino acid models by varying the concentration parameter c.
(b) Model choice and model averaging

In this paper, we consider 10 amino acid models, denoted

M1, M2, ., M10. The 10 amino acid models correspond to

the Poisson (M1; Bishop & Friday 1987), Jones (M2; Jones

et al. 1992), Dayhoff (M3; Dayhoff et al. 1978), Mtrev (M4;

Adachi & Hasegawa 1996), Mtmam (M5; Cao et al. 1998;

Yang et al. 1998), WAG (M6; Whelan & Goldman 2001),

Rtrev (M7; Dimmic et al. 2002), Cprev (M8; Adachi et al.

2000), Vt (M9; Muller & Vingron 2000) and Blosum (M10;

Henikoff & Henikoff 1992) models.

In a Bayesian analysis, inferences are based upon the joint

posterior probability distribution of the model parameters.

For the phylogeny problem, the joint posterior probability is

calculated using Bayes’ theorem as

f ðti ; vi ;Mj jXÞ

Z
f ðXjti ;vi ;Mj Þf ðviÞ

1
T ðsÞ

1
10P10

jZ1

P10
jZ1

Ð
vi
f ðXjti ;vi ;MjÞf ðviÞ

� �
dvi

1
T ðsÞ

� �
1
10

;

where f ðXjti ;vi ;MjÞ is the likelihood for the ith tree and jth

amino acid model; f (ni) is the prior probability density

distribution for branch lengths; and T(s) is the number of

unrooted trees possible for s species ½T ðsÞZ ð2sK5Þ!!�. In this

study, all trees and all amino acid models are considered to be

equally probable, a priori. If one is interested only in the

phylogeny of the species, then inferences are based upon the

marginal posterior probability distribution of phylogenetic

trees. The marginal posterior probability of the ith tree is

obtained by integrating over the other model parameters:

f ðti jXÞZ
X10

jZ1

ð
vi

f ðti ;vi ;Mj jXÞ dvi

� �
:

Note that the estimate of phylogeny does not depend upon

any particular fixed model of amino acid substitution; the

posterior probability of a tree is averaged over all 10 amino

acid models. This formulation of the problem does not force

the biologist to choose a particular amino acid model.
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The posterior probability distribution of phylogenetic

trees cannot be calculated analytically. MCMC (Metropolis

et al. 1953; Hastings 1970), however, can be used to approxi-

mate the posterior probability of a tree. The details of

MCMC as applied to the phylogeny problem have been

described elsewhere (see Larget & Simon 1999; Huelsenbeck

et al. 2001). In short, the posterior probability distribution of

parameters is approximated using a Markov chain which has a

stationary distribution that is the posterior probability

distribution of the parameters. New states for the chain

(trees and branch lengths) are proposed using a stochastic

mechanism and accepted or rejected according to the formula

of Metropolis et al. (1953) and Hastings (1970). States are

sampled from the chain when at stationarity. The fraction of

the time the chain dwells on any particular tree is a valid

approximation of the posterior probability of that tree. We

note one important change in implementing the mixed model

analysis of amino acid data; in addition to proposal

mechanisms that change the tree and branch lengths, we

also include a proposal mechanism that changes the amino

acid rate matrix that is used to calculate likelihoods. The

proposal mechanism works as follows. The current amino

acid model is denoted M. We propose a new model, denoted

M 0, by choosing one of the other nine models with equal

probability. The proposed model is accepted with probability

RZmin 1;
f ðXjti ;vi ;M

0Þ

f ðXjti ;vi ;MÞ
!

f ðM 0Þ

f ðMÞ
!

f ðMjM 0Þ

f ðM 0jMÞ

� �

Zmin 1;
f ðXjti ;vi ;M

0Þ

f ðXjti ;vi ;MÞ
!

1=10

1=10
!

