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The rate at which a given site in a gene sequence alignment evolves over time may vary. This
phenomenon—known as heterotachy—can bias or distort phylogenetic trees inferred from models of
sequence evolution that assume rates of evolution are constant. Here, we describe a phylogenetic
mixture model designed to accommodate heterotachy. The method sums the likelihood of the data at
each site over more than one set of branch lengths on the same tree topology. A branch-length set that
is best for one site may differ from the branch-length set that is best for some other site, thereby
allowing different sites to have different rates of change throughout the tree. Because rate variation
may not be present in all branches, we use a reversible-jump Markov chain Monte Carlo algorithm to
identify those branches in which reliable amounts of heterotachy occur. We implement the method in
combination with our ‘pattern-heterogeneity’ mixture model, applying it to simulated data and five
published datasets. We find that complex evolutionary signals of heterotachy are routinely present
over and above variation in the rate or pattern of evolution across sites, that the reversible-jump
method requires far fewer parameters than conventional mixture models to describe it, and serves to
identify the regions of the tree in which heterotachy is most pronounced. The reversible-jump
procedure also removes the need for a posteriori tests of ‘significance’ such as the Akaike or Bayesian
information criterion tests, or Bayes factors. Heterotachy has important consequences for the correct
reconstruction of phylogenies as well as for tests of hypotheses that rely on accurate branch-length
information. These include molecular clocks, analyses of tempo and mode of evolution, comparative
studies and ancestral state reconstruction. The model is available from the authors’ website, and can
be used for the analysis of both nucleotide and morphological data.
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1. INTRODUCTION
These are times of plenty for molecular phylogenetics.

By the spring of 2008 GenBank (www.ncbi.nlm.nih.

gov) could boast over 80 million distinct gene

sequences in its database. After a slow start in the

early 1980s GenBank’s growth was catalysed by the

discovery of the polymerase chain reaction and has

been growing at an exponential or nearly exponential

pace ever since, currently with a period doubling time

of approximately 2–4 years. Many of these sequences

are used in establishing the phylogenetic relationships

among species and this is reflected in the growing use of

phylogenies in biological research. The Web of Science
database catalogued by the end of 2007 over 25 000

articles using or describing molecular phylogenies and

this number is currently growing quadratically, increas-

ing by over 3000 published articles per annum (figure 1;

cf. Pagel 1999). Another growth phenomenon has, over

this same time period, increasingly enabled compu-

tational biologists to exploit gene sequences on

acceptable time scales. What has come to be known
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as Moore’s Law was the playful but shrewd suggestion
by one of the co-founders of the Intel Corporation
that computational power would raise exponentially
throughout the decades of 1970s, 1980s, 1990s
and now into the twenty-first century. Moore was
proved right and the trend continues with no end
currently in sight.

The confluence of these three trends means that
investigators can, as never before, attempt to infer
phylogenetic relationships among ever-greater num-
bers of species and using ever-greater numbers
of genes. The increasing size and taxonomic range of
gene-sequence alignments also means that the models
of sequence evolution used to characterize these data
must be up to the task of identifying a varied and
potentially complex range of signals. Different sites
may show different patterns and rates of evolution and
these patterns and rates may vary among genes, regions
of genes, between ribosomal and protein coding genes,
spacers and introns or even repetitive DNA. One
source of variation in gene-sequence alignments that
has received relatively little attention in phylogenetic
models is the phenomenon of heterotachy, despite being
pointed out by Walter Fitch and colleagues (e.g.
Fitch & Markowitz 1970; Fitch 1971) close to 40
years ago. Heterotachy refers to a site in a gene-
sequence alignment having a different rate of evolution
in different parts of the tree. Fitch supposed that
This journal is q 2008 The Royal Society
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Figure 1. Growth in the use of molecular phylogenies in
scientific research. Source: Web of Science, April, 2008.
Search terms molecular AND phylogen�. Line of best fit is a
quadratic spline. Dashed lines indicate that period doubling
time is increasing.
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heterotachy could arise if evolutionary changes to one
region of a gene made it more likely that other regions
of the gene became less constrained. He called this the
covarion hypothesis for ‘concomitantly variable
codons’. Heterotachy, whether of the specific sort
that Fitch envisioned or arising from other evolutionary
considerations such as varying selective pressures,
appears to be common in gene-sequence alignments
(Lopez & Philippe 2002; Ane et al. 2005; Philippe et al.
2005; Taylor et al. 2006).