1=9

1=9

� �

Zmin 1;
f ðXjti ;vi ;M

0Þ

f ðXjti ;vi ;MÞ

� �
:

In a Bayesian analysis, model choice is often guided by

Bayes factors. The Bayes factor for a comparison of two

models (M1 and M2) is calculated as the ratio of the marginal

likelihoods

BF12 Z
f ðXjM1Þ

f ðXjM2Þ
Z

f ðM1jX Þ
f ðM2jX Þ

f ðM1Þ
f ðM2Þ

:

The Bayes factor measures the ‘the change in the odds in favour

of the hypothesis when going from the prior to the posterior’

(Lavine & Schervish 1999, p. 120). In this study, we calculate

the Bayes factor for each model, against all of the other models.

The Bayes factor for amino acid model i, then, is

BFi Z

f ðMi jX Þ

1Kf ðMi jX Þ

f ðMi Þ

1Kf ðMi Þ

:

(c) Considering amino acid models as partitions

Consider, again, the three-state model of change with

instantaneous rate matrix

Q Z

K q01p1 q02p2

q01p0 K q12p2

q02p0 q12p1 K

0
B@

1
CAm

and exchangeability parameters qij, where 0%i%j%2. This rate

matrix is analogous to the GTR model of DNA or amino acid

substitution, but with three states instead of 4 or 20. The

exchangeability parameters can be restricted to give submodels

of the most general model. For example, if rates are

constrained to be equal, with q01Zq02Zq12, then the model

is isomorphic to the model first described by Felsenstein

(1981). Other possible models apply the restriction q01Zq02,
Phil. Trans. R. Soc. B (2008)
q01Zq12 and q02Zq12. The last possible model does not

constrain equalities among the exchangeability parameters. We

label possible models by introducing a notation that allows all

of the possible models to be labelled. Here, there are three

exchangeability parameters, and the possible labels for the

models are

01 02 12

1 1 1

1 1 2

1 2 1

1 2 2

1 2 3

:

The first model, with label 1; 1; 1, constrains the three

exchangeability parameters to be equal to one another.

Similarly, the second model listed, 1; 1; 2, constrains

q01Zq02, but allows q12 to vary freely (subject to the constraint

that the three exchangeability parameters sum to one).

Huelsenbeck et al. (2004) introduced this notation to describe

all of the submodels of the GTR model of nucleotide

substitution. Here, the set of exchangeability parameters is

considered a partition, and the possible partitions are labelled

according to the restricted growth function notation of

Stanton & White (1986). The same scheme for labelling

nucleotide models is implemented in the program PAUP�

(Swofford 1998), but with the indices being letters instead

of numbers.

The number of possible partitions of n elements is

described by the Bell numbers (Bell 1934). The Bell numbers

are defined as

BðnÞZ
Xn
kZ0

S2ðn; kÞ;

where S2ðn; kÞ is the Stirling number of the second kind

S2ðn; kÞZ
1

k!

XkK1

iZ0

ðK1Þi
k

i

 !
ðkKi Þn

and is the number of ways to partition n elements into k

subsets. For the small example given above consisting of three

states, the total number of ways to partition the rates is

Bð3ÞZ5. Similarly, when only the exchangeability parameters

are considered, there are a total of Bð6ÞZ203 possible time-

reversible four-state nucleotide models (Huelsenbeck et al.

2004). (Note that there are many more possible models when

stationary frequencies are considered to be fixed or estimated

parameters of the model.) The number of possible time-

reversible amino acid models is vast. A general time-reversible

model of amino acid substitution has 190 exchangeability

parameters, meaning that there are a total of Bð190ÞZ6:59!
10258 possible models, the most parameter rich of which has

190 independently estimated rates and the simplest of which

has a common rate for all 190 exchangeability parameters.

We consider phylogenetic analysis of amino acid data

when the candidate pool of substitution models consists of all

6.59!10258 time-reversible substitution models. Huelsenbeck

et al. (2004) performed analysis of nucleotide data on the set of

203 possible time-reversible nucleotide models, placing a

uniform prior probability distribution on all possible models.

However, directly extending the approach of Huelsenbeck

et al. (2004) to the amino acid data is not feasible for

several reasons. First, if a uniform prior probability distribution

is placed on all possible amino acid models, the result is a

prodigious amount of probability on models with an inter-

mediate number of substitution rates. For example, models
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Figure 1. A frequency histogram of the potential scale reduc-

tion statistics
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for the parameters examined in this study.
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with kZ48 substitution types have a probability of

S2ð190; 48Þ=Bð190ÞZ0:133, whereas models with only kZ3

rate classes have a probability of S2ð190;3Þ=Bð190ÞZ
1:14!10K169. The posterior probability of the number of

substitution types is strongly affected by the prior, and is drawn

to models with approximately 50 rate classes simply because

there are so many more models with an intermediate number of

rate classes. Second, the MCMC used in the Huelsenbeck et al.

(2004) paper does not work efficiently for a problem with 190

substitution types.

We take a different approach in this paper. We use a

Dirichlet process prior model (Ferguson 1973; Antoniak

1974) as a prior probability on substitution models. The

Dirichlet process prior is a probability model on partitions

and has been usefully applied in several contexts in

phylogenetics and evolutionary biology (Lartillot & Philippe

2004; Huelsenbeck et al. 2006). Moreover, robust MCMC

methods have been developed for this model, which allow

effective exploration of the space of partitions (Neal 2000).

The Dirichlet process prior has a single parameter, here

denoted bO0, that controls the ‘clumpiness’ of the process.

A simple description of the Dirichlet process prior is as

follows. Consider adding rate classes sequentially. Let the

probability that a new rate class is added at the ith step be

b=ðiK1CbÞ. If we keep track of the number of rate classes

added, by letting Yi be a binary random variable that is equal

to one, when a new rate class is added, then the total number

of rate classes is KZ
Pn

iZ1 Yi. Here n is the total number of

possible rates (nZ190). Therefore, EðK ÞZb
Pn

iZ1
1

iK1Cb
z

b lnðiCbÞ. Small values for b result in only a few groups of

substitution types (k) whereas large values of b place more

probability on large values of k. In fact, the prior probability of

two rate parameters being placed in the same group is 1/1Cb.

Since the number of substitution types is on the order of the

natural logarithm of the total number of substitutions, the

prior gives more weight to fewer classes than the uniform

prior on partitions.
(d) Data

We analysed eight alignments of amino acid sequences:

(i) adh sequences from sZ23 Drosophila species (Cao et al.

1998; Yang et al. 2000), (ii) b-globin sequences from sZ17

vertebrates (Yang et al. 2000), (iii) coat protein sequences

from sZ9 viruses from the family Leviviridae (Bollback &

Huelsenbeck 2001), (iv) env sequences from sZ23 Japanese

encephalitis viral samples (Yang et al. 2000), (v) pol sequences

from sZ23 HIV samples (Yang et al. 2000), (vi) sZ28

hemagglutinin sequences from influenza virus (type A; Fitch

et al. 1997; Yang et al. 2000), (vii) replicase sequences from

sZ9 viruses from the family Leviviridae (Bollback &

Huelsenbeck 2001) and (viii) E-glycoprotein sequences

sampled from sZ18 flavivirus (Zanotto et al. 1996; Yang

et al. 2000).
3. RESULTS
For each analysis of this paper, two MCMC analyses,
each of four million cycles, were performed. Paired
chains were checked for convergence to the same
marginal probability distribution for the 190 exchange-
ability, 20 state frequency and gamma-shape para-
meters using the program Tracer (Rambaut &
Drummond 2007) and boa (Smith 2007). Inferences
were based on samples taken after the one millionth
MCMC cycle. Analysis of the post-burn-in samples
taken by each pair of chains shows that all analyses had
Phil. Trans. R. Soc. B (2008)
estimated sample sizes greater than 100 (for the
combined analyses) and resulted in very similar (by
eye) marginal posterior probability distributions for all
of the exchangeability parameters. We also calculated

the ‘potential scale reduction factor’ statistic
ffiffiffiffî
R

p� �
of

Gelman & Rubin (1992) using the program boa (Smith
2007). The potential scale reduction compares the
between-chain variance to the within-chain variance