Tuffley & Steel (1998) proposed a simple and
elegant model of covarion-like behaviour applicable to
gene-sequence data. Their model supposes that a given
site stochastically switches between being ‘on’ or ‘off ’
throughout the tree. When ‘on’ a conventional Markov
substitution process among nucleotides describes its
evolution. When ‘off’ the site’s rate of evolution goes to
zero. Switches are also described by a Markovian
process and therefore can occur anywhere in the tree,
including within a branch, giving rise to a variety of
possible rates of evolution throughout the phylogeny.
The model achieves this complexity with just two
extra parameters over that of a conventional model
of sequence evolution, those describing the rate at
which sites switch from on to off and back again.
Modifications to the original Tuffley and Steel
model include allowing more than one category of on
rates (Galtier 2001), variable on rates and an off state
(Wang et al. 2007), a parametric distribution of rates in
the on state (Huelsenbeck 2002), and allowing the
covarion model itself to vary throughout the tree
(Penny et al. 2001).

An alternative approach to accounting for hetero-
tachy exchanges the simple parametric elegance of the
covarion model for a model requiring more parameters,
but not linked to parametric assumptions about the
degree or distribution of heterotachy throughout
the tree. Consider two sites, one of which evolves at a
more or less constant rate throughout the tree and
another whose rate of evolution accelerates sporadically
in one or more regions. Given a common underlying
model of sequence evolution, the differing behaviour of
these two sites can be captured by assigning them
different branch lengths on a shared topology.
Phil. Trans. R. Soc. B (2008)
Generalizing this approach across all sites, a model
emerges in which some number of extra branch-length
sets is sufficient to describe the heterotachy in the data.
It is unlikely that the information about which branch-
length sets correspond to which site or sites would be
known in advance, but an approach to statistical
inference known as mixture models removes the need
to know this.

Mixture models, as applied to phylogenetic infer-
ence, sum the likelihood at each site of the alignment
over more than one model of evolution (e.g. Koshi &
Goldstein 1998; Huelsenbeck & Nielsen 1999;
Lartillot & Philippe 2004; Pagel & Meade 2004;
Blackburne et al. 2008). For example, we (Pagel &
Meade 2004, 2005) reported a mixture model for
characterizing what we called ‘pattern heterogeneity’ in
the evolution of nucleotide sequences. This model fits
more than one model of gene-sequence evolution to an
alignment, without specifying in advance how many
models there will be or to which sites they best
correspond. Instead, the method finds the optimal
number of models and sums the likelihood at each site
over all of them, weighted by their prior probabilities.
At the same time, Lartillot & Philippe (2004) reported
a similar mixture model for protein sequence data.
Both models routinely return large improvements in
likelihood, and reduce long-branch attraction. They
also avoid the problem of assigning sites to partitions
and have been shown to improve on partitioned
likelihoods, despite requiring no advance information
from the user, as well as reduce the so-called ‘node-
density’ artefacts (Venditti et al. 2008).

Applied to the problem of heterotachy, a branch-
length set mixture model will seek to find some optimal
number of extra branch-length sets, summing the
likelihood at each site over all of them. Kolaczkowski &
Thornton (2004) presented a model with two branch-
length sets but calculated the likelihood incorrectly
(Spencer et al. 2005) and their model was only
applicable to data in which it was known in advance
which branch-length set best characterized a given site.
In more recent papers, these same authors, others and
we report more fully developed branch-length sets
mixture models for heterotachy applicable to phyloge-
netic inference (Zhou et al. 2007; Meade & Pagel 2008;
Kolaczkowski & Thornton 2008).

An unwanted feature of the multiple branch-length
set approaches is the potentially large number of extra
parameters required to describe the heterotachy. Each
extra branch-length set requires 2sK3 additional
parameters (for an unrooted tree) where s is the
number of species or taxa in the alignment, plus an
empirical estimated weighting component. Even for a
modest tree of 40 species this means estimating 77C1
additional parameters just to accommodate one
extra branch-length set. Zhou et al. (2007) suggested
that, given the burden of these extra parameters, the
mixture model may, despite its better absolute
likelihood, not be favoured over the simpler covarion
model. These authors report that the relatively lenient
Akaike information criterion (AIC) may prefer the
branch lengths mixture model to the covarion (Akaike
1974; Felsenstein 2004) but that the more stringent
Bayesian information criterion (BIC; Schwarz 1978;
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Felsenstein 2004) prefers the covarion. We have found
similar results in five published nucleotide align-
ments—the mixture model with extra branch-length
sets is often favoured under the AIC but is far less likely
to be supported using the BIC (Meade & Pagel 2008).