and approaches one from above. Values of
ffiffiffiffî
R

p
less

than 1.2–1.3 are taken as evidence that the chain has
converged for that parameter (Gelman 1996). Figure 1

shows the values of
ffiffiffiffî
R

p
for all of the parameters shown in

this paper. The vast majority of these parameters haveffiffiffiffî
R

p
less than 1.05, with only a few having values of

ffiffiffiffî
R

p
between 1.2 and 1.3.
(a) Analysis under the GTR model of amino

acid substitution

We estimated the exchangeability parameters of the
GTR model of amino acid substitution under a flat
Dirichlet prior probability distribution. In our formu-
lation, the flat Dirichlet distribution has all nijZ1/190
and cZ190. We used MCMC to approximate the joint
posterior probability distribution of the exchangeability
parameters (q), amino acid frequency parameters (p),
gamma-shape parameter (g), phylogenetic tree (t) and
branch-length parameters (n).

Figure 2 shows the marginal posterior and prior
probability distributions of four of the exchangeability
parameters for the HIV alignment. The marginal
posterior probability distribution for a parameter
integrates over uncertainty in all of the other model
parameters. Hence, the marginal distributions shown
in figure 2 are not conditioned on any particular
phylogenetic tree, set of branch lengths, etc., but rather
account for uncertainty in these nuisance parameters.
The prior probability distribution of a single exchange-
ability parameter follows a beta distribution with
parameters 1 and 189. The posterior distribution
differs for each of the parameters. The posterior
probability distribution for the rate of substitution
between amino acids M and Y closely resembles the
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Figure 2. The marginal prior and posterior probability
distribution for four of the exchangeability parameters for the
HIV pol alignment. The Kullback–Leibler divergence, I, is
shown for each parameter and measures the dissimilarity
between the prior and posterior probability distributions.
Note that the Kullback–Leibler divergence is small for the
M4Y parameter where the prior and posterior distributions
are similar. The data are more informative for the other
parameters shown, and the Kullback–Leibler divergence is
correspondingly larger.
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prior probability distribution; there is very little
information in the data about this particular parameter.
However, for the other three exchangeability par-
ameters shown in figure 2, the data are informative
and the marginal posterior probability distribution is
shifted away from the prior distribution.

Summarizing the results of a Bayesian analysis of a
parameter-rich model can be difficult. We summarize
the results of the Bayesian analyses of the exchange-
ability parameters in two ways. First, we examine the
mean of the marginal posterior probability distribution
for each rate. Second, we also calculate the Kullback–
Leibler divergence (Kullback & Leibler 1951) between
the prior and posterior probability distributions for
each exchangeability parameter. The Kullback–Leibler
divergence between two continuous probability distri-
butions, f(x) and g(x), is defined as

Ið f ; gÞZ

ð
f ðxÞln

f ðxÞ

gðxÞ

� �
dx;

where integration is over all possible values of the
random variable x. We assume that the posterior
probability distribution can be closely approximated
by a beta distribution with parameters that are
Phil. Trans. R. Soc. B (2008)
estimated from the MCMC output. The Kullback–
Leibler divergence between two beta distributions, one
with parameters a1 and b1 and the other with
parameters a2 and b2 is

I Z ln
bða2; b2Þ

bða1; b1Þ
Kða2K a1Þjða1ÞKðb2K b1Þjðb1Þ

Cða2K a1 Cb2K b1Þjða1 Cb1Þ;

where, as earlier, the beta function bðx; yÞZGðxÞGðyÞ=
GðxCyÞ is the ratio of gamma functions and jðxÞZ
G0ðxÞ=GðxÞ is the digamma function. Figure 2 shows the
Kullback–Leibler divergence between the prior and
posterior distributions for the exchangeability par-
ameters, R4K, I4V, N4D and M4Y. Note that
the Kullback–Leibler divergence is large when the prior
and posterior distributions are dissimilar. The Kull-
back–Leibler divergence can be interpreted as a
measure of the informativeness of the data about the
value of the exchangeability parameter.