Our goal here is to describe and evaluate a mixture-
model approach to accounting for heterotachy that
potentially reduces the number of extra parameters
required to explain the data. Our approach is motivated
by the belief that heterotachy is a common source of
variation in gene-sequence data, but that it may be
confined to only a small number of sites or to small
regions of the tree. If either of these situations is true,
then many of the branches in the tree will not require
an additional branch length. Our approach considers an
extra branch-length set but then tests pairs of branches
corresponding to the same edge of the phylogenetic
tree to see whether they can be collapsed into a single
branch, or if two additional branch-length sets
are considered, to see whether three branches can be
collapsed to two, and so on. At the same time, the model
continually proposes adding a branch length if one is
found inadequate to explain the data, and performs these
actions while exploring different tree topologies.

We implement our model using Markov chain
Monte Carlo (MCMC; Gilks et al. 1996; Gelman
2003) methods. MCMC methods employ a Markov
chain to explore the potential universe of models of
evolution that might describe the data. Most
implementations of MCMC methods explore models
of a fixed number of dimensions, such as the
parameters of a model of gene-sequence evolution.
However, a variant of MCMC known as reversible-
jump MCMC (RJMCMC; Green 1995) allows the
Markov chain to move among models of different
dimensionality. Boys & Henderson (2001) and Huel-
senbeck et al. (2004) used the reversible-jump
approach to explore models of sequence evolution,
Suchard et al. (2001) used it to choose among
alternative phylogenetic topologies, Pagel & Meade
(2006) used it in a model of correlated evolution of
binary traits, and we also use the RJMCMC approach
in our model of pattern heterogeneity to determine the
number of extra models of gene-sequence evolution
(available in BayesPhylogenies package, www.evolution.
reading.ac.uk). Here, we adopt the reversible-jump
approach in a multiple branch-length sets mixture
model for heterotachy to identify how many extra
parameters—corresponding to distinct additional
branch lengths—are needed to explain the data. Our
hope is that this RJMCMC algorithm can return
substantial improvements to the likelihood but often
with far fewer parameters than simply force-fitting an
entire extra branch-length set. We implement this
reversible-jump heterotachy model in combination with
our earlier model of pattern heterogeneity (Pagel &
Meade 2004). This means that the heterotachy that our
model identifies is that which exists over and above any
tendency for different sites to adopt different patterns
or rates of evolution.

In what follows we describe the model in more
detail, then apply it to simulated and real datasets. It is
not our goal to provide a general evaluation of branch-
length mixture models for heterotachy as we and others
Phil. Trans. R. Soc. B (2008)
have already reported results from simulated and
real data. Our primary interests are to evaluate the
reversible-jump procedure as a way of overcoming
the burden of extra parameters, and as a method for
identifying where in the tree and for which sites or
genes in the alignment rates of evolution have been
accelerated or slowed.
2. REVERSIBLE-JUMP BRANCH-LENGTH SETS
MIXTURE MODEL
We define the likelihood of a model of gene-sequence
evolution as an amount proportional to the probability
of the data given the model of sequence evolution and a
phylogenetic tree

LðQÞfPðDjQ;T Þ; ð2:1Þ

where D will normally be an aligned set of sequence
data; Q is the familiar substitution rate matrix that
defines the model of evolution; and T is the phyloge-
netic tree. In the case of nucleotide data, Q is a 4!4
matrix of transition rates among A, C, G and T
(Swofford et al. 1996). For protein data Q is a 20!20
matrix representing the transition rates among all pairs
of amino acids.

Given an aligned set of gene-sequence or other
character-state data, the probability of the data in D is
found as the product over all of the sites of the
individual probabilities of each site.

PðDjQ;T ÞZ
Y
i

PðDijQ;T Þ: ð2:2Þ

A mixture model for additional branch-length sets
modifies this basic framework by including more than
one set of branches for any given tree topology T. The
branching structures (topology) of the trees are fixed
while independent branch lengths, represented as a
vector t, are free to vary. The probability of the data is
now calculated by summing the likelihood at each site
over all of the different t for a given tree. Thus, defining
the branch-length sets as t1, t2, ., tJ, the probability
of the data under the mixture model is

PðDjt1; t2;.; tJ ;Q;T ÞZ
Y
i

X
j

wjPðDijtj ;Q;T Þ;

ð2:3Þ

where the summation over j now specifies that the
likelihood of the data at each site is summed over J
separate branch-length sets, the summation being
weighted by the wi where w1Cw2C/CwJ Z1.0 and
represents our prior beliefs about the suitability of a set
of branches for a given site. The number of branch-
length sets, J, can be determined either by prior
knowledge of how many different patterns are expected
in the data, or they can be empirically estimated,
along with the prior weights, from the data. Equation
(2.3) describes the model that Zhou et al. (2007),
Meade & Pagel (2008) and Kolaczkowski & Thornton
(2008) use.

Although our primary interest is in heterotachy we
need to digress from equation (2.3) for a moment to
describe the wider context of the heterotachy mixture
model. Nothing in equation (2.3) describes the variation
that one might expect among sites in the alignment,
such as the well-known gamma rate heterogeneity

http://www.evolution.reading.ac.uk
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(Yang 1994) or the pattern heterogeneity that we
describe elsewhere (Pagel & Meade 2004). But there
is every reason to expect that these across-site sources of
variation will exist alongside the within-site variation in
rates that models of heterotachy are designed to
describe, and so a complete model should account for
both. Failure to do this will not just mis-characterize the
data, it could conflate one form (such as pattern
heterogeneity) with another (e.g. heterotachy) if their
effects were somehow correlated.

It is straightforward to rewrite equation (2.3) to
accommodate both pattern heterogeneity and hetero-
tachy. We now consider a model in which we sum the
likelihood at each site over a series of k models of
sequence evolution, denoted by Qk, and over more
than one branch-length set. The summation is nested
as shown in equation (2.4), and simultaneously
accounts for pattern heterogeneity and heterotachy:

PðDjt1.; tJ ;Q1.Qk;T ÞZ
Y
i

X
j

wj

X
k

wkPðDijtj ;Qk;T Þ:

ð2:4Þ

A simple addition to this model can accommodate
gamma-distributed rate variation across sites (see
Pagel & Meade 2004 for a discussion of this with
respect to pattern heterogeneity on its own). Although
equation (2.4) describes the more complete model we
will, for purposes of discussion, refer to the model as
described in equation (2.3). Nevertheless, in all of the
analyses we report below the heterotachy that emerges
is above and beyond that which can be attributed to
pattern heterogeneity and to gamma-distributed rate
heterogeneity. None of the previous models of hetero-
tachy simultaneously account for pattern hetero-
geneity, although Huelsenbeck (2002) and Zhou et al.
(2007) allowed rate heterogeneity.

Elsewhere, we have described (Meade & Pagel
2008) the mixture model of equation (2.3) and
illustrated its application to simulated and real data.
We show that it can accurately estimate multiple sets of
branch lengths for a given alignment and tree topology,
as well as correctly identify the weights that should
be assigned to those extra branch-length sets (see
also Zhou et al. 2007). Here, we wish to define and
investigate a variant of the model in equation (2.3) that
responds to the realization that fitting two or more
complete additional branch-length sets may introduce
many redundant parameters, paired branch lengths in
different branch-length sets that are in fact not different
from each other.

This model can be written identically to that of
equation (2.3) but now we wish to determine for how
many of the 2sK3 edges in an unrooted phylogenetic
tree topology are two or more distinct lengths needed
to describe the data, and for how many a single length
suffices. This is the job of the reversible-jump algorithm.

We can write the probability model to explain the
data as MZ ðt1; t2;.; tJ ;Q;T Þ where the parameters
are as defined previously. Then the likelihood of the
data given M can be written as

PðDjMÞZ

ð
T

ð
Q

ð
t
PðDjQ;T ; tÞpðQÞpðT ÞpðtÞdQ dT dt;
Phil. Trans. R. Soc. B (2008)
where p(Q), p(T ) and p(t) are the prior probabilities
of these terms, and for simplicity we represent the
J vectors of branch lengths by a single matrix t. In
practice, this integral is difficult to evaluate but MCMC
methods can be used to estimate the posterior
distribution of PðDjMÞ, and MCMC methods are
now widely used in phylogenetic inference (e.g.
Gascuel 2005).