The amino acid sequence data are informative for
some, but not all, of the exchangeability parameters.
Figure 3 shows a summary for each of the eight
alignments examined in this study. For each alignment,
the mean of the posterior distribution and the Kullback–
Leibler divergence are shown for the 190 exchange-
ability parameters. Note that the Kullback–Leibler
divergence is small for many of the exchangeability
parameters. In these cases, the data are not particularly
informative about the value of the parameter. However,
in some cases, the Kullback–Leibler divergence is large.
The data are informative about the realized value of
these exchangeability parameters.

(b) Analysis under ‘centred’ fixed amino acid

prior models

We analysed one of the eight alignments (the HIV
alignment) under four ‘centred’ prior models. Speci-
fically, we analysed the data under a prior centred on the
Poisson (Bishop & Friday 1987), Blosum (Henikoff &
Henikoff 1992), Jones (Jones et al. 1992) and WAG
(Whelan & Goldman 2001) models. These analyses
were designed to address three questions: (i) How are
the substitution rates affected by the prior model?
(ii) How informative is the data about the substitution
rates? and (iii) What is the effect of the concentration
parameter, c, on the exchangeability parameters?

Figure 4 shows the marginal prior and posterior
probability densities for a few of the substitution rates.
Specifically, figure 4 shows the marginal prior and
posterior probability densities of the I4V (qIV) and
M4F (qMF) parameters for the HIV alignment. In
each case, the exchangeability parameters were chosen
to display an instance in which the data are informative
(I4V) and rather uninformative (M4F) about the
parameter’s value. Note that the posterior distribution
is shifted away from the prior distribution for the case
in which the data are informative. This shift towards
larger values of the exchangeability parameter results in
a larger Kullback–Leibler divergence when compared
with the case in which the data are uninformative. The
prior and posterior probability densities are almost
indistinguishable for the uninformative rate, resulting
in a small Kullback–Leibler divergence. Figure 5 shows
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the Kullback–Leibler divergences for all 190 exchange-

ability parameters for the HIValignment. In general, the

posterior probability distribution of an exchangeability

parameter becomes more similar to the prior distri-

bution as the concentration parameter, c, is increased.

The concentration parameter, c, strongly influences

the posterior probability distributions of the exchange-

ability parameters. Figure 6 shows the marginal posterior

probability distribution for one of the exchangeability

parameters (I4V) for the HIValignment when the prior

is centred on the Poisson model. The marginal posterior

distributions are most similar when c is small (e.g. when

cZ0.1 and cZ1), but quite different for larger values

of c. A large value for the concentration parameter states

that many prior observations of exchanges (sub-

stitutions) between amino acids were observed. Why

do we say this? For most statistical problems, the

Dirichlet probability distribution is used as a prior for

multinomially distributed data. The Dirichlet distri-

bution is conjugated with the multinomial distribution,

which means that when a Dirichlet prior distribution is

combined with a multinomial-likelihood function, the
Phil. Trans. R. Soc. B (2008)
posterior distribution is also a Dirichlet distribution (but
with different parameter values than the prior). The
parameter values of the Dirichlet prior are interpreted
as the prior number of observations. Hence, a Dirichlet
with parameters a1Z1, a2Z1, a3Z1 and a4Z1
essentially assumes four prior observations (one for
each of the four categories). In our use of the Dirichlet
prior distribution, the c parameter can be interpreted as
the prior number of observations. Hence, a value of
cZ100 might be interpreted as there being 100 prior
observations. For many datasets, even a value of cZ100
might be considered large, and potentially swamp the
information in the alignment about the values of the
exchangeability parameters. Small values of c, however,
do not appear to strongly affect the posterior distribution
of substitution rate.
(c) Averaging over fixed amino acid models

We performed phylogenetic analyses under a mixture
of the fixed amino acid models. The mixture model
was not applied on a per site basis (i.e. the likelihood
for each site is calculated as an average over the 10
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fixed amino acid models), but rather each amino acid
model was applied to the entire alignment (i.e. only a
single amino acid model is used to calculate the
likelihood for the alignment, and MCMC is used to
perform the model averaging). We summarize the
results of these analyses using the posterior probabil-
ities and Bayes factors for the 10 fixed amino acid
models (tables 1 and 2). In general, the M2

(Jones et al. 1992), M3 (Dayhoff et al. 1978) and M6

(Whelan & Goldman 2001) models performed the
best for the eight alignments examined in this study.