In a phylogenetic context, we construct a Markov
chain that jumps among possible models of sequence
evolution, phylogenetic trees and vectors and elements
of the branch-length space. At each iteration of the
chain some new version of M is proposed either by
altering the parameters in Q, or by changing the tree
topology or its branch lengths. Changes to the topology
move all of the lengths associated with a given branch to
its new position. Successive steps of the chain are
sampled using the Metropolis–Hastings algorithm
(Metropolis et al. 1953; Hastings 1970). A newly
proposed model that improves on the previous model
in the chain is always sampled or accepted; otherwise it
is accepted with probability proportional to the ratio of
its likelihood to that of the previous model.

Formally, the acceptance probability rule computes
the ratio of these likelihoods, the ratio of the prior
probabilities, and two additional quantities called the
proposal ratio and the Jacobian such that a new model
is accepted according to

RZminð1; prior ratio!proposal ratio!JacobianÞ:

The product of the prior ratio and likelihood ratio is
written as

P 0ðDjQ;T ; tÞp0ðQÞp0ðT Þp0ðtÞ

PðDjQ;T ; tÞpðQÞpðT ÞpðtÞ
;

where the terms are as defined above and the primes
refer to the proposed model. This ratio keeps track of
the relative performance of the current and proposed
models, and assigns a cost, in the form of the prior
ratio, to models with more parameters. The proposal
ratio compares the probability of moving towards some
new model to the probability of moving back to the
original state. Its role is to ensure that the Markov chain
searches the parameter space in an unbiased way. The
Jacobian measures the volume of the two state-spaces
defined by the current and proposed models. A Markov
chain following this acceptance rule will in principle
eventually converge to a state in which successive
values of the chain sample what is known as the
stationary distribution of states of the model. At
stationarity, the chain samples the posterior distri-
butions of the model’s parameters.

For most applications of MCMC, the dimension-
ality of the current and proposed models is the same
and thus the Jacobian can be ignored, as it takes the
value of 1. An unusual feature of the approach we
describe here, however, is that we wish to explore
models with differing numbers of parameters, corre-
sponding to some branches of the tree topology being
assigned more than one length. We define ‘split’ and
‘merge’ moves as proposals to either add a new branch
length to the tree by splitting an existing branch length
into two distinct lengths, or to combine two such
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Figure 2. Random topology of 70 taxa with branch lengths corresponding to branch-length set 1 drawn on the uniform interval
0–0.2. Inset: scatterplot of branch lengths from set 1 versus branch lengths from set 2.

Table 1. Details of the five published datasets.

taxa no. of taxa genes no. of sites

Chlorophyceae; Buchheim et al. (2001) 38 18S and 26S 3684
Gnetales; Rydin et al. (2002) 119 26s, 18s, rbcL, atpB 5923
Caenorhabditis; Kiontke et al. (2004) 14 18s, 28s, RNAP2, Par6, pkc3 7652
Plethodontids; Mueller et al. (2004) 27 complete mitochondrion 14 040
Costaceae (Zingiberales); Specht (2006) 66 ITS, trml-F, trnK, matK 5898
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lengths into one. Whenever a split or merge move is
proposed the resulting change to the likelihood is either
accepted or rejected following the acceptance rule
described above. Over large numbers of iterations these
moves will settle on a stationary distribution of the
number of extra branch lengths that are required to
explain the data.

To incorporate the split and merge moves into the
RJMCMC algorithm requires carefully constructed
proposal mechanisms and calculation of the Jacobian
term. We present details of these mechanisms, the
proposal ratio and the Jacobian terms in the electronic
supplementary materials.
iteration (×106)

Figure 3. Time-series plot taken from a segment of the
converged Markov chain of the posterior distribution of extra
branches derived from the reversible-jump algorithm.
MeanZ73G2.5.
3. PRIORS AND RUNNING THE MARKOV CHAIN
The Markov chain requires specification of the prior
distributions of the parameters of the model. We used
uniform priors on the interval 0–100 for all parameters
of the models of sequence evolution, uniform (0–1)
priors on the empirical weights of the mixture models,
and exponential (10) priors on the branch lengths for
changes that are proposed independently of splitting or
merging. Trees are given a uniform prior. We normally
ran at least four independent chains for each dataset to
check that they converged to the same region of the
parameter space. Chains were allowed to reach an
apparent steady state (this being operationally defined
as a chain whose mean likelihood remains unchanged
over many iterations) and then they were run at least
10 million further iterations. We sampled from
‘converged’ chains every 10 000 iterations retrieving
Phil. Trans. R. Soc. B (2008)
at least 1000 trees for purposes of drawing inferences.
Log-likelihoods reported below are the logarithms of
the harmonic means of the posterior distribution
of likelihoods.
4. APPLICATION TO SIMULATED DATA
We generated a random topology of 70 taxa, and then
drew two random sets of branch lengths from a uniform
distribution ranging between 0 and 0.2 (figure 2, inset
shows the two sets of branch lengths are uncorrelated).
We generated 1500 simulated nucleotides for each



Table 2. Results for 70-taxa simulated data. (BLS, branch-length set. RJ, reversible jump.)

log-LGs.da

log-improvement
proportion
RJ/2 BLS no. of branches RJ branches

proportion
RJ branches2 BLS RJ

131 951G9 923 853 0.92 138 73G2.5 0.53

a harmonic mean of likelihoods from converged chain.
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branch-length set, using Seqgen (Rambaut & Grassly
1997) and a common general-time-reversible (GTR)
model of sequence evolution (Swofford et al. 1996). We
combined the alignments from the two randomly
varying branch-length sets into a single alignment of
3000 simulated nucleotides.

We analysed the simulated alignment using a
conventional GTR likelihood model with one set of
branches, and also with the heterotachy mixture model
fitting two full branch-length sets, and finally using the
reversible-jump algorithm.
5. APPLICATION TO PUBLISHED DATA
We applied the model to the five published datasets
described in table 1, including algae, plants, nematode
worms and salamanders. The alignments include
nuclear and mitochondrial genes of both ribosomal
and protein coding functions. Each alignment contains
at least two genes, and no fewer than 3600 nucleotides,
but the number of taxa ranges from just 14 to 119
(all datasets available from TREEBASE, Piel et al. 2002).
In our previous study of heterotachy (Meade & Pagel
2008), we found that each of these datasets could
be described by two branch-length sets, save for the
Plethodontids for which the AIC supported three
branch-length sets, but a BIC supports two. Accor-
dingly, we study the behaviour of the reversible-
jump mixture model for two branch-length sets for
each alignment.
6. RESULTS
(a) Simulated data

Table 2 shows the mean log-likelihoods for the
conventional model with one branch-length set, and
the improvement in likelihood from the two branch-
length set mixture models and the reversible-jump
mixture model. The addition of a second branch-
length set, as expected, accounts for a large improve-
ment in the log likelihood (significant by both AIC and
BIC). The mixture model is able accurately to estimate
the additional branches: the correlation between the
simulated branch lengths and the mean of the posterior
sample of the estimated branch lengths is 0.997 for
set 1 and 0.995 for set 2. This is almost identical to
what Zhou et al. (2007) reported for a similar set of
simulations. The second branch-length set requires
138 additional parameters (2!70K3 branch par-
ameters plus one weight parameter). The reversible-
jump model accounts for 92.4 per cent of the likelihood
improvement over the conventional model but with a
mean of just 73 additional branches or roughly half
the number of parameters.

Figure 3 plots the posterior distribution of additional
branches in the reversible-jump model as a time series,
Phil. Trans. R. Soc. B (2008)
showing that the chain is stable at 73G2.5 branches
and that it mixes well, sometimes including more
branches and sometimes fewer. From the inset to
figure 2, a guess can be made about why the reversible-
jump model uses 65 fewer parameters than the full
branch-length set mixture model. Despite being
uncorrelated, just by chance some of the randomly
drawn branches in the first set are similar in length to
their matching branch in the second set—those falling
near to the 1: 1 line shown there. Figure 4 confirms this
view, plotting the posterior probability of an edge in the
tree having two distinct branches as a function of the
difference in length of the two randomly generated
branches. The posterior distribution for each edge is
found from the proportion of times in the posterior
sample a particular edge had one versus two branches.

Figure 4 shows that for a difference of just 0.04
branch-length units there is a 50 per cent chance of a
second branch being acquired in the reversible-jump
posterior sample. Branches that differ by an amount
less than that by definition display little or no
heterotachy and so a second branch is not required
for them, or at least is not detectable even with an
alignment of 3000 independent sites. We think that this
0.04 figure is not just a function of our branches varying
on the interval 0–0.2. Even for very short or relatively
long branches (near 0 or near to 0.2, respectively) in
our simulations, we find that a second branch is
required if it is estimated to differ by more than this
0.04 amount from the first.

(b) Real datasets

In real datasets, we might expect a range of degrees of
heterotachy, from it being confined to a small number
of branches up to including nearly every branch in the
tree. Especially when it is confined to a small number of
branches, the reversible-jump mixture model should be
more sensitive to detecting these effects.