(d) Considering the substitution model as a

partition of substitution rates

We performed analyses in which the substitution models
were considered partitions of the 190 substitution rates.
As described above, we assumed a Dirichlet process
prior probability model that places some probability on
all 6.59!10258 possible time-reversible amino acid sub-
stitution models and explored the consequence of using
different values for the concentration parameter of the
Dirichlet process prior (b). Specifically, we fixed b such
Phil. Trans. R. Soc. B (2008)
that the prior mean for the number of rate categories (K )
was 2, 5 and 10 (which are achieved by using bZ0.18,
0.81 and 2.09, respectively). Figure 7 summarizes one
important aspect of the MCMC analyses: the number of
rate categories explored by the Markov chain. Note that in
none of the analyses was there much posterior probability
on KZ1, even when a lot of prior probability was placed
on the simplest possible amino acid model, as was the case
when E(K )Z2. The posterior probability for KZ1 was
close to zero for all eight analyses and for each prior on K
that we explored. Although the data were informative
about small values ofK, they were less so for large values of
K. The prior and posterior probability distributions on
the number of substitution rate categories were similar
when the prior mean for the number of categories
was E(K )Z10.

Even though the posterior probability distribution on
the number of substitution types varied from one
analysis to another, mostly depending on the prior
placed on K, summaries of the substitution models
visited were remarkably consistent. Figure 8 shows the
‘mean partition’ for each of the three analyses we
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conducted for each alignment. The mean partition is the
partition that minimizes the squared distance to all of
the sampled partitions (Huelsenbeck & Andolfatto
2007). We use a distance on partitions, described by
Gusfield (2002). The distance between two partitions is
the minimum number of elements that must be moved
between subsets to make one of the partitions identical
to the other. (Or, equivalently, it is the minimum
number of elements that must be deleted to make the
induced partitions the same.) The mean partitions are
similar under the three different choices of b we
examined for each alignment, with the same exchange-
ability parameters usually being grouped together.
0 0.05 0.10 0.15 0.20

IV

Figure 6. The marginal posterior probability distribution of
the I4V exchangeability parameter for the HIV alignment
when c varies. The y-axis is the marginal posterior probability
density of the rate. Red line, 0.1; blue line, 1; light green line,
100; orange line, 190; light blue line, 500; green line, 1000;
yellow line, 10 000.
4. DISCUSSION
Amino acid substitution models are quite complex and
parameter rich with regard to both the number of
substitution rates to be estimated and the number of
ways to partition rates. No single dataset is expected to
contain enough information to resolve the phylogeny
while simultaneously providing accurate estimates of
all parameters. A synthesis of various data sources is
necessary, and the Bayesian approach described above
provides a statistically rigorous framework that per-
forms this synthesis. We explored several different
approaches to the analysis of amino acid data, three of
Phil. Trans. R. Soc. B (2008)
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Figure 7. The prior and posterior probability distributions (upside down and right side up, respectively) for the number of
exchangeability parameter groups for the analyses where the concentration parameter is fixed such that the prior mean of the
number of substitution categories is 2 (i.e. E(K )Z2). (a) Drosophila adh; (b) vertebrate b-globin; (c) Leviviridae coat;
(d ) Japanese encephalitis env; (e) flavivirus; ( f ) influenza; (g) HIV pol and (h) Leviviridae replicase.

Drosophila adh
vertebrate β-globin

Leviviridae coat
Japanese encephalitis env

flavivirus
influenza
HIV pol

Leviviridae replicase

Figure 8. The mean partitions of the exchangeability parameters for each of the analyses. For each alignment, three mean
partitions are shown, with the top most having a prior mean of 2 and the bottom most having a prior mean of 10.
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which extend previous work on the development of
fixed amino acid models, and one of which extends
work on model averaging of DNA substitution models
(Huelsenbeck et al. 2004).

One possible approach, explored here and
implemented in MRBAYES (Ronquist & Huelsenbeck
2003), is to simply average inferences over a set of fixed
amino acid models. This approach has the advantage
Phil. Trans. R. Soc. B (2008)
that it automates the choice of fixed amino acid models,
selecting the model or models that are most appro-
priate for the data in hand. In practice, however,
we found that little averaging occurred, because
virtually all of the posterior probability is placed on a
single amino acid model. Moreover, this approach
assumes that one of the fixed amino acid models is
appropriate for the data in hand, though in reality none
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of the models in the candidate pool of models may be
particularly appropriate.

Unlike the fixed amino acid models, the centred
model allows for the possibility that the data in hand do
not conform to any particular amino acid model. The
treatment of amino acid substitutions under either the
centred models or the GTR model (a model ‘centred’
on the Poisson model rates) does not entail a significant
computational burden when posterior probabilities are
approximated using MCMC. Maximum-likelihood
estimation of the substitution parameters, by contrast,
is expected to be difficult not only owing to the large
number of parameters to estimate but also because the
likelihood surface is likely to be flat as there is little
information in a small alignment about many of the
exchangeability parameters. Furthermore, by using a
substitution model centred about a fixed amino acid
model, one can use prior information about amino acid
substitution processes combined with the data at hand
to produce valid phylogenetic inferences. Indeed, an
alternative to producing fixed amino acid models is to
produce distributions of substitution rates from
databases of alignments, such as the Pandit database
(Whelan et al. 2003, 2006).

Perhaps the most intriguing possibility for the analysis
of amino acid models is directly motivated by work on
nucleotide models that are all four-state time-reversible
continuous-time Markov chains. Several different sub-
stitution models have been described, such as those
described by Jukes & Cantor (1969), Kimura (1980)
and Tamura & Nei (1993), which are all simply special
cases of the GTR model of DNA substitution (Tavaré
1986) but with restrictions on the substitution rates.
There are a total of 203 possible models of nucleotide
substitution, with about a half dozen being formally
described. As we have shown here, this approach can be
directly extended to the analysis of amino acid data, with
the total number of restrictions on substitution rates
now being 6.59!10258. Substitution models in this
framework are considered partitions, and in our
implementation, we placed a Dirichlet process prior
probability distribution on the model partitions, using
MCMC to explore the space of models. The number of
parameters to be estimated is determined by how the
amino acid substitution rates are partitioned into
equivalence classes. The data suggest a relatively small
number of partitions. Thus, a uniform prior on
partitions, as described by Huelsenbeck et al. (2004),
places too much weight on an intermediate number of
rate classes and is inefficient. The Dirichlet process prior
provides a flexible class of priors, where the number of
classes can be controlled by a single parameter b and the
influence of the choice of b on the posterior can be
assessed. Importantly, we find that the mean number of
partitions to be very similar for a variety of choices of b.

J.P.H. was supported by NIH grant GM-069801 and NSF
grant DEB-0445453. P.J. was supported by NIH grant GM-
076040 and NSF grant DEB-0515738.
ENDNOTE
1Of the 210 parameters, 208 are free to vary. The amino acid

frequency parameters are constrained to sum to one, so knowledge of

19 of them is sufficient. Most implementations of the GTR model
Phil. Trans. R. Soc. B (2008)
involve rescaling the substitution rates to be one, so only the relative

values of the exchangeability parameters influence the likelihood and

one loses a free parameter from the list of exchangeability parameters.

In many implementations, one of the substitution rates is set to one,

and the others are measured relative to that value. Here, we will

persist in treating all 190 exchangeability parameters as if they were

independently estimated.
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