Table 3 reports the mean log likelihoods for the
conventional one branch-length set model as applied to
the five published datasets, and the improvement in
likelihood from the two branch-length sets and
reversible-jump mixture models. The results from the
reversible-jump model explain why the AIC often
supports two full branch-length sets in the conventional
mixture model but the BIC does not. The last column
of table 3 shows that the proportion of branches
showing evidence of heterotachy ranges from just 5 to
approximately 60%. For the Chlorophyceae the full
branch-length sets mixture model is forced to fit 74
branches as opposed to just 4G3 for the reversible-
jump model. The message here is that real datasets
can be expected to vary greatly in the amount of
heterotachy they show and in how many branches in
the tree are affected. It is not necessary to test the



Table 3. Results for real datasets. (BLS, branch-length set; RJ, reversible jump.)

dataset log-L 1 BLSa

log improvement
proportion
RJ/2 BLS

no. of
branches

RJ branches
meanGs.d.

proportion
RJ branches2 BLS RJ

Chlorophyceae K26 260 112 23 0.21 74 4.0G3.0 0.05
Gnetales K77 650 517 424 0.82 236 44.5G3.1 0.19
Caenorhabditis K43 622 106 95 0.90 26 15.4G1.4 0.60
Plethodontids K185 521 190 111 0.58 52 13.1G1.6 0.25
Costaceae K28 411 285 149 0.52 130 13.5G1.6 0.10
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Figure 4. The posterior probability of the reversible-jump algorithm identifying two branches as a function of the absolute
difference in the true lengths of the two branches. P50 denotes the point on the x -axis (0.040, red circle) where there is a 50%
chance of detecting a second branch. S-shaped curve is a two-parameter logistic model.
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reversible-jump results further: the mean of the

posterior distributions of extra branches directly

estimates how much heterotachy is in the tree. Never-

theless, each of the reversible-jump results would be

judged significant using the more stringent BIC as

applied to their likelihood improvement and numbers

of additional branches required.

The reversible-jump algorithm usefully pinpoints

the positions in the tree most affected by heterotachy.

Figure 5 shows the consensus tree derived from the

posterior distribution of trees for the 119 species in the

Gnetales alignment (table 1), pruned to make it easier

to view. The Gnetales are a small group of seed plants

that may form a sister group to the angiosperms. The

branch lengths of the consensus tree are, in the case of

edges with more than one length, the weighted averages

of the two branches found for that edge. The reversible-

jump algorithm settles on an average of 44.5G3.1 extra

branches (table 3) and those with a posterior prob-

ability greater than 0.5 of having more than one length

are coloured in red. This reveals a concentration of

heterotachy in the clade in the lower portion of the tree,

corresponding to lycopods, ferns and equisetum. The

inset shows the two very different sets of branch lengths

the reversible-jump algorithm finds for this clade.

Meade & Pagel (2008) show that this heterotachy is
Phil. Trans. R. Soc. B (2008)
associated principally with acceleration in the evolution
of the rbcl and atpB protein coding genes in this
clade (lower sub-clade), genes associated with ATP
synthesis and photosynthesis. By comparison, the two
ribosomal genes evolve slowly in this clade (upper
sub-clade) and in general have a more uniform rate
throughout the tree.
7. DISCUSSION
Our results show that a reversible-jump mixture model
can identify heterotachy in gene-sequence alignments
and often with far fewer parameters than conventional
mixture-models that rely on additional complete
branch-length sets (Zhou et al. 2007; Meade & Pagel
2008; Kolaczkowski & Thornton 2008). It is worth
bearing in mind that our results with real datasets
record the amount of heterotachy over and above any
improvements in likelihood that could be attributed to
pattern heterogeneity (Pagel & Meade 2004) or rate
variation among sites. To our knowledge, ours is the
first demonstration of the effects of heterotachy
independently of these other sources of variation. The
results in table 3, therefore, reinforce earlier sugges-
tions that heterotachy is an important source of
variation in real data.



Figure 5. The phylogeny of the Gnetales (table 1). The tree is
derived as a consensus of the posterior sample of trees
produced by the reversible-jump mixture model. For
edges with more than one branch length, the consensus
length is the weighted mean of the lengths for that edge.
Colours identify edges with a greater than 50% chance of
having two distinct lengths in the posterior sample. Inset
shows the two sets of branch lengths for the clade with
pronounced heterotachy.
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The strength of the mixture-model approach to
heterotachy, of using multiple branch-length sets, is
that it makes no a priori assumptions about the
distribution or occurrence of heterotachy throughout
the tree. Rather, the mixture model acts like a non-
parametric covarion, the individual branch-length sets
each providing a unique and potentially idiosyncratic
description of the heterotachy in the tree. But as the
reversible-jump algorithm exposes, potentially many of
the parameters in the additional branch-length sets are
redundant: they may correspond to edges in the tree for
which no heterotachy is present. The reversible-jump
algorithm solves the problem of redundancy by assign-
ing multiple lengths only to those edges for which the
data justify more than one length. In just the few
datasets we investigated, the proportion of edges
requiring more than one length fell as low as 5 per
cent and was never more than 60 per cent.

The figure of 60 per cent, if representative of the
upper values we might routinely expect of real datasets,
makes the clear statement that, on average, the majority
of the parameters that the conventional multiple
branch-length sets mixture models estimate are not
needed! Zhou et al. (2007), for example, reported
correlations of approximately 0.60 between the branch
lengths in the two branch-length sets they fitted to one
of their datasets, indicative of much redundant
information between the two sets. By comparison for
the Gnetales data of figure 5, the correlation between
the edges that the reversible-jump algorithm identifies
as requiring two distinct lengths is K0.11. In the
datasets, we examined the average number of extra
branches required was just 24 per cent of those used in
a complete additional set of branches, a reduction of
approximately 75 per cent in the amount of estimation
required. We do not think this low figure arises from a
lack of power to detect additional branches, but rather
points up just how much redundancy there is in the
full branch-length set models. Even in our simulated
data, we were able to account for 92 per cent of the
likelihood supplied by an additional branch-length set,
Phil. Trans. R. Soc. B (2008)
but using roughly half the parameters that the
additional set required. These data further suggested
that the reversible-jump algorithm was able to assign
two lengths to an edge when the true simulated lengths
differed by approximately 0.04 units of expected
nucleotide substitutions.

The reversible-jump approach may help to manage
some of the awkward problems of inference that arise
when quasi-frequentist ideas of hypothesis testing
are applied to Bayesian problems. Zhou et al. (2007)
highlighted the very different outcomes that can arise
when the relatively lenient Akaike and more stringent
Bayesian information criterion tests are used to select
among various mixture models of heterotachy. The
reversible-jump algorithm produces a direct estimate of
the posterior distribution of extra branches required in
the mixture model. The mean of that distribution is a
measure of one’s posterior confidence in the existence
of heterotachy in the data: if the mean is zero one can,
other things being equal, be reasonably confident that
heterotachy is not affecting the data and as it moves
away from zero this provides evidence of more and
more heterotachy. In this light, it is interesting that in
our real data examples, the AIC always supported a
complete additional branch-length set but the BIC
does only for one of them (the Caenorhabditis). With
no good way to choose between these two criteria, it is
difficult to draw any conclusions. However, the BIC
always supports the request for the smaller number of
extra branches derived from the reversible-jump
algorithm. The message is not that one should apply
the BIC to test the results derived from the reversible-
jump algorithm, rather, that the reversible-jump
algorithm on its own is doing its job.

Apart from methodological considerations, an
attractive feature of the reversible-jump approach is
that it directly highlights the regions of the tree—and
thus the taxa and their ancestors—whose evolution has
been characterized by changes to rates of evolution. It
does this by providing an estimate for each edge of the
tree of the posterior belief in how many distinct lengths
are needed to describe the evolution along those edges.
Along with identifying the taxa involved, it is also
straightforward to query the alignment itself to discover
which sites are most directly implicated in the
heterotachy. For the Gnetales data, this combination
of information allows us to say directly that two
protein coding genes involved in energy transfer (rbcl
and atpB) have greatly accelerated their rate of
evolution in the lycopods, ferns and equisetum. Put
together, what the model is discovering are taxa–gene
interactions in the rate of evolution. This kind of
information should prove valuable for understanding
the selective forces acting on genes and for reconstruct-
ing the history of protein evolution in particular groups.

This work was supported by grant NE/C51992X/1 from the
Natural Environment Research Council, United Kingdom to
M.P. Earlier versions of the model reported here were
presented at the annual New Zealand phylogenetics con-
ference (Whitianga, 2005) and the Newton Institute
(Cambridge, UK, 2007). We thank the Centre for Advanced
Computing and Emerging Technologies (ACET) at the
University of Reading for computational support, and Nick
Goldman and Ziheng Yang for inviting this paper.
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